Chapter 2
Application Layer

A note on the use of these ppt slides:

We’re making these slides freely available to all (faculty, students, readers).
They're in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

U If you use these slides (e.g., in a class) in substantially unaltered form,
that you mention their source (after all, we’d like people to use our book!)

U If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2007
J.F Kurose and K.W. Ross, All Rights Reserved

Com puler

Computer Networking:
A Top Down Approach,
4th edition.

Jim Kurose, Keith Ross
Addison-Wesley, July
2007.

2: Application Layer 1



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
1 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
< SMTP, POP3, IMAP
0 2.5 DNS

2: Application Layer

2



Chapter 2. Application Layer

Our goals: 0 learn about protocols
0 conceptual, by examining popular
implementation application-level
aspects of network protocols
application protocols » HTTP
<+ transport-layer + FTP
service models » SMTP / POP3 / IMAP
% client-server * DNS .
paradigm 0 programming network
+ peer-to-peer applications
paradigm X8 SOCkeT APTI

2: Application Layer

3



Some network apps

0 e-mail 0 voice over IP
0 web 0 real-time video
0 instant messaging conferencing
0 remote login 0 grid computing
1 P2P file sharing U
1 multi-user network U

games [
0 streaming stored video

clips

2: Application Layer 4



Creating a network app

application

data link

physical

write programs that
% run on (different) end

systems |
<« communicate over network
+ e.g., web server software p
communicates with browser &
software

No need to write software
for network-core devices

< Network-core devices do
not run user applications

< applications on end systems
allows for rapid app
development, propagation

2: Application Layer 5



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
1 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
= SMTP, POP3, IMAP 0 2.9 Building a Web
0 2.5 DNS server

2: Application Layer

6



Application architectures

0 Client-server
1 Peer-to-peer (P2P)
0 Hybrid of client-server and P2P

2: Application Layer 7



Client-server architecture

server:
<+ always-on host
+ permanent IP address

<+ server farms for
scaling

clients:
» communicate with server

< may be intermittently
connected

< may have dynamic IP
addresses

» do not communicate
directly with each other

2: Application Layer 8



Pure P2P architecture

0 no always-on server

0 arbitrary end systems
directly communicate peer-peer

0 peers are intermittently
connected and change IP
addresses

Highly scalable but
difficult to manage

2: Application Layer 9



Hybrid of client-server and P2P

Skype
< voice-over-IP P2P application
< centralized server: finding address of remote
party:
< client-client connection: direct (not through
server)
Instant messaging
+ chatting between two users is P2P
< centralized service: client presence
detection/location

* user registers its IP address with central
server when it comes online

- user contacts central server to find IP
addresses of buddies

2: Application Layer 10



Processes communicating

Process: program running Client process: process
within a host. that initiates

1 within same host, two communication
processes communicate Server process: process
using inter-process that waits to be
communication (defined contacted
by OS).

1 processes in different 0 Note: applications with
hosts communicate by P2P architectures have
exchanging messages client processes &

server processes

2: Application Layer 11



Sockets

host or host or

0 process sends/receives
messages to/from its
socket controlled by

server server
s app developer
0 socket analogous to door

<+ sending process shoves

message out door TCP with TCP with
- : buffers Internet buffers,
+ sending process relies on ’

A

. variables variables
transport infrastructure
on other side of door which 1o
: controlle
brings message to socket by OS

at receiving process

0 APT: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)
2: Application Layer 12



Addressing processes

[ to receive messages,
process must have
identifier

0 host device has unique
32-bit IP address

1 &:does IP address of
host suffice for
identifying the process?

2: Application Layer 13



Addressing processes

[ to receive messages,
process must have
identifier

0 host device has unique
32-bit IP address

0 - does IP address of
host on which process
runs suffice for
identifying the
process?

+ A. No, many
processes can be
running on same host

identifier includes both
IP address and port
numbers associated with
process on host.

Example port numbers:
< HTTP server: 80
+ Mail server: 25
to send HTTP message
to gaia.cs.umass.edu web
server.
< IP address: 128.119.245.12
« Port number: 80

more shortly...

2: Application Layer 14



App-layer protocol defines

0 Types of messages Public-domain protocols:

exchanged, 0 defined in RFCs
% e.g., request, response 7 allows for

0 Message syntax: interoperability
« what fields in messages & e.g., HTTP, SMTP

how fields are delineated > . |
1 Message semantics roprietary protocols:

< meaning of information in 1 eg., Skype
fields
0 Rules for when and how
processes send &
respond o messages

2: Application Layer 15



What transport service does an app heed?

Data loss

] some apps (e.g., audio) can
tolerate some loss

1 other apps (e.g., file
transfer, telnet) require
100% reliable data

transfer

Timing

1 some apps (e.q.,
Internet telephony,
inferactive games)

require low delay to be
“effective”

Throughput

0 some apps (e.qg.,
multimedia) require
minimum amount of
throughput to be
“effective”

0 other apps ("elastic apps”)
make use of whatever
throughput they get

Security

0 Encryption, data
integrity, ..

2: Application Layer 16



Transport service requirements of common apps

Application Dataloss Throughput Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 100’s msec
video:10kbps-5Mbps

stored audio/video |oss-tolerant same as above yes, few secs
interactive games loss-tolerant few kbps up yes, 100’s msec
Instant messaging no loss elastic yes and no

2: Application Layer 17



Internet transport protocols services

TCP service: UDP service:

[ connection-oriented: setup 0 unreliable data transfer
required between client and between sending and
server processes receiving process

0 reliable transport between 0 does not provide:
sending and receiving process connection setup,

reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

0 flow control: sender won't
overwhelm receiver

0 congestion control: throttle
sender when network
overloaded

(1 does not provide: timing,

minimum throughput
guarantees, security

Q: why bother? Why is
there a UDP?

