Chapter 2
Application Layer

A note on the use of these ppt slides:

We're making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you can add, modify, and delete slides
(including this one) and slide content to suit your needs. They obviously
represent a lot of work on our part. In return for use, we only ask the
following:

+ If you use these slides (e.g., in a class) in substantially unaltered form, that
you mention their source (after all, we’'d like people to use our book!)

« If you post any slides in substantially unaltered form on a www site, that
you note that they are adapted from (or perhaps identical to) our slides, and
note our copyright of this material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2010
J.F Kurose and K.W. Ross, All Rights Reserved

COMPUTER - eomon
NETWORKIN

)} h

KUROSE - ROSS

Computer Networking:
A Top Down Approach,
Bth edition.

Jim Kurose, Keith Ross
Addison-Wesley, April
2009.

Application 2-1

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic Mail with UDP

= SMTP, POP3, IMAP
2.5 DNS

Application 2-2

Chapter 2: Application Layer

Our goals: < learn about protocols
% conceptual, by examining popular
implementation application-level
aspects of network protocols
application protocols = HTTP
= transport-layer = FTP
service models = SMTP / POP3 / IMAP
= client-server " DNS
paradigm % programming network
applications

" peer-to-peer
paradigm = socket API

Application 2-3

Some network apps

+ e-mail % voice over IP
% web % real-time video
% instant messaging conferencing
+» remote login % cloud computing
% P2P file sharing R
< multi-user network o

games &

% streaming stored video
(YouTube)

Application 2-4

Creating a network app

write programs that

= run on (different) end
systems

= communicate over network

= e.g., web server software
communicates with browser
software

No need to write software
for network-core devices

= network-core devices do
hot run user applications

= applications on end systems
allows for rapid app
development, propagation

application

ata link
hysical

data link

hysical

Application 2-5

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic Mail with UDP

SMTP, POP3, IMAP
2.5 DNS

Application 2-6

Application architectures

2+ client-server
<+ peer-to-peer (P2P)
+ hybrid of client-server and P2P

Application 2-7

Client-server architecture

server:
= always-on host
= permanent IP address

= server farms for
scaling

clients:
= communicate with server

= may be intermittently
connected

= may have dynamic IP
addresses

= do not communicate
directly with each other

Application 2-8

Pure P2P architecture

% no always-on server

% arbitrary end systems N
directly communicate peer-peer 4 Ak

% peers are intermittently
connected and change IP .
addresses -

—~ =>C
highly scalable but . alb
difficult to manage 58

Application 2-9

Hybrid of client-server and P2P

Skype
= voice-over-IP P2P application
= centralized server: finding address of remote
party:
= client-client connection: direct (not through
server)
Instant messaging
= chatting between two users is P2P

= centralized service: client presence
detection/location

* user registers its IP address with central
server when it comes online

- user contacts central server to find IP
addresses of buddies

Application 2-10

Processes communicating

process: program running

within a host.

+ within same host, two

processes communicate
using inter-process
communication (defined
by OS).

» processes in different
hosts communicate by
exchanging messages

client process: process
that initiates
communication

server process: process

that waits to be
contacted

<+ aside: applications with

P2P architectures have
client processes &
server processes

Application 2-11

Sockets

%+ process sends/receives
. host or host or
messages TO/fI"OI’\'\ ITs server server

socket
controlled by

. process process
= sending process shoves * $

message out door _|socket| _|socket|
. , v v
= sending process relies on TCP with TCP with
: buffers Internet buffers
transport infrastructure ol oo
. . variables variables
on other side of door which
brings message to socket o
1 controlle
at receiving process by OS

« API: (1) choice of transport protocol; (2) ability to fix
a few parameters (lots more on this later)

Application 2-12

Addressing processes

+ Yo receive messages,
process must have
identifier

% host device has unique
32-bit IP address

% (- does IP address of
host on which process
runs suffice for
identifying the process?

Application 2-13

Addressing processes

+ %o receive messages, + /dentifier includes both
process must have IP address and port
identifier numbers associated with

+ host device has unique process on host.
32-bit IP address % example port numbers:

% Q- does IP address of * HTTP server: 80
host on which process " Mail server: 25
runs suffice for + to send HTTP message
identifying the process? to gaia.cs.umass.edu web

= A:No, many server:
processes can be = TP address: 128.119.245.12
running on same host " Port number: 80

% more shortly...

Application 2-14

App-layer protocol defines

types of messages
exchanged,

= e.g., request, response
message syntax:

= what fields in messages &

how fields are delineated

message semantics
= meaning of information in
fields
rules for when and how
processes send &
respond to messages

public-domain protocols:
<+ defined in RFCs

<+ allows for
interoperability

+» e.g., HTTP, SMTP
proprietary protocols:
+ e.g., Skype

Application 2-15

What transport service does an app need?

Data loss Throughput

+ some apps (e.g., audio) can + some apps (e.g.,
tolerate some loss multimedia) require

% other apps (e.g., file minimum amount of
transfer, telnet) require throughput to be
100% reliable data “effective”
transfer

+ other apps (“elastic apps")
Tlmmg make use of whatever

+ some apps (e.g., throughput they get
Internet ’relephony, Security

interactive games) . . .
r-equir'e low delay to be < encryption, data Intfegrity,
"effective”

Application 2-16

Transport service requirements of common apps

Application Dataloss Throughput Time Sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps Yes, 100’s msec
video:10kbps-5Mbps

stored audio/video |oss-tolerant same as above yes, few secs
Interactive games loss-tolerant few kbps up yes, 1OQ’S msec
Instant messaging no loss elastic yes and no

Application 2-17

Internet transport protocols services

TCP service: UDP service:

- connection-oriented: setup <+ unreliable data transfer
required between client and between sending and
server processes receiving process

- reliable transport between + does not provide:
sending and receiving process connection setup,

reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

» flow control: sender won't
overwhelm receiver

» congestion control: throttle
sender when network
overloaded

» does not provide: timing,
minimum throughput
guarantees, security

Q: why bother? Why is
there a UDP?

