3 Ns Tutorial

Presenter: Hao (Leo) Chen (SFU/CNL)

Authors: Padmaparna Haldar (USC/ISI)
Xuan Chen (USC/ISI)

i Tutorial Schedule

= Introduction
» Ns fundamentals
= Ns Demo

!’_\ Part I: Introduction

i Introduction

s 1989: REAL network simulator

= 1995: DARPA VINT project at LBL,
Xerox PARC, UCB, and USC/ISI

= Present: DARPA SAMAN project and
NSF CONSER project

= Collaboration with other researchers
including CIRI

Ns Status

= Periodical release (ns-2.1b9a, July 2002)
= ~200K LOC in C++ and Otcl,
= ~100 test suites and 100+ examples
= 371 pages of ns manual
= Daily snapshot (with auto-validation)

= Stability validation
= http://www.isi.edu/nsnam/ns/ns-tests.html

= Platform support
= FreeBSD, Linux, Solaris, Windows and Mac

= User base
= > 1k institutes (50 countries), >10k users
= About 300 posts to ns-users@isi.edu every month

Ns functionalities

= Wired world
= Routing DV, LS, PIM-SM
= Transportation: TCP and UDP
» Traffic sources:web, ftp, telnet, cbr, stochastic
= Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
= Q0S: IntServ and Diffserv
= Emulation

= Wireless
=« Ad hoc routing and mobile IP
= Directed diffusion, sensor-MAC

= Tracing, visualization, various utilities

i "Ns” Components

= Ns, the simulator itself

= Nam, the network animator

= Visualize ns (or other) output

= Nam editor: GUI interface to generate ns scripts
= Pre-processing:

« Traffic and topology generators
= Post-processing:

= Simple trace analysis, often in Awk, Perl, or Tcl

Ns Models

= [raffic models and applications:
= Web, FTP, telnet, constant-bit rate, real audio
= Transport protocols:
= unicast: TCP (Reno, Vegas, etc.), UDP
= Multicast: SRM
= Routing and queuing:
= Wired routing, ad hoc rtg and directed diffusion
= queuing protocols: RED, drop-tail, etc
= Physical media:

=« Wired (point-to-point, LANs), wireless (multiple
propagation models), satellite

Installation

= Getting the pieces
=« Tcl/TK 8.x (8.3.2 preferred):

http://resource.tcl.tk/resource/software/tcltk/

= Otcl and TclCL:

http://otcl-tclcl.sourceforge.net

= Ns-2 and nam-1:
http://www.isi.edu/nsnam/dist

= Other utilities

» http://www.isi.edu/nsnam/ns/ns-build.html
= Tcl-debug, GT-ITM, xgraph, ...

!’_\ Part II: ns fundamentals

10

i Ns-2, the Network Simulator

a A discrete event simulator
= Simple model

= Focused on modeling network protocols
= Wired, wireless, satellite
= TCP, UDP, multicast, unicast
= Web, telnet, ftp
= Ad hoc routing, sensor networks
» Infrastructure: stats, tracing, error models, etc

iDiscrete Event Simulation

= Model world as events
= Simulator has list of events
= Process: take next one, run it, until done

= Each event happens in an instant of virtua/

(simulated) time, but takes an arbitrary amount of
realtime

= Ns uses simple model: single thread of
control => no locking or race conditions to
worry about (very easy)

12

i Discrete Event Examples

Consider two nodes ~ SIMPIe —1 A enqueues pkt on LAN
on an Ethernet: queting — t=1.01, LAN dequeues pkt

model: and triggers B

t=1.0: A sends pkt to NIC
A’s NIC starts carrier sense

dCegﬁZ(}CD t=1.005: A’s NIC concludes cs,
model: starts tx

t=1.006: B’s NIC begins receiving pkt

t=1.01: B’s NIC concludes pkt
B’s NIC passes pkt to app

13

i Ns Architecture

= Object-oriented (C++, OTcl)

= Modular approach
=« Fine-grained object composition

+ Reusability

+ Maintenance

- Performance (speed and memory)
- Careful planning of modularity

14

i C++ and OTcl Separation

= 'data” / control separation

=« C++ for “data”:

= per packet processing, core of ns

=« fast to run, detailed, complete control
= OTcl for control:
Simulation scenario configurations
Periodic or triggered action
Manipulating existing C++ objects
fast to write and change

+ running vs. writing speed
- Learning and debugging (two languages)

15

i Otcl and C++: The Duality

- P

— A 1T C++
i e i e
5’ ; 1 [
v ¥ | C++/OTcl 4 A
[1 L] splitobjects | |
I | /
OtCl \\\\\\\\ = T ‘_~_~_-_~___,_(_/_’/_ ______ e | | | |

= OTcl (object variant of Tcl) and C++ share
class hierarchy

= [CICL is glue library that makes it easy to
share functions, variables, etc

16

iBasic Tcl

variables:
setx 10
puts “x is $x”

functions and expressions:

set y [pow X 2]
set y [expr x*X]

control flow:
if {$x > 0} { return $x } else {
return [expr -$x] }
while { $x > 0 } {
puts $x
incr x —1

procedures:

proc pow {x n} {
if {$n == 1} { return $x }
set part [pow x [expr $n-1]]
return [expr $x*$part]

}

Also lists, associative arrays,
etc.