2: Application Layer 18



Internet apps: application, fransport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web  HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (eg Youtube), TCP or UDP
RTP [RFC 1889]
Internet telephony  SIP, RTP, proprietary
(e.g., Skype) typically UDP

2: Application Layer

19



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
< app architectures with TCP
# app requirements 0 2.8 Socket programming
0 2.2 Web and HTTP with UDP

1 2.4 Electronic Mail
+ SMTP, POP3, IMAP

1 2.5 DNS

2: Application Layer 20



Web and HT TP

First some jargon

[]
[]

Web page consists of objects

Object can be HTML file, JPEG image, Java
applet, audio file,...

Web page consists of base HTML-file which
includes several referenced objects

Each object is addressable by a URL
Example URL:

www. sonmeschool . edu/ soneDept/pic. gif

~—

B

———

host name

~—

_—

——

path name

2: Application Layer 21



HTTP overview

HTTP: hypertext
transfer protocol

0 Web's application layer
protocol

0 client/server model

« client: browser that
requests, receives,
“displays” Web objects

« server: Web server
sends objects in
response to requests

PC running /Ay
Explorer

Server
running
Apache Web
server

Mac running
Navigator

2: Application Layer 22



HTTP overview (continued)

Uses TCP:

0 client initiates TCP
connection (creates socket)
to server, port 80

1 server accepts TCP
connection from client

0 HTTP messages (application-
layer protocol messages)
exchanged between browser
(HTTP client) and Web
server (HTTP server)

] TCP connection closed

HTTP is "stateless”

[1 server maintains no
information about
past client requests

——aside -
Protocols that maintain

“state” are complex!

0 past history (state) must
be maintained

O if server/client crashes,
their views of "state” may
be inconsistent, must be
reconciled

2: Application Layer 23



HTTP connections

Nonpersistent HT TP Persistent HTTP
0 At most one objectis O Multiple objects can
sent over a TCP be sent over single
connection. TCP connection
between client and
server.

2: Application Layer 24



Nonpersistent HTTP
(contains text,

Suppose user enTer'S URL references to 10
www. someSchool . edu/ sonmeDepart ment/ hone. i ndex  jpegimages)

la. HTTP client initiates TCP

connection to HTTP server 1b. HTTP server at host

(process) at www.someSchool.edu waiting
: hool. ' Ny
www.someSchool.edu on port 80 for TCP connection at port 80.
“accepts"” connection, notifying

client
2. HTTP client sends HTTP

request message (containing
URL) into TCP connection \3‘ HTTP server receives request

socket. Message indicates message, forms response
that client wants object message containing requested
someDepartmentlhome.inde}/ object, and sends message

into its socket

Time
l 2: Application Layer 25



Nonpersistent HTTP (cont.)

/ 4. HTTP server closes TCP

connection.
5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg

. objects
Time 6. Steps 1-5 repeated for each
l of 10 jpeg objects

2: Application Layer 26



Non-Persistent HTTP: Response time

Definition of RTT: time for /|

a small packet to travel @ n

from client to server
and back. initiate TCP__ |

. connection | \
Response time: RTT.
0 one RTT to initiate TCP request { /

. file (
connection - e
1 one RTT for HTTP \ /};'i"l‘;”sm'*
file —

request and first few
bytes of HTTP response
to return ’ ‘

time ti;ne
0 file transmission time
total = 2RTT+transmit time

received

2: Application Layer 27



Persistent HT TP

Nonpersistent HT TP issues: Persistent HTTP

0 requires 2 RTTs per object [ server leaves connection

1 OS overhead for each TCP open after sending
connection response

0 browsers often open parallel [ subsequent HTTP messages
TCP connections to fetch between same
referenced objects client/server sent over

open connection

0 client sends requests as
soon as it encounters a
referenced object

0 as little as one RTT for all
the referenced objects

2: Application Layer 28



HTTP request message

0 two types of HT TP messages: reguest, response

0 HTTP request message:
% ASCII (human-readable format)

request line

(GET, POST,\‘_GET [ sonedi r/ page. ht i HTTP/ 1.1
HEAD commands) Host: www. soneschool . edu
User-agent: Mzilla/4.0
heqder Connect i on: cl ose

lines | Accept - | anguage: fr

Carriage return . .
Iing feed /'/v(extra carriage return, line feed)

indicates end

of message
2: Application Layer 29



HTTP request message: general format

| request
line

header
ines

Entity Body

2: Application Layer 30



Uploading form input

Post method:

0 Web page often
includes form input

0 Input is uploaded to
server in entity body

URL method:

1 Uses GET method

0 Input is uploaded in
URL field of request
line:

www. sonesi t e. com ani nal sear ch?nonkeys&banana

2: Application Layer 31



Method types

HTTP/1.0 HTTP/1.1
0 GET 0 GET,POST, HEAD
0 POST 0 PUT
7 HEAD + uploads file in entity
body to path specified
<+ asks server to leave Dody To p P
requested object out of in URL field
response 0 DELETE
+ deletes file specified in
the URL field

2: Application Layer 32



HTTP response message

status line
(protocol
status code\‘ HTTP/ 1.1 200 XK
status phrase) | Connection cl ose
Date: Thu, 06 Aug 1998 12:00: 15 GMI
header | S€rver: Apache/ 1. 3.0 (Unix)