Application 2-18

Internet apps: application, fransport protocols

Application Underlying
Application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP
streaming multimedia HTTP (e.g., YouTube), TCP or UDP

RTP [RFC 1889]

Internet telephony

SIP, RTP, proprietary
(e.g., Skype)

typically UDP

Application 2-19

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
= app architectures with TCP
" app requirements 2.8 Socket programming
2.2 Web and HTTP with UDP
2.3 FTP

2.4 Electronic Mail
= SMTP, POP3, IMAP

2.5 DNS

Application 2-20

Web and HTTP

First, a review...
% web page consists of objects

% object can be HTML file, JPEG image, Java applet,
audio file,...

% web page consists of base HTML-file which
includes several referenced objects

+ each object is addressable by a URL
+ example URL:
www . someschool .edu/someDept/pic.gif

——

host hame path name

Application 2-21

HTTP overview

HTTP: hypertext
transfer protocol

% Web's application layer
protocol

% client/server model

= client: browser that
requests, receives,
"displays” Web objects

= server: Web server
sends objects in
response to requests

PC running A/
Explorer

Server
running
Apache Web
server

Mac running
Navigator

Application 2-22

HTTP overview (continued)

Uses TCP: HTTP is "stateless”
» client initiates TCP % Server maintains no
connection (creates socket) information about

to server, port 80 past client requests

- server accepts TCP
connection from client

- :—lTTP me:sagles (applica;rion- “state” are complex!
ayer protocol messages . :
exchanged between browser E(és;:‘i'::gi;égsmm) must
(HTTP client) and Web . .
server (HTTP server) + if server/client crashes,

» TCP connection closed The.'r vViews of "state” may
be inconsistent, must be

reconciled

aside -
protocols that maintain

Application 2-23

HTTP connections

non-persistent HTTP persistent HTTP

% at most one object % multiple objects can
sent over TCP be sent over single
connection. TCP connection

between client, server.

Application 2-24

Nonpersistent HT TP

suppose user enters URL: (contains text,
www . someSchool . edu/someDepartment/home. index referencesto 10
jpeg images)

la. HTTP client initiates TCP

f:::ceecs’rsugngo HTTP server 1b. HTTP server at host
| hool. www.someSchoo.I.edu waiting
www.someschool.edu on port 80 for TCP connection at port 80.
“accepts” connection, notifying

client
2. HTTP client sends HTTP

reguest message (containing
URL) into TCP connection 3. HTTP server receives request
socket. Message indica’res\ message, forms response

that client wants object message containing requested
someDepartment/home.inde}/ object, and sends message

into its socket

time

Application 2-25

Nonpersistent HTTP (cont.)

/ 4 HTTP server closes TCP

connection.

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg

. objects
Time 6. Steps 1-5 repeated for each
} of 10 jpeg objects

Application 2-26

Non-Persistent HTTP: Response time

definition of RTT: time for

a small packet to travel @ n

from client to server

and back. initiate TCP__
. connection [|

response fime: —
%+ one RTT to initiate TCP r_equest_\;

connection file | | ime o
% one RTT for HTTP \ é}]Eirlznsmit

request and first few file —

bytes of HTTP response rece"’edé

to return ti:n . o

+ file transmission time
total = 2RT T+transmit time

Application 2-27

Persistent HTTP

non-persistent HTTP issues:
- requires 2 RTTs per object

» OS overhead for each TCP
cohnection

» browsers often open parallel
TCP connections to fetch
referenced objects

persistent HTTP

» server leaves connection

open after sending
response

» subsequent HTTP messages

between same
client/server sent over
open connection

» client sends requests as

soon as it encounters a
referenced object

» as little as one RTT for all

the referenced objects

Application 2-28

HTTP request message

% Two types of HT TP messages: request, response

% HTTP request message:
= ASCII (human-readable format)

carriage return character

) line-feed character
request line f

(GET, POST, T GET Ziindex.html HTTP/l-l\r\F/l

HEAD commands) [Host: www-net.cs.umass.edu\r\n

User-Agent: Firefox/3.6.10\r\n

header Accept: text/html,application/xhtml+xmI\r\n
) Accept-Language: en-us,en;g=0.5\r\n

lines Accept-Encoding: gzip,deflate\r\n

Accept-Charset: 150-8859-1,utf-8;9=0.7\r\n

carriage return, Keep-Alive: 115\r\n
line feed at start | Connection: keep-alive\r\n
—— \r'\n

of line indicates
end of header lines

Application 2-29

HTTP request message: general format

If | request
line

header
lines

Entity Body body

Application 2-30

Uploading form input

POST method:

= web page often includes
form input

% input is uploaded to
server in entity body

URL method:

+ uses GET method

% input is uploaded in
URL field of request

line: www.somesite.com/animalsearch?monkeys&banana

Application 2-31

Method types

HTTP/1.0 HTTP/1.1
» GET %+ GET, POST, HEAD
«» POST «» PUT
+ HEAD = uploads file in entity
body to path specified
= asks server to leave D0cy To P pec
requested object out of in URL field
response «» DELETE
= deletes file specified in
the URL field

Application 2-32

HTTP response message

status line

rotocol

status code
status phrase)

a—

header
lines

HTTP/1.1 200 OK\r\n

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n

ETag: '"17dc6-a5c-bf716880''\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=150-8859-
I\r\n

\r\n

dauLeag”,////'data data data data data ...

requested
HTML file

Application 2-33

HTTP response status codes

% status code appears in 1st line in server->client
response message.

% some sample codes:
200 OK
= request succeeded, requested object later in this msg
301 Moved Permanently

= requested object moved, new location specified later in this
msg (Location:)

400 Bad Request

= request msg not understood by server
404 Not Found

= requested document not found on this server
505 HTTP Version Not Supported

Application 2-34

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

telnet cis.poly.edu 80 |opens TCP connection to port 80

(default HTTP server port) at cis.poly.edu.
anything typed in sent

to port 80 at cis.poly.edu

2. type in a GET HTTP request:

GET /~ross/ HTTP/1.1 by typing this in (hit carriage
this minimal (but complete)

| GET request to HTTP server

3. look at response message sent by HTTP server!

