
2: Application Layer 1

Chapter 2
Application Layer

Computer Networking:
A Top Down Approach,
4th edition.
Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

A note on the use of these ppt slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:
� If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)
� If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2007
J.F Kurose and K.W. Ross, All Rights Reserved

2: Application Layer 2

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 3

Chapter 2: Application Layer
Our goals:
❒ conceptual,

implementation
aspects of network
application protocols
� transport-layer

service models
� client-server

paradigm
� peer-to-peer

paradigm

❒ learn about protocols
by examining popular
application-level
protocols
� HTTP
� FTP
� SMTP / POP3 / IMAP
� DNS

❒ programming network
applications
� socket API

2: Application Layer 4

Some network apps

❒ e-mail
❒ web
❒ instant messaging
❒ remote login
❒ P2P file sharing
❒ multi-user network

games
❒ streaming stored video

clips

❒ voice over IP
❒ real-time video

conferencing
❒ grid computing
❒

❒

❒

2: Application Layer 5

Creating a network app
write programs that

� run on (different) end
systems

� communicate over network
� e.g., web server software

communicates with browser
software

No need to write software
for network-core devices
� Network-core devices do

not run user applications
� applications on end systems

allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

2: Application Layer 6

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 7

Application architectures

❒ Client-server
❒ Peer-to-peer (P2P)
❒ Hybrid of client-server and P2P

2: Application Layer 8

Client-server architecture
server:

� always-on host
� permanent IP address
� server farms for

scaling
clients:

� communicate with server
� may be intermittently

connected
� may have dynamic IP

addresses
� do not communicate

directly with each other

client/server

2: Application Layer 9

Pure P2P architecture

❒ no always-on server
❒ arbitrary end systems

directly communicate
❒ peers are intermittently

connected and change IP
addresses

Highly scalable but
difficult to manage

peer-peer

2: Application Layer 10

Hybrid of client-server and P2P
Skype

� voice-over-IP P2P application
� centralized server: finding address of remote

party:
� client-client connection: direct (not through

server)
Instant messaging

� chatting between two users is P2P
� centralized service: client presence

detection/location
• user registers its IP address with central

server when it comes online
• user contacts central server to find IP

addresses of buddies

2: Application Layer 11

Processes communicating

Process: program running
within a host.

❒ within same host, two
processes communicate
using inter-process
communication (defined
by OS).

❒ processes in different
hosts communicate by
exchanging messages

Client process: process
that initiates
communication

Server process: process
that waits to be
contacted

❒ Note: applications with
P2P architectures have
client processes &
server processes

2: Application Layer 12

Sockets

❒ process sends/receives
messages to/from its
socket

❒ socket analogous to door
� sending process shoves

message out door
� sending process relies on

transport infrastructure
on other side of door which
brings message to socket
at receiving process

process

TCP with
buffers,
variables

socket

host or
server

process

TCP with
buffers,
variables

socket

host or
server

Internet

controlled
by OS

controlled by
app developer

❒ API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

2: Application Layer 13

Addressing processes
❒ to receive messages,

process must have
identifier

❒ host device has unique
32-bit IP address

❒ Q: does IP address of
host suffice for
identifying the process?

2: Application Layer 14

Addressing processes
❒ to receive messages,

process must have
identifier

❒ host device has unique
32-bit IP address

❒ Q: does IP address of
host on which process
runs suffice for
identifying the
process?
� A: No, many

processes can be
running on same host

❒ identifier includes both
IP address and port
numbers associated with
process on host.

❒ Example port numbers:
� HTTP server: 80
� Mail server: 25

❒ to send HTTP message
to gaia.cs.umass.edu web
server:
� IP address: 128.119.245.12
� Port number: 80

❒ more shortly…

2: Application Layer 15

App-layer protocol defines

❒ Types of messages
exchanged,
� e.g., request, response

❒ Message syntax:
� what fields in messages &

how fields are delineated
❒ Message semantics

� meaning of information in
fields

❒ Rules for when and how
processes send &
respond to messages

Public-domain protocols:
❒ defined in RFCs
❒ allows for

interoperability
❒ e.g., HTTP, SMTP
Proprietary protocols:
❒ e.g., Skype

2: Application Layer 16

What transport service does an app need?