Last - Modi fied: Mon, 22 Jun 1998 .....
Content - Lengt h: 6821
Cont ent - Type: text/htm

lines

data,e.q., —  data data data data data ...
requested
HTML file

2: Application Layer 33



HTTP response status codes

In first line in server->client response message.
A few sample codes:

200 K
+ request succeeded, requested object later in this message

301 Moved Pernmanently

+ requested object moved, new location specified later in
this message (Location:)

400 Bad Request
+ request message not understood by server

404 Not Found
+ requested document not found on this server

505 HTTP Version Not Supported

2: Application Layer 34



Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

tel net cis.poly.edu 80 |Opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
Anything typed in sent

to port 80 at cis.poly.edu

2. Type ina GET HTTP request:

CET /~ross/ HITP/ 1.1 By typing this in (hit carriage
Host: cis. poly. edu return twice), you send

this minimal (but complete)
 GET request to HTTP server

3. Look at response message sent by HT TP server!

2: Application Layer 35



User-server state: cookies

Many major Web sites Example:
use cookies 1 Susan always access
Four components: Internet always from PC
1) cookie header line of 0 visits specific e-
HTTP response message  commerce site for first
2) cookie header line in time
HTTP reguest message o
3) cookie file kept on 0 when initial HTTP
user's host, managed by requests arrives at site,
user's browser site creates:
4) back-end database at ,
Web site + unique ID

<+ entry in backend
database for ID

2: Application Layer

36



Cookies: keeping "state” (cont.)

client

usual http request msg

ebay 8734

cookie file

usual http response
Set - cooki e: 1678

/

<
ebay 8734
amazon 1678

usual http request msg
cookie: 1678

" specific

one week later:

usual http response msg

<4
ebay 8734 .
amazon 1678

usual http request msg
cookie: 1678

server

mazon server
creates ID

1678 for user creatfe
entr

accesg/'

cookie-

backend

action
database

access

cookie-

usual http response msg

— spectific

action

2: Application Layer 37



Cookies (continued)

What cookies can bring:

aside

Cookies and privacy:

0 authorization

0 shopping carts

0 recommendations

] user sessioh state
(Web e-mail)

How to keep "state”:

0 cookies permit sites to
learn a lot about you

0 you may supply name
and e-mail to sites

0 protocol endpoints: maintain state
at sender/receiver over multiple

transactions

0 cookies: http messages carry state

2: Application Layer 38



Web caches (proxy server)

Goal: satisfy client request without involving origin server

0 user sets browser: origin
. server

Web accesses via
cache

1 browser sends all
HTTP requests to
cache

+ object in cache: cache
returns object

+ else cache requests ‘g

object from origin client
server, then returns
object to client

origin
server

2: Application Layer 39



More about Web caching

1 cache acts as both Why Web caching?
client and server 0 reduce response time

0 typically cache is for client request
installed by ISP 0 reduce traffic on an
(university, company, institution's access
residential ISP) link.

0 Internet dense with
caches: enables "poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

2: Application Layer 40



Caching example

Assumptions

origin
servers

[]

Consequences

average object size = 100,000
bits
avg. request rate from

institution's browsers to origin
servers = 15/sec

delay from institutional router
to any origin server and back
to router =2 sec

[
[
[

utilization on LAN = 15%
utilization on access link = 100%

total delay = Internet delay +
access delay + LAN delay

2 sec + minutes + milliseconds

institutional
cache

2: Application Layer 41



Caching example (cont)

origin

possible solution servers

] increase bandwidth of access
link to, say, 10 Mbps

consequence
1 utilization on LAN = 15%
1 utilization on access link = 15%

0 Total delay = Internet delay +
access delay + LAN delay

= 2 sec + msecs + msecs
0 often a costly upgrade

institutional
cache

2: Application Layer 42



Caching example (cont)

origin
possible solution: install servers

cache
0 suppose hit rate is 0.4

consequence

1 40% requests will be
satisfied almost immediately

1 607% requests satisfied by
origin server

0 utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec

[ Iﬂal avg delayd :| In‘relfxfe\‘f

elay + access delay + it 4
delay = .6*(2.01) secs + ms‘ru'ru;r\lonal
4*milliseconds < 1.4 secs cache

access link

2: Application Layer 43



Conditional GET

0 Goal: don't send object if
cache has up-to-date cached
version

0 cache: specify date of
cached copy in HTTP request
| f - nodi fi ed- si nce:
<dat e>
[ server: response contains no
object if cached copy is up-
to-date:
HTTP/ 1. 0 304 Not
Modi fi ed

cache

server

—

HTTP request msg

| f - nodi fi ed-si nce:

<dat e>

[ object

hot

HTTP response
HTTP/ 1. 0
304 Not Modified

— modified

HTTP request msg

| f - nodi fi ed-si nce:

<dat e>

object

- modified

HTTP response
HTTP/ 1.0 200

<dat a>

2: Application Layer 44



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
1 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
= SMTP, POP3, IMAP 0 2.9 Building a Web
0 2.5 DNS server

2: Application Layer 45



FTP: the file transfer protocol

FTP
user
interface

FTP

file transfer

J FTP

il

client

user
at host

-

ocal file
system

7 transfer file to/from remote host
1 client/server model
% client: side that initiates transfer (either to/from

remote)

<« server. remote host

0 ftp: RFC 959

0 ftp server: port 21

server

remote file
system

2: Application Layer 46



FTP: separate control, data connections

TCP control connection
1 FTP client contacts FTP server port 21

at port 21, TCP is transport @ n

pr‘.OTOCOI . TCP data connection
1 client authorized over control ETP port 20 FTP
connection client server

0 client browses remote
directory by sending commands
over control connection.