(or use Wireshark!)

Application 2-35

User-server state: cookies

many Web sites use example:
cookies % Susan always access

1) cookie header line of % visits specific e-
HTTP response message commerce site for first

2) cookie header line in time
HTTP reguest message o

3) cookie file kept on < when initial HTTP
user's host, managed by requests arrives at site,

user's browser

site creates:
4) back-end database at ,
Web site = unique ID

= entry in backend
database for ID

Application 2-36

Cookies: keeping "state” (cont.)

client

usual http request msg

ebay 8734

cookie file

usual http response
Set-cookie: 1678

/

<4
ebay 8734
amazon 1678

usual http request msg
cookie: 1678

one week later:

usual http response msg

<4
ebay 8734 .
amazon 1678

usual http request msg
cookie: 1678

server

mazon server

creates ID _
1678 for user create

usual http response msg

entr
cookie- c((;cess/v
— specific <
action backend
database
access
cookie- /
specific
action

Application 2-37

Cookies (continued)

what cookies can bring:

aside

cookies and privacy:

<« authorization

< shopping carts

+» recommendations

< user session state
(Web e-mail)

how to keep "state”:

% cookies permit sites to
learn a lot about you

% you may supply name
and e-mail to sites

% protocol endpoints: maintain state
at sender/receiver over multiple

transactions

% cookies: http messages carry state

Application 2-38

Web caches (proxy server)

Goal: satisfy client request without involving origin server

< user sets browser: origin

server

Web accesses via
cache

<+ browser sends all
HTTP requests to
cache

= object in cache: cache
returns object

= else cache requests
object from origin client
server, then returns
object to client

origin
server

Application 2-39

More about Web caching

% cache acts as both
client and server

% typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?

% reduce response time
for client request

+ reduce traffic on an

institution's access
link.

% Internet dense with
caches: enables "poor”
content providers to
effectively deliver
content (but so does
P2P file sharing)

Application 2-40

Caching example

origin

assumptions
' servers

+ average object size = 100,000
bits
% avg. request rate from

institution's browsers to origin
servers = 15/sec

- delay from institutional router
to any origin server and back
to router =2 sec

consequences
& utilization on LAN = 15%
« utilization on access link = 100%

+ total delay = Internet delay + institutional
access delay + LAN delay cache

= 2 sec + minutes + milliseconds

1.5 Mbps
access link

4

L)

L)

Application 2-41

Caching example (cont)

origin

possible solution servers

+ increase bandwidth of access
link to, say, 10 Mbps

consequence
< utilization on LAN = 15%
< utilization on access link = 15%

« Total delay = Internet delay
+ access delay + LAN delay

= 2 sec + msecs + msecs
+ often a costly upgrade

10 Mbps
access link

institutional
cache

Application 2-42

Caching example (cont)

possible solution:
» install cache

consequence

» suppose hit rate is 0.4

= 40% requests will be
satisfied almost
immediately

= 607% requests satisfied by
origin server

» utilization of access link
reduced to 60%, resulting in
negligible delays (say 10
msec

- total avg delay = Internet
delay + access delay + LAN
delay = .6*(2.01) secs +
4*milliseconds < 1.4 secs

origin
servers

1.5 Mbps
access link

institutional
cache

Application 2-43

Conditional GET

+ Goal: don't send object if cache Server

cache has up-to-date
cached version

—

HTTP request msg _
if-modified-since: <date> —, OPJECt

% cache: specify date of not
cached copy in HTTP ~__ modified
request HTTP response before

IT-modified-since: 7 HTTP/1.0 <date>
<date> 304 Not Modified

*

L)

» server: response contains
no object if cached copy is

HTTP request msg

e : If-modified-since: <date> —
l-II'E)lTjIr'I'é’/chm-Oe.304 Not object
i O .
VodiFied modified

HTTPresponse [after
— HTTP/1.0 200 OK <date>

<data>

Application 2-44

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic mail with UDP

= SMTP, POP3, IMAP
2.5 DNS

Application 2-45

FTP: the file transfer protocol

FTP L

file transfer

client

FTP
user
interface
user
at host

local file
system

» transfer file to/from remote host
- client/server model
= client: side that initiates transfer (either to/from

remote)

= server: remote host

» ftp: RFC 959

» ftp server: port 21

J| FTP

server

A

remote file

system

Application 2-46

FTP: separate control, data connections

FTP client contacts FTP server))
at port 21, TCP is transport @] n

protocol
client authorized over control

TCP control connection,
server port 21

A
<« »

TCP data connection,

FTP server port 20 FTP

connection client server

client browses remote
directory by sending commands
over control connection.

when server receives file
transfer command, server
opens 2@ TCP connection (for
file) to client &

after transferring one file,
server closes data connection.

X/
0‘0

server opens another TCP
data connection to transfer
another file.

control connection: "out of
band"

FTP server maintains "state".
current directory, earlier
authentication

Application 2-47

FTP commands, responses

sample commands:

. sent as ASCII text over
control channel

» USER username
> PASS password

- LIST return list of file in
current directory

» RETR fi1lename retrieves
(gets) file

» STOR fi1lename stores

(puts) file onto remote
host

sample return codes

- status code and phrase (as

in HTTP)

» 331 Username OK,

password required

» 125 data connection

already open;
transfer starting

» 425 Can’t open data

connection

» 452 Error writing

file

Application 2-48

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic Mail with UDP

= SMTP, POP3, IMAP
2.5 DNS

Application 2-49

Electronic Mail

Three major components:

% user agents
< mail servers

+ simple mail fransfer
protocol: SMTP

User Agent

+ a.k.a. "mail reader”

« composing, editing, reading
mail messages

- e.g., Outlook, elm, Mozilla
Thunderbird, iPhone mail
client

4

L)

L)