Data loss
❒ some apps (e.g., audio) can

tolerate some loss
❒ other apps (e.g., file

transfer, telnet) require
100% reliable data
transfer

Timing
❒ some apps (e.g.,

Internet telephony,
interactive games)
require low delay to be
“effective”

Throughput
❒ some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

❒ other apps (“elastic apps”)
make use of whatever
throughput they get

Security
❒ Encryption, data

integrity, …

2: Application Layer 17

Transport service requirements of common apps

Application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games
instant messaging

Data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

Throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

Time Sensitive

no
no
no
yes, 100’s msec

yes, few secs
yes, 100’s msec
yes and no

2: Application Layer 18

Internet transport protocols services

TCP service:
❒ connection-oriented: setup

required between client and
server processes

❒ reliable transport between
sending and receiving process

❒ flow control: sender won’t
overwhelm receiver

❒ congestion control: throttle
sender when network
overloaded

❒ does not provide: timing,
minimum throughput
guarantees, security

UDP service:
❒ unreliable data transfer

between sending and
receiving process

❒ does not provide:
connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

Q: why bother? Why is
there a UDP?

2: Application Layer 19

Internet apps: application, transport protocols

Application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

Application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (eg Youtube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

Underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

typically UDP

2: Application Layer 20

Chapter 2: Application layer

❒ 2.1 Principles of
network applications
� app architectures
� app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 21

Web and HTTP

First some jargon
❒ Web page consists of objects
❒ Object can be HTML file, JPEG image, Java

applet, audio file,…
❒ Web page consists of base HTML-file which

includes several referenced objects
❒ Each object is addressable by a URL
❒ Example URL:

www.someschool.edu/someDept/pic.gif

host name path name

2: Application Layer 22

HTTP overview

HTTP: hypertext
transfer protocol

❒ Web’s application layer
protocol

❒ client/server model
� client: browser that

requests, receives,
“displays” Web objects

� server: Web server
sends objects in
response to requests

PC running
Explorer

Server
running

Apache Web
server

Mac running
Navigator

HTTP request

HTTP request

HTTP response

HTTP response

2: Application Layer 23

HTTP overview (continued)

Uses TCP:
❒ client initiates TCP

connection (creates socket)
to server, port 80

❒ server accepts TCP
connection from client

❒ HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

❒ TCP connection closed

HTTP is “stateless”
❒ server maintains no

information about
past client requests

Protocols that maintain
“state” are complex!

❒ past history (state) must
be maintained

❒ if server/client crashes,
their views of “state” may
be inconsistent, must be
reconciled

aside

2: Application Layer 24

HTTP connections

Nonpersistent HTTP
❒ At most one object is

sent over a TCP
connection.

Persistent HTTP
❒ Multiple objects can

be sent over single
TCP connection
between client and
server.

2: Application Layer 25

Nonpersistent HTTP
Suppose user enters URL

www.someSchool.edu/someDepartment/home.index

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port 80

2. HTTP client sends HTTP
request message (containing
URL) into TCP connection
socket. Message indicates
that client wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message
into its socket

time

(contains text,
references to 10

jpeg images)

2: Application Layer 26

Nonpersistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each
of 10 jpeg objects

4. HTTP server closes TCP
connection.

time

2: Application Layer 27

Non-Persistent HTTP: Response time

Definition of RTT: time for
a small packet to travel
from client to server
and back.

Response time:
❒ one RTT to initiate TCP

connection
❒ one RTT for HTTP

request and first few
bytes of HTTP response
to return

❒ file transmission time
total = 2RTT+transmit time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

2: Application Layer 28

Persistent HTTP

Nonpersistent HTTP issues:
❒ requires 2 RTTs per object
❒ OS overhead for each TCP

connection
❒ browsers often open parallel

TCP connections to fetch
referenced objects

Persistent HTTP
❒ server leaves connection

open after sending
response

❒ subsequent HTTP messages
between same
client/server sent over
open connection

❒ client sends requests as
soon as it encounters a
referenced object

❒ as little as one RTT for all
the referenced objects

2: Application Layer 29

HTTP request message

❒ two types of HTTP messages: request, response
❒ HTTP request message:

� ASCII (human-readable format)

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

(extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
lines

Carriage return,
line feed

indicates end
of message

2: Application Layer 30

HTTP request message: general format

2: Application Layer 31

Uploading form input

Post method:
❒ Web page often

includes form input
❒ Input is uploaded to

server in entity body

URL method:
❒ Uses GET method
❒ Input is uploaded in

URL field of request
line:

www.somesite.com/animalsearch?monkeys&banana

2: Application Layer 32

Method types

HTTP/1.0
❒ GET
❒ POST
❒ HEAD

� asks server to leave
requested object out of
response

HTTP/1.1
❒ GET, POST, HEAD
❒ PUT

� uploads file in entity
body to path specified
in URL field

❒ DELETE
� deletes file specified in

the URL field

2: Application Layer 33

HTTP response message

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

2: Application Layer 34

HTTP response status codes

200 OK
� request succeeded, requested object later in this message

301 Moved Permanently
� requested object moved, new location specified later in

this message (Location:)
400 Bad Request

� request message not understood by server
404 Not Found

� requested document not found on this server
505 HTTP Version Not Supported

In first line in server->client response message.
A few sample codes:

2: Application Layer 35

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:
Opens TCP connection to port 80
(default HTTP server port) at cis.poly.edu.
Anything typed in sent
to port 80 at cis.poly.edu

telnet cis.poly.edu 80

2. Type in a GET HTTP request:
GET /~ross/ HTTP/1.1
Host: cis.poly.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

3. Look at response message sent by HTTP server!

2: Application Layer 36

User-server state: cookies

Many major Web sites
use cookies

Four components:
1) cookie header line of

HTTP response message
2) cookie header line in

HTTP request message
3) cookie file kept on

user’s host, managed by
user’s browser

4) back-end database at
Web site

Example:
❒ Susan always access

Internet always from PC
❒ visits specific e-

commerce site for first
time

❒ when initial HTTP
requests arrives at site,
site creates:
� unique ID
� entry in backend

database for ID

2: Application Layer 37

Cookies: keeping “state” (cont.)
client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

spectific
action

access
ebay 8734
amazon 1678

backend
database

2: Application Layer 38

Cookies (continued)
What cookies can bring:
❒ authorization
❒ shopping carts
❒ recommendations
❒ user session state

(Web e-mail)

Cookies and privacy:
❒ cookies permit sites to

learn a lot about you
❒ you may supply name

and e-mail to sites

aside

How to keep “state”:
❒ protocol endpoints: maintain state

at sender/receiver over multiple
transactions

❒ cookies: http messages carry state

2: Application Layer 39

Web caches (proxy server)

❒ user sets browser:
Web accesses via
cache

❒ browser sends all
HTTP requests to
cache
� object in cache: cache

returns object
� else cache requests

object from origin
server, then returns
object to client

Goal: satisfy client request without involving origin server

client

Proxy
server

client

HTTP request

HTTP response

HTTP request HTTP request

origin
server

origin
server

HTTP response HTTP response

2: Application Layer 40

More about Web caching

❒ cache acts as both
client and server

❒ typically cache is
installed by ISP
(university, company,
residential ISP)

Why Web caching?
❒ reduce response time

for client request
❒ reduce traffic on an

institution’s access
link.

❒ Internet dense with
caches: enables “poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 41

Caching example
Assumptions
❒ average object size = 100,000

bits
❒ avg. request rate from

institution’s browsers to origin
servers = 15/sec

❒ delay from institutional router
to any origin server and back
to router = 2 sec

Consequences
❒ utilization on LAN = 15%
❒ utilization on access link = 100%
❒ total delay = Internet delay +

access delay + LAN delay
= 2 sec + minutes + milliseconds

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 42

Caching example (cont)
possible solution
❒ increase bandwidth of access

link to, say, 10 Mbps
consequence
❒ utilization on LAN = 15%
❒ utilization on access link = 15%
❒ Total delay = Internet delay +

access delay + LAN delay
= 2 sec + msecs + msecs

❒ often a costly upgrade

origin
servers

public
Internet

institutional
network 10 Mbps LAN

10 Mbps
access link

institutional
cache

2: Application Layer 43

Caching example (cont)

possible solution: install
cache

❒ suppose hit rate is 0.4
consequence
❒ 40% requests will be

satisfied almost immediately
❒ 60% requests satisfied by

origin server
❒ utilization of access link

reduced to 60%, resulting in
negligible delays (say 10
msec)

❒ total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
.4*milliseconds < 1.4 secs

origin
servers

public
Internet

institutional
network 10 Mbps LAN

1.5 Mbps
access link

institutional
cache

2: Application Layer 44

Conditional GET

❒ Goal: don’t send object if
cache has up-to-date cached
version

❒ cache: specify date of
cached copy in HTTP request
If-modified-since:

<date>

❒ server: response contains no
object if cached copy is up-
to-date:
HTTP/1.0 304 Not

Modified

cache server
HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

2: Application Layer 45

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 46

FTP: the file transfer protocol

❒ transfer file to/from remote host
❒ client/server model

� client: side that initiates transfer (either to/from
remote)

� server: remote host
❒ ftp: RFC 959
❒ ftp server: port 21

file transfer FTP
server

FTP
user

interface

FTP
client

local file
system

remote file
system

user
at host

2: Application Layer 47

FTP: separate control, data connections

❒ FTP client contacts FTP server
at port 21, TCP is transport
protocol

❒ client authorized over control
connection

❒ client browses remote
directory by sending commands
over control connection.