1 server opens another TCP
data connection to transfer

. , another file.
1 when server receives file T
1 control connection: “out of
transfer command, server band”

opens 2" TCP connection (for . .
file) to client 0 FTP server maintains "state":

current directory, earlier

0 after transferring one file, authentication

server closes data connection.

2: Application Layer 47



FTP commands, responses

Sample commands:

[]

sent as ASCII text over
control channel

USER user nane
PASS password

LI ST return list of file in
current directory

RETR fil enane retrieves
(gets) file

STOR fil enane stores
(puts) file onto remote
host

Sample return codes

0 status code and phrase (as

in HTTP)

0 331 Usernane K|
password required

0 125 data connecti on
al ready open;
transfer starting

0 425 Can’t open data

connecti on

0 452 Error witing

file

2: Application Layer

48



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
1 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
« SMTP, POP3, IMAP
1 2.5 DNS

2: Application Layer 49



Electronic Mail I outgoing

message queue

— [0 user mailbox

: . 7 | user
Three major components: o lagent
[1 user agen‘rs mail =:
0 mail servers SETVEr v 7 |agent
. .
0 simple mail transfer oooon| SMTP !'I
|: SMTP N o | Ak
protocol: 1 server | [ user
SMT agent
User Agent a /DDDDD
0 a.k.a. "mail reader” l B SMTP ATk
: y : mail / user
0 comlposmg, editing, reading comver agent
mail messages
J 2
0 e.g., Eudora, Outlook, elm, 00000( [ user
Mozilla Thunderbird Ak |99ent
0 outgoing, incoming messages i

stored on server
2: Application Layer 50



Electronic Mail: mail servers

Mail Servers

0 mailbox contains incoming
messages for user

0 message queue of outgoing
(to be sent) mail messages

0 SMTP protocol between mail
servers to send email
messages

% client: sending mail
server

+ “server": receiving mail
server

mail
server

00000

T

SMT

&

" mail
server

00000

alr Y

user
agent

N
SMTP
N

/

SMTP

/

alr Y

user

AT
user
agent

agent

AT b
user
agent

mail
server

00000

alr |\
user
agent

AT b
user
agent

2: Application Layer 51



Electronic Mail: SMTP [RFC 2821]

0 uses TCP to reliably transfer email message from client
to server, port 25

0 direct transfer: sending server to receiving server
0 three phases of transfer

<+ handshaking (greeting)

+ transfer of messages

< closure
1 command/response interaction

% commands: ASCIT text

+ response: status code and phrase

1 messages must be in 7-bit ASCIT

2: Application Layer 52



Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice's

message and "to" message over the TCP
bob@oneschool . edu connection
2) Alice’s UA sends message 5) Bob's mail server places the
to her mail server; message message in Bob's mailbox
placed in message queue 6) Bob invokes his user agent
3) Client side of SMTP opens to read message
TCP connection with Bob's
mail server
B [ ]
mail mail Gl 1\ R
server server /@/ “Sen'"T (CaH
[T 3 I [INIININ age i
il R O

2: Application Layer 53



Sample SMTP interaction

DOLOOOLONLONOWLOW

220 hanbur ger. edu

HELO crepes. fr

250 Hello crepes.fr, pleased to neet you
MAI L FROM <alice@repes.fr>

250 alice@repes.fr... Sender ok

RCPT TO <bob@anburger. edu>

250 bob@anburger.edu ... Recipient ok
DATA
354 Enter mail, end with "." on a line by itself

Do you |ike ketchup?
How about pi ckl es?

250 Message accepted for delivery
QU T

221 hanburger. edu cl osi ng connecti on

2: Application Layer 54



Try SMTP interaction for yourself:

0 tel net servernane 25
1 see 220 reply from server

0 enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

2: Application Layer 55



SMTP: final words

[0 SMTP uses persistent
conhnections

00 SMTP requires message
(header & body) to be in 7-
bit ASCII

1 SMTP server uses
CRLF. CRLF to determine
end of message

Comparison with HTTP:

[]
[]

[]

HTTP: pull
SMTP: push

both have ASCII
command/response
interaction, status codes

HTTP: each object
encapsulated in its own
response msg

SMTP: multiple objects
sent in multipart msg

2: Application Layer

56



Mail message format

SMTP: protocol for
exchanging email msgs
RFC 822: standard for text

message format:
0 header lines, e.q.,
< To:
<« From:
< Subject:
different from SMTP
commands

0 body

« the "message”, ASCIT
characters only

L

header

body

2: Application Layer

blank
line

S7



Message format:

multimedia extensions

1 MIME: multimedia mail extension, RFC 2045, 2056
0 additional lines in msg header declare MIME content

type

MIME version

method used \

to encode data

multimedia data

From alice@repes.fr

To: bob@anburger. edu

Subj ect: Picture of yummy crepe.
"M ME-Version: 1.0

> Cont ent - Tr ansf er - Encodi ng: base64
,Cont ent - Type: | nmage/ | peg

type, subtype,

parameter declaration /

encoded data

2: Application Layer 58




Mail access protocols

SMTP 4

SMTP
. g

o
| |

00000

access
protocol
00000

sender’'s mail

server

server

receiver's mail

0 SMTP: delivery/storage to receiver's server
[ Mail access protocol: retrieval from server
+ POP: Post Office Protocol [RFC 1939]
- authorization (agent <-->server) and download
< IMAP: Internet Mail Access Protocol [RFC 1730]
* more features (more complex)
* manipulation of stored msgs on server
% HTTP: gmail, Hotmail, Yahoo! Mail, etc.