% outgoing, incoming messages

stored on server

mail
server

00000

T
SMTP

r

" mail
server

00000

alr [\
user
agent

alr [

user

agent

SMTP
N

/

SMTP

/

alr [\
user
agent

outgoing
message queue

[0 user mailbox

alr [
user
agent

mail
server

00000

ailr [
user
agent

ailr [
user
agent

Application 2-50

Electronic Mail: mail servers

Mail Servers

+ mailbox contains incoming
messages for user

» message queue of outgoing
(to be sent) mail messages
% SMTP protocol between mail
servers to send email
messages
= client: sending mail
server
= "server”: receiving mail
server

alr [

user

agent
mail
server "
ooooo| SMTP
| ~

SMTP V.

l. SMTP
mail ’///
server
alr [\
OOO0O0] | user
iilr’\ GgenT
user
agent

alr [\

user
agent
]
mail alr [
server user
agent
RIREiNN
ailr |
user
agent

Application 2-51

Electronic Mail: SMTP [RFC 2821]

» uses TCP to reliably transfer email message from client
to server, port 25

- direct tfransfer: sending server to receiving server
% three phases of fransfer
= handshaking (greeting)
= transfer of messages
= closure
» command/response interaction
= commands: ASCIT text
= response: status code and phrase

% messages must be in 7-bit ASCIT

&

Application 2-52

Scenario: Alice sends message to Bob

1) Alice uses UA o compose 4) SMTP client sends Alice's

message and "to" message over the TCP
bob@someschool . edu connection
2) Alice's UA sends message 5) Bob's mail server places the
to her mail server; message message in Bob's mailbox
placed in message queue 6) Bob invokes his user agent
3) Client side of SMTP opens to read message
TCP connection with Bob's
mail server

(1) = = : .
itk mail fel. - L
éﬁ% se server user | ird
s user server B i
&7 T e
%',ﬂ"! Ggen"' e mem \@\ |:| 5 D /C@/v .__.'|,!l;-.|

UOH O

Application 2-53

Sample SMTP interaction

DOOLOOOULOULOLOW|LOOWm

- 220 hamburger.edu

: HELO crepes.fr

: 250 Hello crepes.fr, pleased to meet you
- MAIL FROM: <alice@crepes.fr>

- 250 alice@crepes.fr... Sender ok

- RCPT TO: <bob@hamburger.edu>

- 250 bob@hamburger.edu ... Recipient ok

- DATA

: 354 Enter mail, end with "." on a line by i1tself
: Do you like ketchup?

: How about pickles?

: 250 Message accepted for delivery
o QUIT
- 221 hamburger.edu closing connection

Application 2-54

Try SMTP interaction for yourself:

« telnet servername 25

+ see 220 reply from server

« enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client
(reader)

Application 2-55

SMTP: final words

» SMTP uses persistent
connections

- SMTP requires message
(header & body) to be in 7-
bit ASCIT

- SMTP server uses
CRLF.CRLF to determine

end of message

comparison with HTTP:

% HTTP: pull
» SMTP: push

- both have ASCII

command/response
interaction, status codes

» HTTP: each object

encapsulated in its own
response msg

» SMTP: multiple objects

sent in multipart msg

Application 2-56

Mail message format

SMTP: protocol for

exchanging email msgs ,
blank

RFC 822: standard foy ‘ I
. ine
message format:
+ header lines, e.g.,

body

= To:

= From:

= Subject:

different from SMTP
commands!

» body

= the "message”, ASCIT
characters only

Application 2-57

Mail access protocols

SMTP SMTP g
ﬁ user -4 &f|—9CCeSS user ":'fff{.}‘f
%? agent s

pPOTOCOl agen’r £
CO0 00 OO0 00

sender's mail receiver's mail
server server

» SMTP: delivery/storage to receiver's server
- mail access protocol: retrieval from server
= POP: Post Office Protocol [RFC 1939]
- authorization (agent <-->server) and download
= TMAP: Internet Mail Access Protocol [RFC 1730]
- more features (more complex)
* manipulation of stored msgs on server
= HTTP: gmail, Hotmail, Yahoo! Mail, etc.

Application 2-58

POP3 protocol

authorization phase —

+ client commands:
= user: declare username
= pass: password
% server responses
= +0K
= -ERR

transaction phaseM

« list: list message numbers

+ retr: retrieve message by
number

<« dele: delete
< quit

|U)C)C)U)U)C)C)U)U)C)U)U)U)C4|f?f?f?<7(n|

- +OK POP3 server ready
> user bob

+0K
pass hungry
+0K user successfully logged on

list

> 1 498
> 2 912

retr 1

. <message 1 contents>

- dele 1

retr 2

. <message 1 contents>

> dele 2
> quit
- +OK POP3 server signing off

Application 2-59

POP3 (more) and IMAP

more about POP3

<+ previous example uses
"download and delete”
mode.

<+ Bob cannot re-read e-
mail if he changes
client

<+ "download-and-keep":
copies of messages on
different clients

< POP3 is stateless
across sessions

IMAP

+ keeps all messages in
one place: at server

< allows user to organize
messages in folders

+ keeps user state
across sessions:

= names of folders and
mappings between
message IDs and folder
name

Application 2-60

Chapter 2: Application layer

% 2.1 Principles of
network applications

+ 2.2 Web and HTTP
+ 2.3 FTP

+ 2.4 Electronic Mail
= SMTP, POP3, IMAP

+ 2.5 DNS

% 2.6 P2P applications
% 2.7 Socket programming

with TCP

% 2.8 Socket programming

with UDP

Application 2-61

DNS: Domain Name System

people: many identifiers:
= SSN, name, passport #

Internet hosts, routers:

= TP address (32 bit) -
used for addressing
datagrams

= "name”, e.qg,,
www.yahoo.com - used
by humans

Q: map between IP
address and name, and
vice versa ?