❒ when server receives file
transfer command, server
opens 2nd TCP connection (for
file) to client

❒ after transferring one file,
server closes data connection.

FTP
client

FTP
server

TCP control connection
port 21

TCP data connection
port 20

❒ server opens another TCP
data connection to transfer
another file.

❒ control connection: “out of
band”

❒ FTP server maintains “state”:
current directory, earlier
authentication

2: Application Layer 48

FTP commands, responses

Sample commands:
❒ sent as ASCII text over

control channel
❒ USER username

❒ PASS password

❒ LIST return list of file in
current directory

❒ RETR filename retrieves
(gets) file

❒ STOR filename stores
(puts) file onto remote
host

Sample return codes
❒ status code and phrase (as

in HTTP)
❒ 331 Username OK,

password required

❒ 125 data connection
already open;
transfer starting

❒ 425 Can’t open data
connection

❒ 452 Error writing
file

2: Application Layer 49

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 50

Electronic Mail

Three major components:
❒ user agents
❒ mail servers
❒ simple mail transfer

protocol: SMTP

User Agent
❒ a.k.a. “mail reader”
❒ composing, editing, reading

mail messages
❒ e.g., Eudora, Outlook, elm,

Mozilla Thunderbird
❒ outgoing, incoming messages

stored on server

user mailbox

outgoing
message queue

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 51

Electronic Mail: mail servers

Mail Servers
❒ mailbox contains incoming

messages for user
❒ message queue of outgoing

(to be sent) mail messages
❒ SMTP protocol between mail

servers to send email
messages
� client: sending mail

server
� “server”: receiving mail

server

mail
server

user
agent

user
agent

user
agent

mail
server

user
agent

user
agent

mail
server

user
agent

SMTP

SMTP

SMTP

2: Application Layer 52

Electronic Mail: SMTP [RFC 2821]

❒ uses TCP to reliably transfer email message from client
to server, port 25

❒ direct transfer: sending server to receiving server
❒ three phases of transfer

� handshaking (greeting)
� transfer of messages
� closure

❒ command/response interaction
� commands: ASCII text
� response: status code and phrase

❒ messages must be in 7-bit ASCII

2: Application Layer 53

Scenario: Alice sends message to Bob
1) Alice uses UA to compose

message and “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) Client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

user
agent

mail
server

mail
server user

agent

1

2 3 4 5
6

2: Application Layer 54

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

2: Application Layer 55

Try SMTP interaction for yourself:

❒ telnet servername 25

❒ see 220 reply from server
❒ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands
above lets you send email without using email client

(reader)

2: Application Layer 56

SMTP: final words

❒ SMTP uses persistent
connections

❒ SMTP requires message
(header & body) to be in 7-
bit ASCII

❒ SMTP server uses
CRLF.CRLF to determine
end of message

Comparison with HTTP:
❒ HTTP: pull
❒ SMTP: push

❒ both have ASCII
command/response
interaction, status codes

❒ HTTP: each object
encapsulated in its own
response msg

❒ SMTP: multiple objects
sent in multipart msg

2: Application Layer 57

Mail message format

SMTP: protocol for
exchanging email msgs

RFC 822: standard for text
message format:

❒ header lines, e.g.,
� To:
� From:
� Subject:
different from SMTP

commands!
❒ body

� the “message”, ASCII
characters only

header

body

blank
line

2: Application Layer 58

Message format: multimedia extensions

❒ MIME: multimedia mail extension, RFC 2045, 2056
❒ additional lines in msg header declare MIME content

type

From: alice@crepes.fr
To: bob@hamburger.edu
Subject: Picture of yummy crepe.
MIME-Version: 1.0
Content-Transfer-Encoding: base64
Content-Type: image/jpeg

base64 encoded data
.........................
......base64 encoded data

multimedia data
type, subtype,

parameter declaration

method used
to encode data

MIME version

encoded data

2: Application Layer 59

Mail access protocols

❒ SMTP: delivery/storage to receiver’s server
❒ Mail access protocol: retrieval from server

� POP: Post Office Protocol [RFC 1939]
• authorization (agent <-->server) and download

� IMAP: Internet Mail Access Protocol [RFC 1730]
• more features (more complex)
• manipulation of stored msgs on server

� HTTP: gmail, Hotmail, Yahoo! Mail, etc.

user
agent

sender’s mail
server

user
agent

SMTP SMTP access
protocol

receiver’s mail
server

2: Application Layer 60

POP3 protocol

authorization phase
❒ client commands:

� user: declare username
� pass: password

❒ server responses
� +OK

� -ERR

transaction phase, client:
❒ list: list message numbers
❒ retr: retrieve message by

number
❒ dele: delete
❒ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

2: Application Layer 61

POP3 (more) and IMAP
More about POP3
❒ Previous example uses

“download and delete”
mode.

