
1

Ns Tutorial

Presenter: Hao (Leo) Chen (SFU/CNL)

Authors: Padmaparna Haldar (USC/ISI)
Xuan Chen (USC/ISI)

2

Tutorial Schedule

Introduction
Ns fundamentals
Ns Demo

3

Part I: Introduction

4

Introduction

1989: REAL network simulator
1995: DARPA VINT project at LBL,
Xerox PARC, UCB, and USC/ISI
Present: DARPA SAMAN project and
NSF CONSER project

Collaboration with other researchers
including CIRI

5

Ns Status
Periodical release (ns-2.1b9a, July 2002)

~200K LOC in C++ and Otcl,
~100 test suites and 100+ examples
371 pages of ns manual
Daily snapshot (with auto-validation)

Stability validation
http://www.isi.edu/nsnam/ns/ns-tests.html

Platform support
FreeBSD, Linux, Solaris, Windows and Mac

User base
> 1k institutes (50 countries), >10k users
About 300 posts to ns-users@isi.edu every month

6

Ns functionalities
Wired world

Routing DV, LS, PIM-SM
Transportation: TCP and UDP
Traffic sources:web, ftp, telnet, cbr, stochastic
Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
QoS: IntServ and Diffserv
Emulation

Wireless
Ad hoc routing and mobile IP
Directed diffusion, sensor-MAC

Tracing, visualization, various utilities

7

“Ns” Components
Ns, the simulator itself
Nam, the network animator

Visualize ns (or other) output
Nam editor: GUI interface to generate ns scripts

Pre-processing:
Traffic and topology generators

Post-processing:
Simple trace analysis, often in Awk, Perl, or Tcl

8

Ns Models
Traffic models and applications:

Web, FTP, telnet, constant-bit rate, real audio
Transport protocols:

unicast: TCP (Reno, Vegas, etc.), UDP
Multicast: SRM

Routing and queuing:
Wired routing, ad hoc rtg and directed diffusion
queuing protocols: RED, drop-tail, etc

Physical media:
Wired (point-to-point, LANs), wireless (multiple
propagation models), satellite

9

Installation
Getting the pieces

Tcl/TK 8.x (8.3.2 preferred):
http://resource.tcl.tk/resource/software/tcltk/

Otcl and TclCL:
http://otcl-tclcl.sourceforge.net
ns-2 and nam-1:
http://www.isi.edu/nsnam/dist

Other utilities
http://www.isi.edu/nsnam/ns/ns-build.html
Tcl-debug, GT-ITM, xgraph, …

10

Part II: ns fundamentals

11

Ns-2, the Network Simulator
A discrete event simulator

Simple model

Focused on modeling network protocols
Wired, wireless, satellite
TCP, UDP, multicast, unicast
Web, telnet, ftp
Ad hoc routing, sensor networks
Infrastructure: stats, tracing, error models, etc

12

Discrete Event Simulation
Model world as events

Simulator has list of events
Process: take next one, run it, until done
Each event happens in an instant of virtual
(simulated) time, but takes an arbitrary amount of
real time

Ns uses simple model: single thread of
control => no locking or race conditions to
worry about (very easy)

13

Discrete Event Examples
Consider two nodes
on an Ethernet:

A B

simple
queuing
model:

t=1, A enqueues pkt on LAN
t=1.01, LAN dequeues pkt

and triggers B

detailed
CSMA/CD
model:

t=1.0: A sends pkt to NIC
A’s NIC starts carrier sense

t=1.005: A’s NIC concludes cs,
starts tx

t=1.006: B’s NIC begins receiving pkt
t=1.01: B’s NIC concludes pkt

B’s NIC passes pkt to app

14

Ns Architecture
Object-oriented (C++, OTcl)
Modular approach

Fine-grained object composition

+ Reusability
+ Maintenance
– Performance (speed and memory)
– Careful planning of modularity

15

C++ and OTcl Separation
“data” / control separation

C++ for “data”:
per packet processing, core of ns
fast to run, detailed, complete control

OTcl for control:
Simulation scenario configurations
Periodic or triggered action
Manipulating existing C++ objects
fast to write and change

+ running vs. writing speed
– Learning and debugging (two languages)

16

Otcl and C++: The Duality

OTcl (object variant of Tcl) and C++ share
class hierarchy
TclCL is glue library that makes it easy to
share functions, variables, etc

C++

otcl

C++/OTcl
split objects

17

Basic Tcl
variables:
set x 10
puts “x is $x”

functions and expressions:
set y [pow x 2]
set y [expr x*x]

control flow:
if {$x > 0} { return $x } else {

return [expr -$x] }
while { $x > 0 } {

puts $x
incr x –1

}

procedures:
proc pow {x n} {

if {$n == 1} { return $x }
set part [pow x [expr $n-1]]
return [expr $x*$part]

}

Also lists, associative arrays,
etc.

=> can use a real
programming language to
build network topologies,
traffic models, etc.

18

Basic otcl
Class Person
constructor:
Person instproc init {age} {

$self instvar age_
set age_ $age

}
method:
Person instproc greet {} {

$self instvar age_
puts “$age_ years old: How
are you doing?”