Domain Name System:

- distributed database
implemented in hierarchy of
many name servers

- application-layer protocol
host, routers, name servers to
communicate to reso/ve names
(address/name translation)

= note: core Internet
function, implemented as
application-layer protocol

= complexity at network’s
\\edgell

Application 2-62

DNS

DNS services

%+ hostname to IP
address translation

% host aliasing
= Canonical, alias names
<+ mail server aliasing

+ load distribution

= replicated Web
servers: set of IP
addresses for one
canonical name

Why not centralize DNS?
<+ single point of failure
% traffic volume

» distant centralized
database

» maintenance

doesn't scale/

Application 2-63

Distributed, Hierarchical Database

Root DNS Servers

/\

com DNS servers org DNS servers edu DNS servers
yahoo.com amazon.com pbs.org poly.edu umass.edu

DNS servers DNS servers DNS servers DNS serversDNS servers

client wants IP for www.amazon.com; 15" approx:
<+ client queries a root server to find com DNS server
+ client queries com DNS server to get amazon.com DNS server

<+ client queries amazon.com DNS server to get IP address for
www.amazoh.com

Application 2-64

DNS: Root name servers

+ contacted by local name server that can not resolve name
< root name server:
= contacts authoritative name server if hame mapping not known
gets mapping
= returns mapping to local name server

a Verisign, Dulles, VA
¢ Cogent, Herndon, VA (also LA)
d U Maryland College Park, MD k RIPE London (also 16 other locations)

g US DoD Vienna, VA
h ARL Aberdeen, MD i Autonomica, Stockholm (plus
j Verisign, (21 locations) 28 other locations)
m WIDE Tokyo (also Seoul,
. jris, SF)

13 root name
servers worldwide

e NASA Mt View, CA
f Internet Software C. Palo Alto,
CA (and 36 other locations)

b USC-ISI Marina del Rey, CA
| ICANN Los Angeles, CA

Application 2-65

TLD and Authoritative Servers

Top-level domain (TLD) servers:

= responsible for com, org, net, edu, aero, jobs,
museums, and all top-level country domains, e.g.:
uk, fr, ca, jp

= Network Solutions maintains servers for com TLD
= Educause for edu TLD

Authoritative DNS servers:

= organization's DNS servers, providing
authoritative hosthame to IP mappings for
organization's servers (e.g., Web, mail).

= can be maintained by organization or service
provider

Application 2-66

Local Name Server

+ does not strictly belong to hierarchy

% each ISP (residential ISP, company,
university) has one
* also called "default name server”

% when host makes DNS query, query is sent
to its local DNS server

= acts as proxy, forwards query into hierarchy

Application 2-67

DNS name
resolution example

% host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

root DNS server

2
3
TLD DNS server

4 .

»
P
<

t1
. . local DNS server
iterated query: o
<+ contacted server : 5
replies with name of 1118 g

2

server to contact

- "I don't know this
name, but ask this
server”

>

D)

D)

requesting host
cis.poly.edu

authoritative DNS server
dns.cs.umass.edu

2

gaia.cs.umass.edu

Application 2-68

DNS name

PZSOIUT'O” example root DNS server
| B

recursive query: 2 3
<+ puts burden of name

resolution on 7 ©
contacted name = = TLD DNS server
server T |
<+ heavy load? local DNS server .
dns.poly.edu 5

=
@ authoritative DNS server
dns.cs.umass.edu
requesting host
cis.poly.edu @

gaia.cs.umass.edu

Application 2-69

DNS: caching and updating records

<+ once (any) name server learns mapping, it caches
mapping
= cache entries timeout (disappear) after some
Time
= TLD servers typically cached in local name
servers
» Thus root name servers not often visited
+ update/notify mechanisms proposed IETF
standard
= RFC 2136

Application 2-70

DNS records

DNS: distributed db storing resource records (RR)

RR format: (name, value, type, ttl)

Type=A Type CNAME
= name is hosthame name is alias hame for some
= value is IP address "canonical” (the real) name
= www.ibm.com is reall
Type=NS Y
)) servereast.backup2. 1tbm.com
= name is domain (e.q., . .
= value is canonical name
foo.com)

= value is hosthame of Type=MX
authoritative name

. . = value is name of mailserver
server for this domain f

associated with name

Application 2-71

DNS protocol, messages

DNS protocol : guery and rep/y messages, both with
same message format

identification flags T
msg header
. . . . number of guestions number of answer RRs 12 bytes
+ identification: 16 bit #
for- query, rep]y to query number of authority RRs | number of additional ERs l
uses same # _
questions
o ﬂags; (variable number of questions)
. query or r'eply answers
- f'€CUI"Si0n dCSil"ed (variable number of resource records)
= recursion available authority

(variakle number of resource records)

= reply is authoritative

additional information
(variable number of resource records)

Application 2-72

DNS protocol, messages

identification flags T
Name' Type flelds number of guestions number of answer RRs 12 bytes
for a query l
number of authority RRs [number of additional RRs
. N guestions
RRS N r‘eSponse (variable number of questions)

1.0 quer‘y\‘ ewers

ivariable number of resource records)

records for -
. . — authori
GUThorlTGTlve Servers > (variable number of resource records)

additional information

addi.'.ional “he|pfu|" /" {variable number of resource records)
info that may be used

Application 2-73

Inserting records into DNS

% example: new startup "Network Utopia”
+ register name networkuptopia.com at ONS registrar
(e.g., Network Solu’nonsg

= provide names, IP addresses of authoritative name server
(primary and secondary)

= registrar inserts two RRs into com TLD server:

(networkutopia.com, dnsl.networkutopia.com, NS)
(dnsl.networkutopia.com, 212.212.212.1, A)

+ create authoritative server Type A record for
www.hetworkuptopia.com; Type MX record for
networkutopia.com

% How do people get IP address of your Web site?

Application 2-74

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic Mail with UDP

= SMTP, POP3, IMAP
2.5 DNS

Application 2-75

Pure P2P architecture

<+ no always-on server

<+ arbitrary end systems
directly communicate

<+ peers are intermittently peer-peer N

connected and change IP
addresses

Three topics:
= file distribution v, =
= searching for information L |
= case Study: Skype

Application 2-76

File Distribution: Server-Client vs P2P

Question: How much time to distribute file
from one server to N peers?

u.: server upload

bandwidth
Server @
o u;: peer i upload
i n y bandwidth
I /d
o Ug e d;: peer i download
File, size F T~y bandwidth
dy
@ R Network (with ®
< uy abundant bandwidth)
°
°
* °
°
o °

Application 2-77

File distribution time: server-client

Server
+ server sequentially n
sends N copies: o
* NF/u,time I, Ne’rwor'k (with .
% client i takes F/d; time Jg—— abundant bandwidth)
to download NS ¢
y o
o o .