2: Application Layer 59



POP3 protocol

? +OK POP3 server ready
C. user bob
authorization phase — |8 X
. C. pass hungry
0 client commands: i +(CK user successfully | ogged on
« user: declare username C list
% pass: password S: 1 498
0 server responses S 2 912
S .
0:0 +
X C retr 1
+ -ERR S: <nessage 1 contents>
transaction haseﬂK St
_ . P ! C. dele 1
0 list: list message numbers C retr 2
0 retr: retfrieve message by S: <message 1 contents>
number S "
_ C. dele 2
0 de! e: delete C quit
0 oquit S. +OK POP3 server signing off

2: Application Layer 60



POP3 (more) and IMAP

More about POP3

[]

Previous example uses
"download and delete"
mode.

Bob cannot re-read e-
mail if he changes
client

"Download-and-keep":
copies of messages on
different clients

POP3 is stateless
across sessions

IMAP

Keep all messages in
one place: the server

Allows user to
organize messages in

[]

folders

IMAP keeps user state
across sessions.

+ names of folders and
mappings between
message IDs and folder

name

2: Application Layer

61



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
1 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
= SMTP, POP3, IMAP 0 2.9 Building a Web
0 2.5 DNS server

2: Application Layer 62



DNS: Domain Name System

People: many identifiers:  Domain Name System:
+» SSN, name, passport # 0 distributed database

Internet hosts routers: implemented in hierarchy of

, many name servers
« IP address (32 bit) - . /y tion-/ tocol
used for addressing dpplicarion-iayer proroco
host, routers, name servers to

datagrams )
o . communicate to reso/ve names
* hame’, e.g., (address/name translation)
r\/w.yahoo.com - used by + note: core Internet
Hmans function, implemented as
Q: map between IP application-layer protocol
addresses and name ? = complexity at network's

\\edgell

2: Application Layer 63



DNS

DNS services

1 hostname to IP
address translation

0 host aliasing
+ Canonical, alias names

0 mail server aliasing

1 load distribution

<+ replicated Web
servers: set of IP
addresses for one
canonical hame

Why not centralize DNS?
[ single point of failure
0 traffic volume

0 distant centralized

database

1 maintenance

doesn't scale!

2: Application Layer

64



Distributed, Hierarchical Database

Root DNS Servers

/\

com DNS servers org DNS servers edu DNS servers
yahoo.com  amazon.com pbs.org poly.edu  umass.edu

DNS servers DNS servers DNS servers DNS serversDNS servers

Client wants IP for www.amazon.com; 15* approx:
0 client queries a root server to find com DNS server

0 client queries com DNS server to get amazon.com
DNS server

0 client queries amazon.com DNS server to get IP
address for www.amazon.com

2: Application Layer 65



DNS: Root name servers

0 contacted by local name server that can not resolve name

[ root name server:
<+ contacts authoritative name server if name mapping hot known
< gets mapping
<+ returns mapping to local name server

a Verisign, Dulles, VA
¢ Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD k RIPE London (also 16 other locations)

g US DoD Vienna, VA
h ARL Aberdeen, MD i Autonomica, Stockholm (plus
j Verisign, ( 21 locations) 28 other locations)
m WIDE Tokyo (also Seoul,
. /Paris, SF)

13 root name
servers worldwide

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

b USC-ISI Marina del Rey, CA
I ICANN Los Angeles, CA

2: Application Layer 66



TLD and Authoritative Servers

0 Top-level domain (TLD) servers:

+ responsible for com, org, net, edu, etc, and all
top-level country domains uk, fr, ca, jp.

+ Network Solutions maintains servers for com TLD
+ Educause for edu TLD

1 Authoritative DNS servers:

<+ organization's DNS servers, providing
authoritative hostname to IP mappings for
organization's servers (e.g., Web, mail).

<+ can be maintained by organization or service
provider

2: Application Layer 67



Local Name Server

1 does not strictly belong to hierarchy

1 each ISP (residential ISP, company,
university) has one.

+ also called “default name server”

[ when host makes DNS query, query is sent
to its local DNS server

+ acts as proxy, forwards query into hierarchy

2: Application Layer 68



DNS name root DNS server

resolution example i
2
0 Host at cis.poly.edu > TLD DNS server
wants IP address for : 4 .
gaia.cs.umass.edu =N 5 i
I
iterated query: local DNS serve
y g dns.poly.edu
0 contacted server 2N\ 6
replies with name of f]e
server to contact n
7 T don't know this @ authoritative DNS server
dns.cs.umass.edu

name, but ask this requesting host

server” cis.poly.edu @

gaia.cs.umass.edu

2: Application Layer 69



DNS name
PZSOIUTIOF\ example root DNS server

recursive query: 2 3
0 puts burden of name g A

resolution on

contacted name = = TLD DNS server

server |
0 heavy load? local DNS server

dns.poly.edu 5 4
i

@ authoritative DNS server

dns.cs.umass.edu
requesting host

cis.poly.edu @

gaia.cs.umass.edu

2: Application Layer 70



DNS: caching and updating records

0 once (any) name server learns mapping, it caches
mapping
< cache entries timeout (disappear) after some
Time
+ TLD servers typically cached in local name
servers
* Thus root name servers not often visited

0 update/notify mechanisms under design by IETF

« RFC 2136
< http://www.ietf.org/html.charters/dnsind-charter.html

2: Application Layer 71



DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

1 Type=A 0 Type=CNAME
+ name is hostname + nane is alias name for some
+ val ue is IP address “canonical” (the real) name
www. i bm com is really
0 Type=NS
YP _ , server east . backup2.i bm com
¢ nane is domain (e.g. » val ue is canonical name
foo.com) ’