❒ Bob cannot re-read e-
mail if he changes
client

❒ “Download-and-keep”:
copies of messages on
different clients

❒ POP3 is stateless
across sessions

IMAP
❒ Keep all messages in

one place: the server
❒ Allows user to

organize messages in
folders

❒ IMAP keeps user state
across sessions:
� names of folders and

mappings between
message IDs and folder
name

2: Application Layer 62

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP
❒ 2.9 Building a Web

server

2: Application Layer 63

DNS: Domain Name System

People: many identifiers:
� SSN, name, passport #

Internet hosts, routers:
� IP address (32 bit) -

used for addressing
datagrams

� “name”, e.g.,
ww.yahoo.com - used by
humans

Q: map between IP
addresses and name ?

Domain Name System:
❒ distributed database

implemented in hierarchy of
many name servers

❒ application-layer protocol
host, routers, name servers to
communicate to resolve names
(address/name translation)
� note: core Internet

function, implemented as
application-layer protocol

� complexity at network’s
“edge”

2: Application Layer 64

DNS
Why not centralize DNS?
❒ single point of failure
❒ traffic volume
❒ distant centralized

database
❒ maintenance

doesn’t scale!

DNS services
❒ hostname to IP

address translation
❒ host aliasing

� Canonical, alias names
❒ mail server aliasing
❒ load distribution

� replicated Web
servers: set of IP
addresses for one
canonical name

2: Application Layer 65

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

Distributed, Hierarchical Database

Client wants IP for www.amazon.com; 1st approx:
❒ client queries a root server to find com DNS server
❒ client queries com DNS server to get amazon.com

DNS server
❒ client queries amazon.com DNS server to get IP

address for www.amazon.com

2: Application Layer 66

DNS: Root name servers
❒ contacted by local name server that can not resolve name
❒ root name server:

� contacts authoritative name server if name mapping not known
� gets mapping
� returns mapping to local name server

13 root name
servers worldwide

b USC-ISI Marina del Rey, CA
l ICANN Los Angeles, CA

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

i Autonomica, Stockholm (plus
28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA
c Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD
g US DoD Vienna, VA
h ARL Aberdeen, MD
j Verisign, (21 locations)

2: Application Layer 67

TLD and Authoritative Servers

❒ Top-level domain (TLD) servers:
� responsible for com, org, net, edu, etc, and all

top-level country domains uk, fr, ca, jp.
� Network Solutions maintains servers for com TLD
� Educause for edu TLD

❒ Authoritative DNS servers:
� organization’s DNS servers, providing

authoritative hostname to IP mappings for
organization’s servers (e.g., Web, mail).

� can be maintained by organization or service
provider

2: Application Layer 68

Local Name Server

❒ does not strictly belong to hierarchy
❒ each ISP (residential ISP, company,

university) has one.
� also called “default name server”

❒ when host makes DNS query, query is sent
to its local DNS server
� acts as proxy, forwards query into hierarchy

2: Application Layer 69

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

❒ Host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
❒ contacted server

replies with name of
server to contact

❒ “I don’t know this
name, but ask this
server”

2: Application Layer 70

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2

45

6

authoritative DNS server
dns.cs.umass.edu

7

8

TLD DNS server

3recursive query:
❒ puts burden of name

resolution on
contacted name
server

❒ heavy load?

DNS name
resolution example

2: Application Layer 71

DNS: caching and updating records

❒ once (any) name server learns mapping, it caches
mapping
� cache entries timeout (disappear) after some

time
� TLD servers typically cached in local name

servers
• Thus root name servers not often visited

❒ update/notify mechanisms under design by IETF
� RFC 2136
� http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 72

DNS records
DNS: distributed db storing resource records (RR)

❒ Type=NS
� name is domain (e.g.

foo.com)
� value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

❒ Type=A
� name is hostname
� value is IP address

❒ Type=CNAME
� name is alias name for some

“canonical” (the real) name
www.ibm.com is really
servereast.backup2.ibm.com

� value is canonical name

❒ Type=MX
� value is name of mailserver

associated with name

2: Application Layer 73

DNS protocol, messages
DNS protocol : query and reply messages, both with

same message format

msg header
❒ identification: 16 bit #

for query, reply to query
uses same #

❒ flags:
� query or reply
� recursion desired
� recursion available
� reply is authoritative

2: Application Layer 74

DNS protocol, messages

Name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 75

Inserting records into DNS

❒ example: new startup “Network Utopia”
❒ register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
� provide names, IP addresses of authoritative name server

(primary and secondary)
� registrar inserts two RRs into com TLD server:

(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

❒ create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

❒ How do people get IP address of your Web site?