Time to distribute F
to Nclients using = d_, = max { NF/u,, F/mm{a’)}
client/server approach /

increases linearly in N
(for large N)

Application 2-78

File distribution time: P2P

Server
<+ Server must send one %
: : U,

copy: F/u,time d, ,
% client i takes F/d. time | Ne,rwo ok (with

to download 8- abundant bandwidth) *
< NF bits must be . ’

downloaded (aggregate) ¢ . .

- fastest possible upload rate: u, + 2y, e

dpop = max { F/u,, F/m/'n(o’,)/, NF/(u, + 2u,) }

Application 2-79

Server-client vs. P2P. example

Client upload rate = u, F/u=1hour, u,=10u, d,;, 2 u,

3.5

= P2P
-o— Client-Server

w
|

Minimum Distribution Time
o N
[o1 N o1

o
O]
\

o

Application 2-80

File distribution: BitTorrent

P2P file distribution

fracker: tracks peers forrent. group of
participating in forrent peers exchanging

N chunks of a file
- |

obtain list
of peers

Application 2-81

BitTorrent (1)

+ file divided into 2b6KB chunks.
< peer joining torrent:
= has no chunks, but will accumulate them over time

= registers with tracker to get list of peers,
connects to subset of peers ("neighbors")

+ while downloading, peer uploads chunks to other
peers.

<+ peers may come and go

% once peer has entire file, it may (selfishly) leave or
(altruistically) remain

Application 2-82

BitTorrent (2)

Pulling Chunks

< at any given time,
different peers have
different subsets of

Sending Chunks: tit-for-tat

+ Alice sends chunks to four
neighbors currently
sending her chunks at the
highest rate

file chunks = re-evaluate top 4 every 10
+ periodically, a peer secs
(Alice) asks each + every 30 secs: randomly
neighbor for list of select another peer,
chunks that they have. gtqrts sending chunks
% Alice sends requests = newly chosen peer may join
for her missing chunks top 4

= rarest first = “optimistically unchoke"

Application 2-83

BitTorrent: Tit-for-tat

(1) Alice "optimistically unchokes” Bob
(2) Alice becomes one of Bob's top-four providers; Bob reciprocates
(3) Bob becomes one of Alice's top-four providers

With higher upload rate,
can find better trading
partners & get file faster!

Application 2-84

Distributed Hash Table (DHT)

+ DHT: distributed P2P database

+ database has (key, value) pairs;
= key: ss number; value: human name
= key: content type; value: IP address

<+ peers query DB with key
= DB returns values that match the key
<+ peers can also insert (key, value) peers

Application 2-85

DHT Identifiers

%+ assign integer identifier to each peer in range
[0,2"-1].
= Each identifier can be represented by n bits.
+ require each key to be an integer in same range.
+ to get integer keys, hash original key.
= eg., key = h("Led Zeppelin IV")
= this is why they call it a distributed “"hash” table

Application 2-86

How to assign keys to peers?

% central issue:
= assigning (key, value) pairs to peers.

% rule: assign key to the peer that has the
closest ID.

< convention in lecture: closest is the
immediate successor of the key.

+ e.g.,s n=4; peers: 1,3,4,5,8,10,12,14;
= key = 13, then successor peer = 14
= key = 15, then successor peer = 1

Application 2-87

Circular DHT (1)

1

10
8

+ each peer only aware of immediate successor
and predecessor.

+ "overlay network"

Application 2-88

Circular DHT (2)

O(N) messages 0001 Who's resp
on avg to resolve for key 1110 ?

query, when there
are N peers 111

0100
110
0101
Define closest
as closest
successor 1000

Application 2-89

Circular DHT with Shortcuts

1 Who's resp
‘ ‘ for key 1110?

+ each peer keeps track of IP addresses of predecessor,
successor, short cuts.

% reduced from 6 to 2 messages.

R Kossible to design shortcuts so O(log N) neighbors, O(log
) messages in query

Application 2-90

Peer Churn
1

% To handle peer churn, require
3 each peer to know the IP
1 address of its two successors.

» Each peer periodically pings its
4 two successors to see if they
1 are still alive.

10
8

% peer 5 abruptly leaves

< Peer 4 detects: makes 8 its immediate successor:
asks 8 who its immediate successor is; makes 8's
immediate successor its second successor.

% What if peer 13 wants to join?

Application 2-91

P2P Case study: Skype

% inherently P2P: pairs
of users communicate.

< proprietary
application-layer
protocol (inferred via
reverse engineering)

<+ hierarchical overlay
with SNs

% Index maps usernames
to IP addresses;
distributed over SNs

Skype

login server

Skype clients (SC)

—

\\\\

—
==

Application 2-92

Peers as relays

% problem when both
Alice and Bob are
behind "NATs".

= NAT prevents an outside
peer from initiating a call
to insider peer

< solution:
= using Alice's and Bob's
SNs, relay is chosen

= each peer initiates
session with relay.

= peers can how
communicate through
NATSs via relay

Application 2-93

Chapter 2: Application layer

2.1 Principles of network 2.6 P2P applications

applications 2.7 Socket programming
2.2 Web and HTTP with TCP
2.3 FTP 2.8 Socket programming
2.4 Electronic Mail with UDP

= SMTP, POP3, IMAP
2.5 DNS

Application 2-94

Socket programming

Goal: learn how to build client/server application that

communicate using sockets

Socket APT

» intfroduced in BSD4.1 UNIX,
1981

<+ explicitly created, used,
released by apps

% client/server paradigm

+ two types of transport
service via socket APT:

= unreliable datagram

= reliable, byte stream-
oriented

— socket

a host-local,
application-created,
OS5-controlled interface
(a "door") into which
application process can
both send and
receive messages to/from
another application

process

Application 2-95

Socket-programming using TCP

Socket: a door between application process and end-
end-transport protocol (UCP or TCP)

TCP service: reliable transfer of byfes from one

process to another

controlled by
application
developer

controlled by
operating
system

!