}

subclass:
Class Kid -superclass Person
Kid instproc greet {} {

$self instvar age_
puts “$age_ years old kid:
What’s up, dude?”

}

set a [new Person 45]
set b [new Kid 15]
$a greet
$b greet

=> can easily make variations of existing things (TCP, TCP/Reno)

19

C++ and OTcl Linkage
Class Tcl: instance of OTcl interpreter
Tcl& tcl = Tcl::instance();
tcl.evalc(“puts stdout hello world”);
tcl.result() and tcl.error

Class TclObject and TclClass
Variable bindings

bind(“rtt_”, &t_rtt_)
Invoking command method in shadow class

$tcp advanceby 10

20

C++ and Otcl linkage II
Some important objects:

NsObject: has recv() method
Connector: has target() and drop()
BiConnector: uptarget() & downtarget()

21

Using ns

Problem

Simulation
model

Setup/run
simulation

with ns

Result
analysis

Modify
ns

22

Ns programming
Create the event scheduler
Turn on tracing
Create network
Setup routing
Insert errors
Create transport connection
Create traffic
Transmit application-level data

23

Creating Event Scheduler
Create event scheduler
set ns [new Simulator]
Schedule events
$ns at <time> <event>

<event>: any legitimate ns/tcl commands
$ns at 5.0 “finish”
Start scheduler
$ns run

24

Event Scheduler
Event: at-event and packet
List scheduler: default

Heap and calendar queue scheduler
Real-time scheduler

Synchronize with real-time
Network emulation

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 “$self halt”

25

Discrete Event Scheduler

time_, uid_, next_, handler_
head_ ->

handler_ -> handle()

time_, uid_, next_, handler_insert

head_ ->

26

Hello World - Interactive Mode
Interactive mode:
swallow 71% ns
% set ns [new Simulator]
_o3
% $ns at 1 “puts \“Hello

World!\””
1
% $ns at 1.5 “exit”
2

% $ns run
Hello World!
swallow 72%

Batch mode:
simple.tcl

set ns [new Simulator]
$ns at 1 “puts \“Hello

World!\””
$ns at 1.5 “exit”
$ns run

swallow 74% ns
simple.tcl

Hello World!
swallow 75%

27

Tracing and Monitoring I
Packet tracing:

On all links: $ns trace-all [open out.tr w]

On one specific link: $ns trace-queue $n0 $n1$tr
<Event> <time> <from> <to> <pkt> <size> -- <fid> <src> <dst> <seq> <attr>

+ 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0
- 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0
r 1.00234 0 2 cbr 210 ------- 0 0.0 3.1 0 0

We have new trace format

Event tracing (support TCP right now)
Record “event” in trace file: $ns eventtrace-all

E 2.267203 0 4 TCP slow_start 0 210 1

28

Tracing and Monitoring II
Queue monitor

set qmon [$ns monitor-queue $n0 $n1 $q_f $sample_interval]

Get statistics for a queue
$qmon set pdrops_

Record to trace file as an optional
29.000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 0

Flow monitor
set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops_

29

Tracing and Monitoring III
Visualize trace in nam
$ns namtrace-all [open test.nam w]
$ns namtrace-queue $n0 $n1

Variable tracing in nam
Agent/TCP set nam_tracevar_ true
$tcp tracevar srtt_
$tcp tracevar cwnd_

Monitor agent variables in nam
$ns add$ns add--agentagent--trace $trace $tcptcp $$tcptcp
$ns monitor$ns monitor--agentagent--trace $trace $tcptcp
$srm0$srm0 tracevartracevar cwndcwnd__
…………
$ns delete$ns delete--agentagent--trace $trace $tcptcp

30

Creating Network
Nodes
set n0 [$ns node]
set n1 [$ns node]

Links and queuing
$ns <link_type> $n0 $n1 <bandwidth>

<delay> <queue_type>
<link_type>: duplex-link, simplex-link
<queue_type>: DropTail, RED, CBQ, FQ, SFQ,
DRR, diffserv RED queues

31

Creating Network: LAN
$ns make-lan <node_list> <bandwidth>

<delay> <ll_type> <ifq_type>
<mac_type> <channel_type>

<ll_type>: LL
<ifq_type>: Queue/DropTail,
<mac_type>: MAC/802_3
<channel_type>: Channel

32

Setup Routing
Unicast
$ns rtproto <type>
<type>: Static, Session, DV, cost, multi-path

Multicast
$ns multicast (right after [new Simulator])
$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

Other types of routing supported: source routing,
hierarchical routing

33

Network Dynamics
Link failures

Hooks in routing module to reflect routing
changes

Four models
nsns rtmodelrtmodel Trace <Trace <configconfig_file> $n0 $n1_file> $n0 $n1
nsns rtmodelrtmodel Exponential {<Exponential {<paramsparams>} $n0 $n1>} $n0 $n1
nsns rtmodelrtmodel Deterministic {<Deterministic {<paramsparams>} $n0 $n1>} $n0 $n1
nsns rtmodelrtmodel--at <time> up|down $n0 $n1at <time> up|down $n0 $n1