2: Application Layer 76

Chapter 2: Application layer

❒ 2.1 Principles of
network applications
� app architectures
� app requirements

❒ 2.2 Web and HTTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 77

Pure P2P architecture

❒ no always-on server
❒ arbitrary end systems

directly communicate
❒ peers are intermittently

connected and change IP
addresses

❒ Three topics:
� File distribution
� Searching for information
� Case Study: Skype

peer-peer

2: Application Layer 78

File Distribution: Server-Client vs P2P
Question : How much time to distribute file

from one server to N peers?

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

File, size F

us: server upload
bandwidth
ui: peer i upload
bandwidth

di: peer i download
bandwidth

2: Application Layer 79

File distribution time: server-client

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F❒ server sequentially
sends N copies:
� NF/us time

❒ client i takes F/di
time to download

increases linearly in N
(for large N)

= dcs = max { NF/us, F/min(di) }
i

Time to distribute F
to N clients using

client/server approach

2: Application Layer 80

File distribution time: P2P

us

u2d1 d2
u1

uN

dN

Server

Network (with
abundant bandwidth)

F❒ server must send one
copy: F/us time

❒ client i takes F/di time
to download

❒ NF bits must be
downloaded (aggregate)
❒ fastest possible upload rate: us + Σui

dP2P = max { F/us, F/min(di) , NF/(us + Σui) }
i

2: Application Layer 81

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Server-client vs. P2P: example
Client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

2: Application Layer 82

File distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of
peers exchanging
chunks of a file

obtain list
of peers

trading
chunks

peer

❒ P2P file distribution

2: Application Layer 83

BitTorrent (1)
❒ file divided into 256KB chunks.
❒ peer joining torrent:

� has no chunks, but will accumulate them over time
� registers with tracker to get list of peers,

connects to subset of peers (“neighbors”)
❒ while downloading, peer uploads chunks to other

peers.
❒ peers may come and go
❒ once peer has entire file, it may (selfishly) leave or

(altruistically) remain

2: Application Layer 84

BitTorrent (2)
Pulling Chunks
❒ at any given time,

different peers have
different subsets of
file chunks

❒ periodically, a peer
(Alice) asks each
neighbor for list of
chunks that they have.

❒ Alice sends requests
for her missing chunks
� rarest first

Sending Chunks: tit-for-tat
❒ Alice sends chunks to four

neighbors currently
sending her chunks at the
highest rate
� re-evaluate top 4 every

10 secs
❒ every 30 secs: randomly

select another peer,
starts sending chunks
� newly chosen peer may

join top 4
� “optimistically unchoke”

2: Application Layer 85

BitTorrent: Tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

2: Application Layer 86

P2P: searching for information

File sharing (eg e-mule)
❒ Index dynamically

tracks the locations of
files that peers share.

❒ Peers need to tell
index what they have.

❒ Peers search index to
determine where files
can be found

Instant messaging
❒ Index maps user

names to locations.
❒ When user starts IM

application, it needs to
inform index of its
location

❒ Peers search index to
determine IP address
of user.

Index in P2P system: maps information to peer location
(location = IP address & port number)
.

2: Application Layer 87

P2P: centralized index

original “Napster” design
1) when peer connects, it

informs central server:
� IP address
� content

2) Alice queries for “Hey
Jude”

3) Alice requests file from
Bob

centralized
directory server

peers

Alice

Bob

1

1

1

12

3

2: Application Layer 88

P2P: problems with centralized directory

❒ single point of failure
❒ performance bottleneck
❒ copyright infringement:

“target” of lawsuit is
obvious

file transfer is
decentralized, but
locating content is
highly centralized

2: Application Layer 89

Query flooding

❒ fully distributed
� no central server

❒ used by Gnutella
❒ Each peer indexes the

files it makes available
for sharing (and no
other files)

overlay network: graph
❒ edge between peer X

and Y if there’s a TCP
connection

❒ all active peers and
edges form overlay net

❒ edge: virtual (not
physical) link

❒ given peer typically
connected with < 10
overlay neighbors

2: Application Layer 90

Query flooding

Query

QueryHit

Query

Query

QueryHit

Query

Query

QueryH
it

File transfer:
HTTP❒ Query message

sent over existing TCP
connections
❒ peers forward
Query message
❒ QueryHit
sent over
reverse
path

Scalability:
limited scope
flooding

2: Application Layer 91

Gnutella: Peer joining

1. joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors….)