a

= socket3

£([N

pProcess

TCP with
buffers,
variables

2([N

pProcess

TCP with

host or
server

internet

g buffers,

k= socket)

host or
server

variables |

controlled by
application
developer

controlled by
operating
system

Application 2-96

Socket programming with TP

Client must contact server » when contacted by client,

» server process must first server TCP creates new
be running socket for server process to

« server must have created communicate with client
socket (door) that = allows server to talk with
welcomes client's contact multiple clients

= source port numbers
used to distinguish
clients (more in Chap 3)

Client contacts server by:
» creating client-local TCP
socket

» specifying IP address, port application viewpoint
humber of server process

» when client creates socket:
client TCP establishes
connection to server TCP

TCP provides reliable, in-order
transter of bytes (‘pipe”)
between client and server

Application 2-97

Client/server socket interaction: TCP

Server (running on hostid) Client

create socket,
port=x, for

incoming request:
welcomeSocket =
ServerSocket()

wait for incoming €= = = = = = — —p Createésocket,
connection request connection setup connectto hostid, port=x

connectionSocket = C“enthCkst =
welcomeSocket.accept() ocket()

A 4

l send request using

—Teadtequest from / clientSocket
connectionSocket
write reply to
connectionSocket

!

v
— read reply from
clientSocket

close 1

connectionSocket cI_ose 1
clientSocket

Application 2-98

Stream jargon

stream is a sequence of
characters that flow into
or out of a process.

input stream is attached to
some input source for the
process, e.g., keyboard or
socket.

output stream is attached
to an output source, e.g.,
monitor or socket.

keyboard monitor

/ input

stream

Client
Process

[P—

inFromUser

output
stream

input
stream

outToServer |e—

inFromServer |—>

client
socket

socket

to network from'network

Application 2-99

Socket programming with TCP

Example client-server app:

1) client reads line from
standard input (inFromUser

stream) , sends to server via
socket (outToServer

stream)
2) server reads line from socket

3) server converts line to
uppercase, sends back to
client

4) client reads, prints modified
line from socket
(inFromServer stream)

Application 2-100

Example: Java client (TCP)

Import java.io.”; This package defines Socket()

import java.net., and ServerSocket() classes
class TCPClient {

public static void main(String argv[]) throws Exception

{

server name,

String sentence; e.g., www.umass.edu

String modifiedSentence;
server port #
create

input stream — BufferedReader inFromUser =
create new BufferedReader(new InputStreamReaAder(System.in));

clientSocket object .
of type Socket, — Socket clientSocket = new Socket @@
connect to server

create —> DataOutputStream outToServer =

output stream new DataOutputStream(clientSocket.getOutputStream());
attached to socket

Application 2-101

Example: Java client (TCP), cont.

. Create BufferedReader inFromServer =
hmcljDUT S’fl“ekﬂm — new BufferedReader(new
attached To socket InputStreamReader(clientSocket.getinputStream()));

sentence = inFromUser.readLine();

send line _
to server — outToServer.writeBytes(sentence + '\n');

read line _, modifiedSentence = inFromServer.readLine();
from server
System.out.printin("FROM SERVER: " + modifiedSentence);

close socket —— (i _
(clean up behind yourselfl) clientSocket.close();

Application 2-102

Example: Java server (TCP)

import java.io.*;
import java.net.*;

class TCPServer {

public static void main(String argv|[]) throws Exception
{
String clientSentence;

String capitalizedSentence;
create

el i ke
w Cg:.n prg,.f 06C785 — ServerSocket welcomeSocket = new ServerSocket(6789);

wait, on welcoming while(true) {
socket accept() method
for client contact create, —— Socket connectionSocket = welcomeSocket.accept();
new socket on return
. BufferedReader inFromClient =
create INput ——— pew BufferedReader(new

stream, gr?gg?fg’r InputStreamReader(connectionSocket.getinputStream()));

Application 2-103

Example: Java server (TCP), cont

create output
stream, attached

to socket — DataOutputStream outToClient =

new DataOutputStream(connectionSocket.getOutputStream());

read in line
from socket — clientSentence = inFromClient.readLine();

capitalizedSentence = clientSentence.toUpperCase() + \n’;

write out line
to socket

}
} \
} end of while loop,

loop back and wait for
another client connection

— outToClient.writeBytes(capitalizedSentence);

Application 2-104

Chapter 2: Application layer

2.1 Principles of network
applications

2.2 Web and HTTP
2.3FTP

2.4 Electronic Mail
= SMTP, POP3, IMAP

2.5 DNS

2.6 P2P applications

2.7 Socket programming
with TCP

2.8 Socket programming
with UDP

Application 2-105

Socket programming with UDP

UDP: no "connection” between
client and server

<+ ho handshaking

+ sender explicitly attaches application viewpoint:
IP address and port of
destination to each packet

<+ server must extract IP
address, port of sender
from received packet

UDP: transmitted data may be
received out of order, or
lost

UDP provides unreliable transfer
of groups of bytes ("datagrams”)
between client and server

Application 2-106

Client/server socket interaction: UDP

Server (running on hostid) Client
create socket, create socket,
port= X. clientSocket =
serverSocket = DatagramSocket()
DatagramSocket() 1
Create datagram with server IP and
/ port=x; send datagram via
read datagram fro clientSocket
serverSocket

write reply to

serverSocket A dat f
specifying — r?_a tSa akgntam rom
client address, clientsocke

port number close 1

clientSocket

Application 2-107

Example: Java client (UDP)

keyboard monitor
A

input
stream

| inFromUser |<—

Client
process

Output: sends

packet (recall \
that TCP sent “byte oo
stream”)

Input: receives
packet (recall
thatTCP received
“byte stream”)

sendPacket
receivePacket

client UDP

socket

socket

to network from network

Application 2-108

Example: Java client (UDP)

create

import java.io.*;
import java.net.*;

class UDPClient {
public static void main(String argsl]) throws Exception

{

input stream |— pyfferedReader inFromuUser =

create |

client socket|—

translate]
hostname to IP

new BufferedReader(new InputStreamReader(System.in));
DatagramSocket clientSocket = new DatagramSocket();

