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Tutorial Schedule

Introduction
Ns fundamentals
Ns Demo
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Part I: Introduction
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Introduction

1989: REAL network simulator
1995: DARPA VINT project at LBL, 
Xerox PARC, UCB, and USC/ISI
Present: DARPA SAMAN project and 
NSF CONSER project

Collaboration with other researchers 
including CIRI
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Ns Status
Periodical release (ns-2.1b9a, July 2002)

~200K LOC in C++ and Otcl,
~100 test suites and 100+ examples 
371 pages of ns manual 
Daily snapshot (with auto-validation)

Stability validation
http://www.isi.edu/nsnam/ns/ns-tests.html

Platform support
FreeBSD, Linux, Solaris, Windows and Mac

User base
> 1k institutes (50 countries), >10k users
About 300 posts to ns-users@isi.edu every month
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Ns functionalities
Wired world

Routing DV, LS, PIM-SM
Transportation: TCP and UDP
Traffic sources:web, ftp, telnet, cbr, stochastic
Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
QoS: IntServ and Diffserv
Emulation

Wireless
Ad hoc routing and mobile IP
Directed diffusion, sensor-MAC

Tracing, visualization, various utilities
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“Ns” Components
Ns, the simulator itself
Nam, the network animator

Visualize ns (or other) output
Nam editor: GUI interface to generate ns scripts

Pre-processing:
Traffic and topology generators

Post-processing:
Simple trace analysis, often in Awk, Perl, or Tcl
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Ns Models
Traffic models and applications:

Web, FTP, telnet, constant-bit rate, real audio
Transport protocols:

unicast: TCP (Reno, Vegas, etc.), UDP
Multicast: SRM

Routing and queuing:
Wired routing, ad hoc rtg and directed diffusion
queuing protocols: RED, drop-tail, etc

Physical media:
Wired (point-to-point, LANs), wireless (multiple 
propagation models), satellite
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Installation
Getting the pieces

Tcl/TK 8.x (8.3.2 preferred):
http://resource.tcl.tk/resource/software/tcltk/

Otcl and TclCL:
http://otcl-tclcl.sourceforge.net
ns-2 and nam-1: 
http://www.isi.edu/nsnam/dist

Other utilities
http://www.isi.edu/nsnam/ns/ns-build.html
Tcl-debug, GT-ITM, xgraph, …
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Part II: ns fundamentals
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Ns-2, the Network Simulator
A discrete event simulator

Simple model

Focused on modeling network protocols
Wired, wireless, satellite
TCP, UDP, multicast, unicast
Web, telnet, ftp
Ad hoc routing, sensor networks
Infrastructure: stats, tracing, error models, etc
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Discrete Event Simulation
Model world as events

Simulator has list of events
Process: take next one, run it, until done
Each event happens in an instant of virtual 
(simulated) time, but takes an arbitrary amount of 
real time

Ns uses simple model: single thread of 
control => no locking or race conditions to 
worry about (very easy)
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Discrete Event Examples
Consider two nodes
on an Ethernet:

A B

simple
queuing
model:

t=1, A enqueues pkt on LAN
t=1.01, LAN dequeues pkt

and triggers B

detailed
CSMA/CD
model:

t=1.0: A sends pkt to NIC
A’s NIC starts carrier sense

t=1.005: A’s NIC concludes cs,
starts tx

t=1.006: B’s NIC begins receiving pkt
t=1.01: B’s NIC concludes pkt

B’s NIC passes pkt to app
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Ns Architecture
Object-oriented (C++, OTcl)
Modular approach

Fine-grained object composition

+ Reusability
+ Maintenance
– Performance (speed and memory)
– Careful planning of modularity
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C++ and OTcl Separation
“data” / control separation

C++ for “data”: 
per packet processing, core of ns
fast to run, detailed, complete control

OTcl for control:
Simulation scenario configurations
Periodic or triggered action
Manipulating existing C++ objects
fast to write and change

+ running vs. writing speed
– Learning and debugging (two languages)
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Otcl and C++: The Duality

OTcl (object variant of Tcl) and C++ share 
class hierarchy
TclCL is glue library that makes it easy to 
share functions, variables, etc

C++

otcl

C++/OTcl 
split objects
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Basic Tcl
variables:
set x 10
puts “x is $x”

functions and expressions:
set y [pow x 2]
set y [expr x*x]

control flow:
if {$x > 0} { return $x } else {

return [expr -$x] }
while { $x > 0 } {

puts $x
incr x –1

}

procedures:
proc pow {x n} {

if {$n == 1} { return $x }
set part [pow x [expr $n-1]]
return [expr $x*$part]

}

Also lists, associative arrays, 
etc.

=> can use a real 
programming language to 
build network topologies, 
traffic models, etc.
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Basic otcl
Class Person
# constructor:
Person instproc init {age} {

$self instvar age_
set age_ $age

}
# method:
Person instproc greet {} {

$self instvar age_
puts “$age_ years old: How 
are you doing?”

}

# subclass:
Class Kid -superclass Person
Kid instproc greet {} {

$self instvar age_
puts “$age_ years old kid: 
What’s up, dude?”