+ val ue is hosthame of Type=MX
authoritative name

. . <« val ue is name of mailserver
server for this domain me of m

associated with nane

2: Application Layer 72



DNS protocol, messages

DNS protocol : guery and reply messages, both with
same message format

identification flags

msg header

[ identification: 16 bit #
for‘ quer‘y, r‘eply 'I'o quer‘y number of authority RRs | number of additional RRs
uses same #

number of guestions number of answer RS 12 bytes

guestions
[] flags: (wariable number of questions)
* query or reply e
o r'ecur'sion desir'ed (wariable number of resource records)
< recursion available suthority

(variable number of resource records)
L)

0.0

reply is authoritative

additional information
(variable number of resource records)

2: Application Layer 73



DNS protocol, messages

identification fags T

Name/ TYPe flelds numiber of questions nurmber of answar BERs 12 bytes
for a query

nurmiber of autharity RRs | number of additional RRs ‘

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

2: Application Layer 74



Inserting records into DNS

0 example: new startup "Network Utopia”
0 register name networkuptopia.com at ODNS registrar
(e.g., Network Solu‘rionsg

+ provide names, IP addresses of authoritative name server
(primary and secondary)

+ registrar inserts two RRs into com TLD server:

( net wor kut opi a. com dnsl. net wor kut opi a. com NS)
(dnsl. networ kutopi a. com 212.212.212.1, A

0 create authoritative server Type A record for
www.networkuptopia.com; Type MX record for
networkutopia.com

0 How do people get IP address of your Web site?

2: Application Layer

75



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
< app architectures with TCP
# app requirements 0 2.8 Socket programming
1 2.2 Web and HTTP with UDP

1 2.4 Electronic Mail
+ SMTP, POP3, IMAP

1 2.5 DNS

2: Application Layer 76



Pure P2P architecture

0 no always-on server

0 arbitrary end systems R
directly communicate peer-peer 4l g

0 peers are intermittently
connected and change IP
addresses

0 Three topics:
<+ File distribution
+ Searching for information
% Case Study: Skype

2: Application Layer 77



File Distribution: Server-Client vs P2P

Question: How much time to distribute file
from one server to N peers?

u.: server upload

bandwidth
Server @
u.: peer i upload
. n al\ \d, U, i bandwidth
Us S d.: peer i download

File, size F T~y bandwidth
dN
@ . Network (with °
* Uy abundant bandwidth)
°
°
¢ °
°
g °

2: Application Layer 78



File distribution time: server-client

[ server sequentially
sends N copies:

= NF/u,time

0 client i takes F/d.
time to download

Server

g
L

Ne‘rwor'k (with

@,—’L abundant bandwidth) *

Uy

Time to distribute F

to Nclients using = d . = max { NF/u,, F/mm{d )}

/

client/server approach

7 : :
increases linearly in N
(fOI" |0r'93 N) 2: Application Layer 79




File distribution time: P2P

Server @
[1 server must send one
copy: F/u,time u, d, o

0 client i takes F/d. time ~f

Network (with
to download @,d—L abundant bandwidth) *
0 NF bits must be I
downloaded (aggregate) o

0 fastest possible upload rate: u, + 2.u,

dp.p = max { F/u,, F/m/'n(a’,)/, NF/(u, + 2u) }

2: Application Layer 80



Server-client vs. P2P: example

Client upload rate = u, F/u=1hour, u,=10u, d,;, > u,

3.5

Minimum Distribution Time
= N
= (@) N (@) w
| | | | |

o
(6]
|

B P2P
-o— Client-Server

o

2: Application Layer

81



File distribution: BitTorrent

11 P2P file distribution

fracker: tracks peers forrent: group of

participating in torrent peers exchanging
N chunks of a file

obtain list
of peers

B
A

:@ 2: Application Layer 82



BitTorrent (1)

1 file divided into 256KB chunks.
[ peer joining torrent:
+ has no chunks, but will accumulate them over time

+ registers with tracker to geft list of peers,
connects to subset of peers ("neighbors")

1 while downloading, peer uploads chunks to other
peers.

] peers may come and go

] once peer has entire file, it may (selfishly) leave or
(altruistically) remain

2: Application Layer 83



BitTorrent (2)

Pulling Chunks

[ at any given time,
different peers have
different subsets of
file chunks

0 periodically, a peer
(Alice) asks each
neighbor for list of

chunks that they have.

0 Alice sends requests
for her missing chunks

< rarest first

Sending Chunks: tit-for-tat

0 Alice sends chunks to four
neighbors currently
sending her chunks at the
highest rate

+ re-evaluate top 4 every
10 secs

0 every 30 secs: randomly
select another peer,
starts sending chunks

+ newly chosen peer may
join top 4
+ "optimistically unchoke"

2: Application Layer 84



BitTorrent: Tit-for-tat

(1) Alice "optimistically unchokes" Bob
(2) Alice becomes one of Bob's top-four providers; Bob reciprocates
(3) Bob becomes one of Alice's top-four providers

With higher upload rate,
can find better trading

partners & get file faster!
2: Application Layer 85




P2P: searching for information

Index in P2P system: maps information to peer location
(location = IP address & port number)

'File sharing (eg e-mule)  Ihstant messaging

7 Index dynamically 0 Index maps user
tracks the locations of nhames to locations.
files that peers share. 0 When user starts IM

7 Peers need to tell application, it needs to
index what they have. inform index of ifs

location

1 Peers search index to .
determine where files O Peers search index to

can be found determine IP address
of user.