— InetAddress IPAddress = InetAddress.getByName("hostname");

address using DNS |

byte[] sendData = new byte[1024];
byte[] receiveData = new byte[1024];

String sentence = inFromUser.readLine();
sendData = sentence.getBytes();

Application 2-109

Example: Java client (UDP), cont.

create datagram

with data-to-send,| DatagramPacket sendPacket =
length, IP addr, port new DatagramPacket(sendData, sendData.length, IPAddress, 9876);

send datagram clientSocket.send(sendPacket);
to server

DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

read datagram . . .
9 clientSocket.receive(receivePacket);
from server

String modifiedSentence =
new String(receivePacket.getData());

System.out.printin("FROM SERVER:" + modifiedSentence);
clientSocket.close();

}

Application 2-110

Example: Java server (UDP)

import java.io.*;
import java.net.*;

class UDPServer {
public static void main(String args[]) throws Exception
create {
datagram socket
at port 9876

—> DatagramSocket serverSocket = new DatagramSocket(9876);

byte[] receiveData = new byte[1024];
byte[] sendData = new byte[1024];

while(true)

{

—— DatagramPacket receivePacket =
new DatagramPacket(receiveData, receiveData.length);

receive serverSocket.receive(receivePacket);
datagram

create space for
received datagram

Application 2-111

Example: Java server (UDP), cont

String sentence = new String(receivePacket.getData());
get IP addr!

port #, of
sender

— InetAddress IPAddress = receivePacket.getAddress();

—int port = receivePacket.getPort();
String capitalizedSentence = sentence.toUpperCase();
sendData = capitalizedSentence.getBytes();

—> DatagramPacket sendPacket =

new DatagramPacket(sendData, sendData.length, IPAddress,

create datagram
to send to client

. port);
write out
datagram |— serverSocket.send(sendPacket);
to socket

}
} _
} end of while loop,

loop back and wait for
| another datagram

Application 2-112

Chapter 2. Summary

our study of network apps now completel

<+ application architectures
= client-server
. P2P
= hybrid

+ application service
requirements:
= reliability, bandwidth,

delay

% Internet transport

service model

= connection-oriented,
reliable: TCP

= unreliable, datagrams: UDP

+ specific protocols:

HTTP

FTP

SMTP, POP, IMAP
DNS

P2P: BitTorrent, Skype

% socket programming

Application 2-113

Chapter 2. Summary

most importantly: learned about protocols

% typical request/reply
message exchange:

= client requests info or
service

= Server responds with
data, status code
% message formats:
= headers: fields giving
info about data
= data: info being
communicated

Important themes:
<+ control vs. data msgs
+ in-band, out-of-band

» centralized vs.
decentralized

< stateless vs. stateful

» reliable vs. unreliable
msg transfer

» "complexity at network
edge”

Application 2-114

	Slide Number 1
	Chapter 2: Application layer
	Chapter 2: Application Layer
	Some network apps
	Creating a network app
	Chapter 2: Application layer
	Application architectures
	Client-server architecture
	Pure P2P architecture
	Hybrid of client-server and P2P
	Processes communicating
	Sockets
	Addressing processes
	Addressing processes
	App-layer protocol defines
	What transport service does an app need?
	Transport service requirements of common apps
	Internet transport protocols services
	Internet apps: application, transport protocols
	Chapter 2: Application layer
	Web and HTTP
	HTTP overview
	HTTP overview (continued)
	HTTP connections
	Nonpersistent HTTP
	Nonpersistent HTTP (cont.)
	Non-Persistent HTTP: Response time
	Persistent HTTP
	HTTP request message
	HTTP request message: general format
	Uploading form input
	Method types
	HTTP response message
	HTTP response status codes
	Trying out HTTP (client side) for yourself
	User-server state: cookies
	Cookies: keeping “state” (cont.)
	Cookies (continued)
	Web caches (proxy server)
	More about Web caching
	Caching example
	Caching example (cont)
	Caching example (cont)
	Conditional GET
	Chapter 2: Application layer
	FTP: the file transfer protocol
	FTP: separate control, data connections
	FTP commands, responses
	Chapter 2: Application layer
	Electronic Mail
	Electronic Mail: mail servers
	Electronic Mail: SMTP [RFC 2821]
	Scenario: Alice sends message to Bob
	Sample SMTP interaction
	Try SMTP interaction for yourself:
	SMTP: final words
	Mail message format
	Mail access protocols
	POP3 protocol
	POP3 (more) and IMAP
	Chapter 2: Application layer
	DNS: Domain Name System
	DNS
	Distributed, Hierarchical Database
	DNS: Root name servers
	TLD and Authoritative Servers
	Local Name Server
	DNS name �resolution example
	DNS name �resolution example
	DNS: caching and updating records
	DNS records
	DNS protocol, messages
	DNS protocol, messages
	Inserting records into DNS
	Chapter 2: Application layer
	Pure P2P architecture
	File Distribution: Server-Client vs P2P
	File distribution time: server-client
	File distribution time: P2P
	Slide Number 80
	File distribution: BitTorrent
	BitTorrent (1)
	BitTorrent (2)
	BitTorrent: Tit-for-tat
	Distributed Hash Table (DHT)
	DHT Identifiers
	How to assign keys to peers?
	Circular DHT (1)
	Circular DHT (2)�
	Circular DHT with Shortcuts
	Peer Churn
	P2P Case study: Skype
	Peers as relays
	Chapter 2: Application layer
	Socket programming
	Socket-programming using TCP
	Socket programming with TCP
	Client/server socket interaction: TCP
	Slide Number 99
	Socket programming with TCP
	Example: Java client (TCP)
	Example: Java client (TCP), cont.
	Example: Java server (TCP)
	Example: Java server (TCP), cont
	Chapter 2: Application layer
	Socket programming with UDP
	Client/server socket interaction: UDP
	Example: Java client (UDP)
	Example: Java client (UDP)
	Example: Java client (UDP), cont.
	Example: Java server (UDP)
	Example: Java server (UDP), cont
	Chapter 2: Summary
	Chapter 2: Summary