❒ peers receiving Ping message respond to Alice
with Pong message

4. Alice receives many Pong messages, and can then
setup additional TCP connections

Peer leaving: see homework problem!

2: Application Layer 92

Hierarchical Overlay

❒ between centralized
index, query flooding
approaches

❒ each peer is either a
super node or assigned to
a super node
� TCP connection between

peer and its super node.
� TCP connections between

some pairs of super nodes.
❒ Super node tracks content

in its children

ordinary peer

group-leader peer

neighoring relationships
in overlay network

2: Application Layer 93

P2P Case study: Skype

❒ inherently P2P: pairs
of users communicate.

❒ proprietary
application-layer
protocol (inferred via
reverse engineering)

❒ hierarchical overlay
with SNs

❒ Index maps usernames
to IP addresses;
distributed over SNs

Skype clients (SC)

Supernode
(SN)

Skype
login server

2: Application Layer 94

Peers as relays

❒ Problem when both
Alice and Bob are
behind “NATs”.
� NAT prevents an outside

peer from initiating a call
to insider peer

❒ Solution:
� Using Alice’s and Bob’s

SNs, Relay is chosen
� Each peer initiates

session with relay.
� Peers can now

communicate through
NATs via relay

2: Application Layer 95

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 96

Socket programming

Socket API
❒ introduced in BSD4.1 UNIX,

1981
❒ explicitly created, used,

released by apps
❒ client/server paradigm
❒ two types of transport

service via socket API:
� unreliable datagram
� reliable, byte stream-

oriented

a host-local,
application-created,

OS-controlled interface
(a “door”) into which

application process can
both send and

receive messages to/from
another application

process

socket

Goal: learn how to build client/server application that
communicate using sockets

2: Application Layer 97

Socket-programming using TCP
Socket: a door between application process and end-

end-transport protocol (UCP or TCP)
TCP service: reliable transfer of bytes from one

process to another

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating

system

host or
server

process

TCP with
buffers,
variables

socket

controlled by
application
developer

controlled by
operating
system

host or
server

internet

2: Application Layer 98

Socket programming with TCP
Client must contact server
❒ server process must first

be running
❒ server must have created

socket (door) that
welcomes client’s contact

Client contacts server by:
❒ creating client-local TCP

socket
❒ specifying IP address, port

number of server process
❒ When client creates

socket: client TCP
establishes connection to
server TCP

❒ When contacted by client,
server TCP creates new
socket for server process to
communicate with client
� allows server to talk with

multiple clients
� source port numbers

used to distinguish
clients (more in Chap 3)

TCP provides reliable, in-order
transfer of bytes (“pipe”)
between client and server

application viewpoint

2: Application Layer 99

Client/server socket interaction: TCP

wait for incoming
connection request
connectionSocket =
welcomeSocket.accept()

create socket,
port=x, for
incoming request:
welcomeSocket =

ServerSocket()

create socket,
connect to hostid, port=x
clientSocket =

Socket()

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Server (running on hostid) Client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

2: Application Layer 100
ou

tT
oS

er
ve

r

to network from network

in
Fr

om
S

er
ve

r

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

input
stream

input
stream

output
stream

TCP
socket

Client
process

client TCP
socket

Stream jargon
❒ A stream is a sequence of

characters that flow into
or out of a process.

❒ An input stream is
attached to some input
source for the process,
e.g., keyboard or socket.

❒ An output stream is
attached to an output
source, e.g., monitor or
socket.

2: Application Layer 101

Socket programming with TCP

Example client-server app:
1) client reads line from

standard input (inFromUser
stream) , sends to server via
socket (outToServer
stream)

2) server reads line from socket
3) server converts line to

uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

2: Application Layer 102

Example: Java client (TCP)

import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception
{

String sentence;
String modifiedSentence;

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

Socket clientSocket = new Socket("hostname", 6789);

DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

Create
input stream

Create
client socket,

connect to server
Create

output stream
attached to socket

2: Application Layer 103

Example: Java client (TCP), cont.