Parameter list
[<start>] <up_interval> <down_interval> [<finish>][<start>] <up_interval> <down_interval> [<finish>]

34

Creating Connection and Traffic
UDP

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp
$ns attach-agent $n1 $null
$ns connect $udp $null

CBR
set src [new

Application/Traffic/CBR]

Exponential or Pareto
on-off

set src [new
Application/Traffic/Exponential]

set src [new
Application/Traffic/Pareto]

35

Creating Connection and Traffic II

TCP
set tcp [new Agent/TCP]
set tcpsink [new

Agent/TCPSink]
$ns attach-agent $n0 $tcp
$ns attach-agent $n1

$tcpsink
$ns connect $tcp $tcpsink

FTP
set ftp [new Application/FTP]
$ftp attach-agent $tcp

Telnet
set telnet [new

Application/Telnet]
$telnet attach-agent $tcp

36

Creating Traffic: Trace Driven

Trace driven
set tfile [new Tracefile]
$tfile filename <file>
set src [new Application/Traffic/Trace]
$src attach-tracefile $tfile
<file>:

Binary format (native!)
inter-packet time (msec) and packet size (byte)

37

Application-Level Simulation

Features
Build on top of existing transport protocol
Transmit user data, e.g., HTTP header

Two different solutions
TCP: Application/TcpApp
UDP: Agent/Message

38

Compare to Real World

More abstract (much simpler):
No addresses, just global variables
Connect them rather than name
lookup/bind/listen/accept

Easy to change implementation
Set tsrc2 [new agent/TCP/Newreno]
Set tsrc3 [new agent/TCP/Vegas]

39

Summary: Generic Script Structure

set ns [new Simulator]set ns [new Simulator]

[Turn on tracing]# [Turn on tracing]

Create topology# Create topology

Setup packet loss, link dynamics# Setup packet loss, link dynamics

Create routing agents# Create routing agents

Create: # Create:

-- multicast groupsmulticast groups

-- protocol agentsprotocol agents

-- application and/or setup traffic sourcesapplication and/or setup traffic sources

Post# Post--processingprocessing procsprocs

Start simulation# Start simulation

40

ns nam Interface

Color
Node manipulation
Link manipulation
Topology layout
Protocol state
Misc

41

nam Interface: Color

Color mapping
$ns color 40 red$ns color 40 red

$ns color 41 blue$ns color 41 blue

$ns color 42 chocolate$ns color 42 chocolate

Color ↔ flow id association
$tcp0 set fid_ 40$tcp0 set fid_ 40 ;# red packets;# red packets

$tcp1 set fid_ 41$tcp1 set fid_ 41 ;# blue packets;# blue packets

42

nam Interface: Nodes
Color
$node color red$node color red

Shape (can’t be changed after sim starts)
$node shape box$node shape box ;# circle, box, hexagon;# circle, box, hexagon

Marks (concentric “shapes”)
$ns at 1.0 “$n0 add$ns at 1.0 “$n0 add--mark m0 blue box”mark m0 blue box”

$ns at 2.0 “$n0 delete$ns at 2.0 “$n0 delete--mark m0”mark m0”

Label (single string)
$ns at 1.1 “$n0 label $ns at 1.1 “$n0 label \\”web cache 0”web cache 0\\””””

43

nam Interfaces: Links
Color
$ns duplex$ns duplex--linklink--op $n0 $n1 color "green"op $n0 $n1 color "green"

Label
$ns duplex$ns duplex--linklink--op $n0 $n1 label "op $n0 $n1 label "abcedabced""

Dynamics (automatically handled)
nsns rtmodelrtmodel Deterministic {2.0 0.9 0.1} $n0 $n1Deterministic {2.0 0.9 0.1} $n0 $n1

Asymmetric links not allowed

44

nam Interface: Topo Layout

“Manual” layout: specify everything

$ns duplex$ns duplex--linklink--op $n(0) $n(1) orient rightop $n(0) $n(1) orient right

$ns duplex$ns duplex--linklink--op $n(1) $n(2) orient rightop $n(1) $n(2) orient right

$ns duplex$ns duplex--linklink--op $n(2) $n(3) orient rightop $n(2) $n(3) orient right

$ns duplex$ns duplex--linklink--op $n(3) $n(4) orient 60degop $n(3) $n(4) orient 60deg

If anything missing automatic
layout

45

nam Interface: Misc
Annotation

Add textual explanation to your
simulation

$ns at 3.5 "$ns trace$ns at 3.5 "$ns trace--annotate annotate \\“packet “packet
dropdrop\\"“"“

Set animation rate
$ns at 0.0 "$ns set$ns at 0.0 "$ns set--animationanimation--rate rate

0.1ms"0.1ms"

46

Help and Resources

Ns and nam build questions
http://www.isi.edu/nsnam/ns/ns-build.html

Ns mailing list: ns-users@isi.edu
Ns manual and tutorial (in distribution)
TCL: http://dev.scriptics.com/scripting
Otcl tutorial (in distribution):
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.
html

47

Part III: ns Demo