2: Application Layer 86



P2P: centralized index

Ol"iginal “NGPSTer" deSign centralized

1) When peer' CO”“@CTS, it directory server
informs central server:

IP address

content

2) A|IC€ queries for "Hey
Jude”

3) Alice requests file from
Bob

J
0‘0

0‘0

2: Application Layer 87



P2P: problems with centralized directory

1 single point of failure
0 performance bottleneck

1 copyright infringement:
“target” of lawsuit is
obvious

file transfer is

decentralized, but
locating content is
highly centralized

2: Application Layer

88



Query flooding

0 fully distributed overlay network: graph

%+ no central server [ edge between peer X
1 used by Gnutella and Y if there's a TCP
0 Each peer indexes the connection

files it makes available gl| active peers and

for sharing (and no edges form overlay net
other files) :
0 edge: virtual (not
physical) link
0 given peer typically
connected with < 10
overlay neighbors

2: Application Layer 89



Query flooding

File transfer:
0 Query message HTTP

sent over existing TCP
connections

[ peers forward
Query message
0 QueryHit
sent over

reverse
path

Query
QueryHit

Y%

2

QueryHit

Scalability:

limited scope
flooding

2: Application Layer 90



Gnutella: Peer joining

1. joining peer Alice must find another peer in
Gnutella network: use list of candidate peers

2. Alice sequentially attempts TCP connections with
candidate peers until connection setup with Bob

3. Flooding: Alice sends Ping message to Bob; Bob
forwards Ping message to his overlay neighbors
(who then forward to their neighbors....)

1 peers receiving Ping message respond to Alice
with Pong message

4. Alice receives many Pong messages, and can then
setup additional TCP connections

Peer leaving: see homework problem!

2: Application Layer 91



Hierarchical Overlay

0 between centralized
index, query flooding
approaches

0 each peer is either a
Super node or assigned to
a super node

<+ TCP connection between
peer and its super node.

< TCP connections between

Some pClII"S Of SUper‘ nOdZS. @ ordinary peer
1 Super node tracks content @ oroun-cacerpeer
in_its children —— elhorg relaonsip

2: Application Layer



P2P Case study: Skype

Skype clients (SC)

[ inherently P2P: pairs |
of users communicate. |
0 proprietary Skype
application-layer login server

protocol (inferred via
reverse engineering)

0 hierarchical overlay
with SNs

0 Index maps usernames
to IP addresses;
distributed over SNs

2: Application Layer 93



Peers as relays

1 Problem when both
Alice and Bob are
behind "NATSs".

% NAT prevents an outside
peer from initiating a call
to insider peer

0 Solution:
+ Using Alice's and Bob's
SNs, Relay is chosen
+ Each peer initiates
session with relay.
+ Peers can now

communicate through
NATSs via relay

2: Application Layer

94



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming
0 2.2 Web and HTTP with TCP
0 2.3 FTP 0 2.8 Socket programming
0 2.4 Electronic Mail with UDP
< SMTP, POP3, IMAP
0 2.5 DNS

2: Application Layer 95



Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket APT

[ introduced in BSD4.1 UNIX,
1981

0 explicitly created, used,
released by apps

0 client/server paradigm

0 fwo types of transport
service via socket API:

<+ unreliable datagram

<+ reliable, byte stream-
oriented

— socket

a host-local,
application-created,
OS5-controlled interface
(a "door") into which
application process can
both send and
receive messages to/from
another application

process

2: Application Layer

96



Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of bytes from one

process to another

controlled by,
application

»

LI ocke
A

controlled by
operating
system

v

£( [N

process

TCP with
buffers,
variables

—

host or
server

internet

@k

process

k= socket =)

TCP with
buffers,

variables |

host or
server

controlled by
application
developer

controlled by
operating
system

2: Application Layer

97



Socket programming with TCP

Client must contact server 0 When contacted by client,

0 server process must first server TCP creates new
be running socket for server process to

0 server must have created communicate with client
socket (door) that + allows server to talk with
welcomes client's contact multiple clients

< source port numbers
used to distinguish
clients (more in Chap 3)

Client contacts server by:

0 creating client-local TCP
socket

0 specifying IP address, port -application viewpoint
number of server process

1 When client creates
socket: client TCP
establishes connection to

TCP provides reliable, in-order
transter of bytes (‘pipe”)
between client and server

server TCP
2: Application Layer 98



Client/server socket interac

tion: TCP

Server (running on host i d) Client

create socket,
port=x, for
Incoming request:
welcomeSocket =
ServerSocket()

wait for incoming <= == - 17 - —1_— —p
connection request connecTion setup connect to

connectionSocket =
welcomeSocket.accept()

A

read request from / clientSo
connectionSocket

—>
TCP create socket,

host i d, port=x

clientSocket =
Socket()

y

send request using

cket

write reply to —_— |
connectionSocket — read reply from
1 clientSocket
close 1
connectionSocket close

I clientSocket

2: Application Layer

99



Stream jargon

0 A stream is a sequence of
characters that flow into
or out of a process.

0 An input stream is
attached to some input
source for the process,
e.g., keyboard or socket.

0 Anoutput stream is
attached to an output
source, e.g., monitor or
socket.

keyboard monitor
A

[PR—

input
stream

Client
process

inFromUser

output
stream

input
stream

outToServer |e—

inFromServer |—»

client

to network  from'network

2: Application Layer 100



Socket programming with TCP

Example client-server app:

1) client reads line from
standard input (i nFr omJser
stream) , sends to server via
socket (out ToSer ver
stream)

2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(i nFronBer ver stream)

2: Application Layer 101



Example: Java client (TCP)

Create]
input stream|

Create’]

Import java.io.*;
import java.net.*;
class TCPClient {

public static void main(String argv[]) throws Exception

{

String sentence;
String modifiedSentence;

—> BufferedReader inFromUser =

new BufferedReader(new InputStreamReader(System.in));

client socket, — Socket clientSocket = new Socket("hostname", 6789):

connect to server|

Create’]
output stream

__, DataOutputStream outToServer =
new DataOutputStream(clientSocket.getOutputStream());

attached to socke‘r_

2: Application Layer 102



Example: Java client (TCP), cont.