}

set a [new Person 45]
set b [new Kid 15]
$a greet
$b greet

=> can easily make variations of existing things (TCP, TCP/Reno)
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C++ and OTcl Linkage
Class Tcl: instance of OTcl interpreter
Tcl& tcl = Tcl::instance();
tcl.evalc(“puts stdout hello world”);
tcl.result() and tcl.error

Class TclObject and TclClass
Variable bindings

bind(“rtt_”, &t_rtt_)
Invoking command method in shadow class

$tcp advanceby 10
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C++ and Otcl linkage II
Some important objects:

NsObject: has recv() method
Connector: has target() and drop()
BiConnector: uptarget() & downtarget()
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Using ns

Problem

Simulation
model

Setup/run 
simulation 

with ns

Result
analysis

Modify
ns
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Ns programming
Create the event scheduler
Turn on tracing
Create network
Setup routing
Insert errors
Create transport connection
Create traffic
Transmit application-level data
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Creating Event Scheduler
Create event scheduler
set ns [new Simulator]
Schedule events
$ns at <time> <event>

<event>: any legitimate ns/tcl commands
$ns at 5.0 “finish”
Start scheduler
$ns run
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Event Scheduler
Event: at-event and packet
List scheduler: default

Heap and calendar queue scheduler
Real-time scheduler

Synchronize with real-time
Network emulation

set ns_ [new Simulator]
$ns_ use-scheduler Heap
$ns_ at 300.5 “$self halt”
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Discrete Event Scheduler

time_, uid_, next_, handler_
head_ ->

handler_ -> handle()

time_, uid_, next_, handler_insert

head_ ->
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Hello World - Interactive Mode
Interactive mode:
swallow 71% ns
% set ns [new Simulator]
_o3
% $ns at 1 “puts \“Hello 

World!\””
1
% $ns at 1.5 “exit”
2

% $ns run
Hello World!
swallow 72%

Batch mode:
simple.tcl

set ns [new Simulator]
$ns at 1 “puts \“Hello 

World!\””
$ns at 1.5 “exit”
$ns run

swallow 74% ns 
simple.tcl

Hello World!
swallow 75%
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Tracing and Monitoring I
Packet tracing:

On all links: $ns trace-all [open out.tr w]

On one specific link: $ns trace-queue $n0 $n1$tr
<Event> <time> <from> <to> <pkt> <size> -- <fid> <src> <dst> <seq> <attr>

+ 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0
- 1 0 2 cbr 210 ------- 0 0.0 3.1 0 0
r 1.00234 0 2 cbr 210 ------- 0 0.0 3.1 0 0

We have new trace format

Event tracing (support TCP right now)
Record “event” in trace file: $ns eventtrace-all

E 2.267203 0 4 TCP slow_start 0 210 1
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Tracing and Monitoring II
Queue monitor 

set qmon [$ns monitor-queue $n0 $n1 $q_f $sample_interval] 

Get statistics for a queue 
$qmon set pdrops_

Record to trace file as an optional
29.000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 0

Flow monitor
set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops_
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Tracing and Monitoring III
Visualize trace in nam
$ns namtrace-all [open test.nam w] 
$ns namtrace-queue $n0 $n1

Variable tracing in nam
Agent/TCP set nam_tracevar_ true
$tcp tracevar srtt_
$tcp tracevar cwnd_

Monitor agent variables in nam
$ns add$ns add--agentagent--trace $trace $tcptcp $$tcptcp
$ns monitor$ns monitor--agentagent--trace $trace $tcptcp
$srm0$srm0 tracevartracevar cwndcwnd__
…………
$ns delete$ns delete--agentagent--trace $trace $tcptcp
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Creating Network
Nodes
set n0 [$ns node]
set n1 [$ns node]

Links and queuing
$ns <link_type> $n0 $n1 <bandwidth> 

<delay> <queue_type>
<link_type>: duplex-link, simplex-link
<queue_type>: DropTail, RED, CBQ, FQ, SFQ, 
DRR, diffserv RED queues
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Creating Network: LAN
$ns make-lan <node_list> <bandwidth> 

<delay> <ll_type> <ifq_type> 
<mac_type> <channel_type>

<ll_type>: LL
<ifq_type>: Queue/DropTail,
<mac_type>: MAC/802_3
<channel_type>: Channel
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Setup Routing
Unicast
$ns rtproto <type>
<type>: Static, Session, DV, cost, multi-path

Multicast
$ns multicast (right after [new Simulator])
$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

Other types of routing supported: source routing, 
hierarchical routing
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Network Dynamics
Link failures

Hooks in routing module to reflect routing 
changes

Four models
$ns$ns rtmodelrtmodel Trace <Trace <configconfig_file> $n0 $n1_file> $n0 $n1
$ns$ns rtmodelrtmodel Exponential {<Exponential {<paramsparams>} $n0 $n1>} $n0 $n1
$ns$ns rtmodelrtmodel Deterministic {<Deterministic {<paramsparams>} $n0 $n1>} $n0 $n1
$ns$ns rtmodelrtmodel--at <time> up|down $n0 $n1at <time> up|down $n0 $n1