=> can use a real
programming language to
build network topologies,
traffic models, etc.

17

Basic otcl

lass Person # subclass:

constructor: Class Kid -superclass Person
Person instproc init {age} { Kid instproc greet {} {

$self instvar age $self instvar age

set age_ $age puts “$age years old kid:
} What's up, dude?”
method: }
Person instproc greet {} {

$self instvar age set a [new Person 45]

puts “$age_years old: How set b [new Kid 15]

are you doing?” $a greet
} $b greet

=> can easily make variations of existing things (TCP, TCP/Reno)
18

i C++ and OTcl Linkage

= Class Tcl: instance of OTcl interpreter
Tcl& tcl = Tcl::instance();
tcl.evalc("puts stdout hello world”);
tcl.result() and tcl.error

= Class TclObject and TclClass
= Variable bindings
bind(“rtt_", &t_rtt_)
= Invoking command method in shadow class
$tcp advanceby 10

19

$C++ and Otcl linkage II

= Some important objects:
= NsObject: has recv() method
= Connector: has target() and drop()
= BiConnector: uptarget() & downtarget()

20

21

i Ns programming

= Create the event scheduler

= Turn on tracing

= Create network

= Setup routing

= Insert errors

= Create transport connection

= Create traffic

= Transmit application-level data

22

i Creating Event Scheduler

= Create event scheduler
set ns [new Simulator]

s Schedule events

$ns at <time> <event>
= <event>: any legitimate ns/tcl commands

$ns at 5.0 “finish”

= Start scheduler
$Ns run

23

i Event Scheduler

= Event: at-event and packet

= List scheduler: default
=« Heap and calendar queue scheduler

= Real-time scheduler
= Synchronize with real-time
= Network emulation

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 “$self halt”

24

‘LDiscrete Event Scheduler

—

handler -> handle()

head ->
head™ ->

__

__

25

i Hello World - Interactive Mode

Interactive mode: Batch mode:
SwallOW 71% ns Simple.tcl
% set ns [new Simulator]

set ns [new Simulator]

_o3 $Sns at 1 “puts \“Hello

% $ns at 1 “puts \“Hello World!\””

' n”7m
World!\ Sns at 1.5 “exit”

Sns run

[

o°

¥ns at 1.5 “exit swallow 74% ns

simple. tcl
Hello World!

swallow 75%

N

o°

Sns run
Hello World!

swallow 72%

26

Tracing and Monitoring I

= Packet tracing:
= On all links: $ns trace-all [open out.tr w]
= On one specific link: $ns trace-queue $n0 $n1$tr

<Event> <time> <from> <to> <pkt> <size> -- <fid> <src> <dst> <seg> <attr>
+ 10 2 cbr 210 ——————- 0 0.0 3.1 0O
- 10 2 cbr 210 ——————- 0 0.0 3.1 0O
r 1.00234 0 2 cbr 210 -—————- 0 0.0 3.1 0O

= We have new trace format
= Event tracing (support TCP right now)

s Record “"event” in trace file: $ns eventtrace-all

E 2.267203 0 4 TCP slow start 0 210 1
27

i Tracing and Monitoring II

= Queue monitor
set gmon [$ns monitor-queue $n0 $n1 $q_f $sample_interval]
= Get statistics for a queue
$gmon set pdrops_

= Record to trace file as an optional
29.000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 O

= Flow monitor

set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops_

28

Tracing and Monitoring III

= Visualize trace in nam
$ns namtrace-all [open test.nam w]
$ns namtrace-queue $n0 $n1l

= Variable tracing in nam

Agent/TCP set nam_tracevar_ true
$tcp tracevar srtt_
$tcp tracevar cwnd_

= Monitor agent variables in nam
Sns add-agent-trace S$tcp S$tcp
Sns monitor-agent-trace S$tcp
$srm0 tracevar cwnd

Sns delete-agent-trace $tcp

29

Creating Network

= Nodes
set n0 [$ns node]
set n1 [$ns node]

= Links and queuing

$ns <link_type> $n0 $n1 <bandwidth>
<delay> <queue_type>
= <link_type>: duplex-link, simplex-link

= <queue_type>: DropTail, RED, CBQ, FQ, SFQ,
DRR, diffserv RED queues

30

* Creating Network: LAN
N

s make-lan <node_list> <bandwidth>
<delay> <Il_type> <ifg_type>
<mac_type> <channel_type>