BufferedReader inFromServer =
new BufferedReader(new
InputStreamReader(clientSocket.getInputStream()));

sentence = inFromUser.readLine();

outToServer.writeBytes(sentence + '\n');

modifiedSentence = inFromServer.readLine();

System.out.println("FROM SERVER: " + modifiedSentence);

clientSocket.close();

}
}

Create
input stream

attached to socket

Send line
to server

Read line
from server

2: Application Layer 104

Example: Java server (TCP)
import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{

String clientSentence;
String capitalizedSentence;

ServerSocket welcomeSocket = new ServerSocket(6789);

while(true) {

Socket connectionSocket = welcomeSocket.accept();

BufferedReader inFromClient =
new BufferedReader(new
InputStreamReader(connectionSocket.getInputStream()));

Create
welcoming socket

at port 6789

Wait, on welcoming
socket for contact

by client

Create input
stream, attached

to socket

2: Application Layer 105

Example: Java server (TCP), cont

DataOutputStream outToClient =
new DataOutputStream(connectionSocket.getOutputStream());

clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + '\n';

outToClient.writeBytes(capitalizedSentence);
}

}
}

Read in line
from socket

Create output
stream, attached

to socket

Write out line
to socket

End of while loop,
loop back and wait for
another client connection

2: Application Layer 106

Chapter 2: Application layer

❒ 2.1 Principles of
network applications

❒ 2.2 Web and HTTP
❒ 2.3 FTP
❒ 2.4 Electronic Mail

� SMTP, POP3, IMAP
❒ 2.5 DNS

❒ 2.6 P2P applications
❒ 2.7 Socket programming

with TCP
❒ 2.8 Socket programming

with UDP

2: Application Layer 107

Socket programming with UDP

UDP: no “connection” between
client and server

❒ no handshaking
❒ sender explicitly attaches

IP address and port of
destination to each packet

❒ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

application viewpoint

UDP provides unreliable transfer
of groups of bytes (“datagrams”)

between client and server

2: Application Layer 108

Client/server socket interaction: UDP
Server (running on hostid)

close
clientSocket

read datagram from
clientSocket

create socket,
clientSocket =
DatagramSocket()

Client

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket,
port= x.
serverSocket =
DatagramSocket()

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

2: Application Layer 109

Example: Java client (UDP)

se
nd

P
ac

ke
t

to network from network

re
ce

iv
eP

ac
ke

t

in
Fr

om
U

se
r

keyboard monitor

Process

clientSocket

UDP
packet

input
stream

UDP
packet

UDP
socket

Output: sends
packet (recall
that TCP sent
“byte stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

Client
process

client UDP
socket

2: Application Layer 110

Example: Java client (UDP)

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args[]) throws Exception
{

BufferedReader inFromUser =
new BufferedReader(new InputStreamReader(System.in));

DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();

Create
input stream

Create
client socket

Translate
hostname to IP

address using DNS

2: Application Layer 111

Example: Java client (UDP), cont.

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

clientSocket.send(sendPacket);

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.println("FROM SERVER:" + modifiedSentence);
clientSocket.close();
}

}

Create datagram
with data-to-send,

length, IP addr, port

Send datagram
to server

Read datagram
from server

2: Application Layer 112

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception

{

DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)
{

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

serverSocket.receive(receivePacket);

Create
datagram socket

at port 9876

Create space for
received datagram

Receive
datagram

2: Application Layer 113

Example: Java server (UDP), cont
String sentence = new String(receivePacket.getData());

InetAddress IPAddress = receivePacket.getAddress();

int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();

sendData = capitalizedSentence.getBytes();

DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

serverSocket.send(sendPacket);
}

}

}

Get IP addr
port #, of

sender

Write out
datagram
to socket

End of while loop,
loop back and wait for
another datagram

Create datagram
to send to client

2: Application Layer 114

Chapter 2: Summary

❒ application architectures
� client-server
� P2P
� hybrid

❒ application service
requirements:
� reliability, bandwidth,

delay
❒ Internet transport

service model
� connection-oriented,

reliable: TCP
� unreliable, datagrams: UDP

our study of network apps now complete!
❒ specific protocols:

� HTTP
� FTP
� SMTP, POP, IMAP
� DNS
� P2P: BitTorrent, Skype

❒ socket programming

2: Application Layer 115

Chapter 2: Summary

❒ typical request/reply
message exchange:
� client requests info or

service
� server responds with

data, status code
❒ message formats:

� headers: fields giving
info about data

� data: info being
communicated

Most importantly: learned about protocols

Important themes:
❒ control vs. data msgs

� in-band, out-of-band
❒ centralized vs.

decentralized
❒ stateless vs. stateful
❒ reliable vs. unreliable

msg transfer
❒ “complexity at network

edge”