Create BufferedReader inFromServer =
input stream new BufferedReader(new
attached to socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

Send line]

to server | outToServer.writeBytes(sentence + \n’);

Read line = modifiedSentence = inFromServer.readLine();
from server |

System.out.printin("FROM SERVER: " + modifiedSentence);

clientSocket.close();

2: Application Layer 103



Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv[]) throws Exception
{
String clientSentence,;

Create String capitalizedSentence;

welcoming socket
at port 6789

—> ServerSocket welcomeSocket = new ServerSocket(6789);

Wait, on welcoming | while(true) {

socket for conTacT — > Socket connectionSocket = welcomeSocket.accept();
by client_
: — BufferedReader inFromClient =
Createinput] | oy BufferedReader(new
stream, attached InputStreamReader(connectionSocket.getinputStream()));
to socket |

2: Application Layer 104



Example: Java server (TCP), cont

Create output]|

stream, a’r‘raci\(ed DataOutputStream outToClient =
to socket|— o DataOutputStream(connectionSocket.getOutputStream());

Read in line]

from socke'r__’ clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n’;
to socket [ outToClient.writeBytes(capitalizedSentence);

} \_
} End of while loop,

loop back and wait for
| another client connection

Write out Iine:l
}

2: Application Layer 105



Chapter 2: Application layer

0 2.1 Principles of 0 2.6 P2P applications
network applications 0 2.7 Socket programming

1 2.2 Web and HTTP with TCP

0 2.3FTP 0 2.8 Socket programming

0 2.4 Electronic Mail with UDP

+ SMTP, POP3, IMAP
1 2.5 DNS

2: Application Layer 106



Socket programming with UDP

UDP: no “connection” between
client and server

0 no handshaking
0 sender explicitly attaches -application viewpoint

IP address and port of
destination to each packet

] server must extract IP
address, port of sender

UDP provides unreliable transfer
of groups of bytes ("datagrams”)
between client and server

from received packet

UDP: transmitted data may be
received out of order, or
lost

2: Application Layer 107



Client/server socket interaction: UDP

Server (running on hosti d) Client
create socket, create socket,
port= x. clientSocket =
serverSocket = DatagramSocket()
DatagramSocket() 1
Create datagram with server IP and
/ port=x; send datagram via
read datagram fro clientSocket
serverSocket

write reply to

serverSocket 1 dat f
specifying — rEII_a tSa al?r?m rom
client address, clientsocke

port number close l

clientSocket

2: Application Layer 108



Example: Java client (UDP)

keyboard monitor
A

input
stream|

| inFromUser |<—

Client

Input: receives
rocess

P packet (recall
Output: sends thatTCP received
packet (recall \ I byte stream”)

that TCP sent uDP
client UDP

sendPacket
receivePacket

\ " acket
"byte stream”) i

socket

socket

to network  from network

2: Application Layer 109



Example: Java client (UDP)

Create

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String args|]) throws Exception

{

input stream — pyfferedReader inEromUser =

Create ]

client socket|—

Translate —,

hostname to IP

new BufferedReader(new InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("hostname");

address using DNS |

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();

sendData = sentence.getBytes();
2: Application Layer 110



Example: Java client (UDP), cont.

Create datagram

with data-to-send,| DatagramPacket sendPacket =
length, IP addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

Send dCl’rClgr'C(l'\'jl—-> clientSocket.send(sendPacket);

to server
DatagramPacket receivePacket =

new DatagramPacket(receiveData, receiveData.length);

Read datagram

from server[™ clientSocket.receive(receivePacket);

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

2: Application Layer 111



Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
Create {
datagram socket
at port 9876

—> DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

——— DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

Receive serverSocket.receive(receivePacket);
datagram

2: Application Layer 112

Create space for
received datagram



Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());

Get IP addr .
port #, of — InetAddress IPAddress = receivePacket.getAddress();
Sender——'int port = receivePacket.getPort();

String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();

— DatagramPacket sendPacket =
new DatagramPacket(sendData, sendData.length, IPAddress,

port);

Create datagram
to send to client

Write out

datagram |— serverSocket.send(sendPacket);
to socket

}
) \_
} End of while loop,

loop back and wait for
| another datagram

2: Application Layer 113



Chapter 2. Summary

our study of network apps now completel!

0 application architectures
<+ client-server
<« P2P
+ hybrid
1 application service
requirements:
= reliability, bandwidth,
delay
1 Internet transport
service model

<+ connection-oriented,
reliable: TCP

<+ unreliable, datagrams: UDP

0 specific protocols:
« HTTP
< FTP
<+ SMTP, POP, IMAP
<~ DNS
+ P2P: BitTorrent, Skype

0 socket programming

2: Application Layer 114



Chapter 2. Summary

Most importantly: learned about protocols

0 typical request/reply Important themes:
message exchange: [ control vs. data msgs
+ client requests info or + in-band, out-of-band
service ]
« server responds with H Cem—ral'ze.d vS.
data, status code decentralized
0 message formats: 1 stateless vs. stateful
* headers: fields giving 1 reliable vs. unreliable
info apou’r da.‘ra msg transfer
<+ data: info being " lexity at net K
communicated 1 “complexity af networ
edge

2: Application Layer 115