<|l_type>: LL

<ifg_type>: Queue/DropTail,
<mac_type>: MAC/802_3
<channel_type>: Channel

31

i Setup Routing

= Unicast
$ns rtproto <type>
<type>: Static, Session, DV, cost, multi-path

= Multicast
$ns multicast (right after [new Simulator])

$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

= Other types of routing supported: source routing,
hierarchical routing

32

i Network Dynamics

= Link failures

=« Hooks in routing module to reflect routing
changes

= Four models

¢$ns rtmodel Trace <config file> $Sn0 $nl

Sns rtmodel Exponential {<params>} Sn0 $nl
Sns rtmodel Deterministic {<params>} $Sn0 $nl
$ns rtmodel-at <time> up|down $n0 $nl

= Parameter list

[<start>] <up interval> <down interval> [<finish>]

33

i Creating Connection and Traffic

= UDP

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp
$ns attach-agent $n1 $null
$ns connect $udp $null

= CBR

set src [new
Application/Traffic/CBR]

= Exponential or Pareto

on-off

set src [new
Application/Traffic/Exponential]

set src [new
Application/Traffic/Pareto]

34

iCreating Connection and Traffic II

= TCP

set tcp [new Agent/TCP]

set tcpsink [new
Agent/TCPSink]

$ns attach-agent $n0 $tcp

$ns attach-agent $n1
$tcpsink

$ns connect $tcp $tcpsink

= FTP

set ftp [new Application/FTP]
$ftp attach-agent $tcp

= Telnet

set telnet [new
Application/Telnet]

$telnet attach-agent $tcp

35

i Creating Traffic: Trace Driven

= Trace driven
set tfile [new Tracefile]
$tfile filename <file>
set src [new Application/Traffic/Trace]
$src attach-tracefile $tfile
<file>:
= Binary format (native!)
= inter-packet time (msec) and packet size (byte)

36

i Application-Level Simulation

= Features
= Build on top of existing transport protocol
=« Transmit user data, e.g., HTTP header

= Two different solutions
= TCP: Application/TcpApp
=« UDP: Agent/Message

37

i Compare to Real World

= More abstract (much simpler):
= No addresses, just global variables

= Connect them rather than name
lookup/bind/listen/accept

= Easy to c
Set tsrc2
Set tsrc3

nange implementation
'new agent/TCP/Newreno]

'new agent/TCP/Vegas]

38

ummary: Generic Script Structure

set ns [new Simulator]
[Turn on tracing]
Create topology
Setup packet loss, link dynamics
Create routing agents
Create:
- multicast groups
- protocol agents
- application and/or setup traffic sources
Post-processing procs

Start simulation

H H= H= HF= HF FHF H H H HHF

39

i ns—>nam Interface

= Color

= Node manipulation
= Link manipulation
= Topology layout

= Protocol state

= MisC

40

i nam Interface: Color

= Color mapping
Sns color 40 red
Sns color 41 blue

Sns color 42 chocolate

= Color <> flow id association
$tcp0 set fid 40 ;# red packets
$tcpl set fid 41 ;# blue packets

41

nam Interface: Nodes

s Color

Snode color red

= Shape (can’t be changed after sim starts)

Snode shape box ;# circle, box, hexagon

= Marks (concentric “shapes”)
sns at 1.0 “$n0 add-mark mO blue box”
sns at 2.0 “$n0 delete-mark mO0”

= Label (single string)

Sns at 1.1 “$n0 label \”web cache 0\"””

42

i nam Interfaces: Links

= Color

$ns duplex-link-op $n0 $nl color "green"

= Label

$ns duplex-link-op $n0 $nl label "abced"

= Dynamics (automatically handled)

Sns rtmodel Deterministic {2.0 0.9 0.1} S$Sn0O Snl

= Asymmetric links not allowed

43

i nam Interface: Topo Layout

= 'Manual” layout: specify everything

Sns duplex-link-op $n(0) $n(l) orient right
$Sns duplex-link-op $n(l) $n(2) orient right
$ns duplex-link-op $n(2) $n(3) orient right
$ns duplex-link-op $n(3) $n(4) orient 60deg

= If anything missing - automatic
layout

44

i nam Interface: Misc

= Annotation

= Add textual explanation to your
simulation

Sns at 3.5 "$ns trace-annotate \“packet
drop\ "\

s Set animation rate

Sns at 0.0 "Sns set-animation-rate
O.1lms"

45

i Help and Resources

= Ns and nam build questions
» http://www.isi.edu/nsnam/ns/ns-build.html

= Ns mailing list: ns-users@isi.edu
= Ns manual and tutorial (in distribution)
m [CL: http://dev.scriptics.com/scripting

= Otcl tutorial (in distribution):
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.
html

46

!'_\ Part I1I: ns Demo

47