Parameter list
[<start>] <up_interval> <down_interval> [<finish>][<start>] <up_interval> <down_interval> [<finish>]
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Creating Connection and Traffic
UDP

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp
$ns attach-agent $n1 $null
$ns connect $udp $null

CBR
set src [new 

Application/Traffic/CBR]

Exponential or Pareto 
on-off

set src [new 
Application/Traffic/Exponential]

set src [new 
Application/Traffic/Pareto]
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Creating Connection and Traffic II

TCP
set tcp [new Agent/TCP]
set tcpsink [new 

Agent/TCPSink]
$ns attach-agent $n0 $tcp
$ns attach-agent $n1 

$tcpsink
$ns connect $tcp $tcpsink

FTP
set ftp [new Application/FTP]
$ftp attach-agent $tcp

Telnet
set telnet [new 

Application/Telnet]
$telnet attach-agent $tcp
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Creating Traffic: Trace Driven

Trace driven
set tfile [new Tracefile]
$tfile filename <file>
set src [new Application/Traffic/Trace]
$src attach-tracefile $tfile
<file>:

Binary format (native!)
inter-packet time (msec) and packet size (byte)
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Application-Level Simulation

Features
Build on top of existing transport protocol
Transmit user data, e.g., HTTP header

Two different solutions
TCP: Application/TcpApp
UDP: Agent/Message
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Compare to Real World

More abstract (much simpler):
No addresses, just global variables
Connect them rather than name 
lookup/bind/listen/accept

Easy to change implementation
Set tsrc2 [new agent/TCP/Newreno]
Set tsrc3 [new agent/TCP/Vegas]
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Summary: Generic Script Structure

set ns [new Simulator]set ns [new Simulator]

# [Turn on tracing]# [Turn on tracing]

# Create topology# Create topology

# Setup packet loss, link dynamics# Setup packet loss, link dynamics

# Create routing agents# Create routing agents

# Create: # Create: 

#   #   -- multicast groupsmulticast groups

#   #   -- protocol agentsprotocol agents

#   #   -- application and/or setup traffic sourcesapplication and/or setup traffic sources

# Post# Post--processingprocessing procsprocs

# Start simulation# Start simulation
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ns nam Interface

Color
Node manipulation
Link manipulation
Topology layout
Protocol state
Misc
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nam Interface: Color

Color mapping
$ns color 40 red$ns color 40 red

$ns color 41 blue$ns color 41 blue

$ns color 42 chocolate$ns color 42 chocolate

Color ↔ flow id association
$tcp0 set fid_ 40$tcp0 set fid_ 40 ;# red packets;# red packets

$tcp1 set fid_ 41$tcp1 set fid_ 41 ;# blue packets;# blue packets
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nam Interface: Nodes
Color
$node color red$node color red

Shape (can’t be changed after sim starts)
$node shape box$node shape box ;# circle, box, hexagon;# circle, box, hexagon

Marks (concentric “shapes”)
$ns at 1.0 “$n0 add$ns at 1.0 “$n0 add--mark m0 blue box”mark m0 blue box”

$ns at 2.0 “$n0 delete$ns at 2.0 “$n0 delete--mark m0”mark m0”

Label (single string)
$ns at 1.1 “$n0 label $ns at 1.1 “$n0 label \\”web cache 0”web cache 0\\””””
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nam Interfaces: Links
Color
$ns duplex$ns duplex--linklink--op $n0 $n1 color "green"op $n0 $n1 color "green"

Label
$ns duplex$ns duplex--linklink--op $n0 $n1 label "op $n0 $n1 label "abcedabced""

Dynamics (automatically handled)
$ns$ns rtmodelrtmodel Deterministic {2.0 0.9 0.1} $n0 $n1Deterministic {2.0 0.9 0.1} $n0 $n1

Asymmetric links not allowed
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nam Interface: Topo Layout

“Manual” layout: specify everything

$ns duplex$ns duplex--linklink--op $n(0) $n(1) orient rightop $n(0) $n(1) orient right

$ns duplex$ns duplex--linklink--op $n(1) $n(2) orient rightop $n(1) $n(2) orient right

$ns duplex$ns duplex--linklink--op $n(2) $n(3) orient rightop $n(2) $n(3) orient right

$ns duplex$ns duplex--linklink--op $n(3) $n(4) orient 60degop $n(3) $n(4) orient 60deg

If anything missing automatic 
layout



45

nam Interface: Misc
Annotation

Add textual explanation to your 
simulation

$ns at 3.5 "$ns trace$ns at 3.5 "$ns trace--annotate annotate \\“packet “packet 
dropdrop\\"“"“

Set animation rate
$ns at 0.0 "$ns set$ns at 0.0 "$ns set--animationanimation--rate rate 

0.1ms"0.1ms"
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Help and Resources

Ns and nam build questions
http://www.isi.edu/nsnam/ns/ns-build.html

Ns mailing list: ns-users@isi.edu
Ns manual and tutorial (in distribution)
TCL: http://dev.scriptics.com/scripting
Otcl tutorial (in distribution): 
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.
html
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Part III: ns Demo


