!'_ NS-2 Tutorial

Presenter: Qing (Kenny) Shao (SFU/CNL)
Author: Polly Huang (AT&T Labs Research)
Padmaparna Haldar (USC/1SI)
Xuan Chen (USC/ISI)
Communication Networks Laboratory
http://www.ensc.sfu.ca/research/cnl
Simon Fraser University

cemmunicakion
=nl) nebwerkys
Llaborakary

=nl.

i Tutorial Schedule

= Introduction

= Ns fundamentals

= Ns programming internal
= Extending ns-2 Simulator

Sep. 25, 2003 2

i Introduction

s 1989: REAL network simulator

= 1995: DARPA VINT project at LBL, Xerox
PARC, UCB, and USC/ISI

= Present: DARPA SAMAN project and NSF
CONSER project

= Collaboration with other researchers
including CIRI

Sep. 25, 2003 3

http://www.cs.cornell.edu/home/skeshav/real/overview.html
http://www.isi.edu/nsnam/vint/index.html
http://www.isi.edu/nsnam/vint/index.html
http://www.isi.edu/saman/index.html
http://www.isi.edu/saman/index.html
http://www.isi.edu/conser/index.html
http://www.isi.edu/conser/index.html
http://www.aciri.org/

Ns Status

= Periodical release (ns-2.1b9a, July 2002)

= ~200K LOC in C++ and Otcl,

= ~100 test suites and 100+ examples

= 371 pages of ns manual

= Daily snapshot (with auto-validation)
= Stability validation

« http://www.isi.edu/nsnam/ns/ns-tests.html
= Platform support

= FreeBSD, Linux, Solaris, Windows and Mac
= User base

= > 1k institutes (50 countries), >10k users

= About 300 posts to ns-users@isi.edu every month

=nl.

Sep. 25, 2003

http://www.isi.edu/nsnam/ns/ns-tests.html
mailto:ns-users@isi.edu

=nl.

i Ns functionalities

= Wired world
= Routing DV, LS, PIM-SM
= Transportation: TCP and UDP
= Traffic sources:web, ftp, telnet, cbr, stochastic
= Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
= QoS: IntServ and Diffserv
= Emulation
= Wireless
= Ad hoc routing and mobile IP
= Directed diffusion, sensor-MAC
= [racing, visualization, various utilities

Sep. 25, 2003 5

=nl.
i “Ns” Components

= Ns, the simulator itself
= Nam, the network animator
= Visualize ns (or other) output
= Nam editor: GUI interface to generate ns scripts
= Pre-processing:
= Traffic and topology generators
= Post-processing:
= Simple trace analysis, often in Awk, Perl, or Tcl

Sep. 25, 2003 6

=nl.
i Ns Models

= [raffic models and applications:
= Web, FTP, telnet, constant-bit rate, real audio
= Transport protocols:
= unicast: TCP (Reno, Vegas, etc.), UDP
= Multicast: SRM
= Routing and queuing:
= Wired routing, ad hoc rtg and directed diffusion
= queuing protocols: RED, drop-tail, etc
= Physical media:

= Wired (point-to-point, LANs), wireless (multiple
propagation models), satellite

Sep. 25, 2003 7

i Installation

= Getting the pieces
« Tcl/TK 8.x (8.3.2 preferred):

http://resource.tcl.tk/resource/software/tcltk/

= Otcl and TclCL:
http://otcl-tclcl.sourceforge.net

= Ns-2 and nam-1:
http://www.isi.edu/nsnam/dist

= Other utilities

» http://www.isi.edu/nsnam/ns/ns-build.html
= Tcl-debug, GT-ITM, xgraph, ...

Sep. 25, 2003

http://resource.tcl.tk/resource/software/tcltk/
http://resource.tcl.tk/resource/software/tcltk/
http://www.isi.edu/nsnam/dist
http://www.isi.edu/nsnam/ns/ns-build.html

i Tutorial Schedule

» Ns fundamentals

Sep. 25, 2003

=nl.

i Ns-2, the Network Simulator

= A discrete event simulator
= Simple model
= Focused on modeling network protocols
= Wired, wireless, satellite
= TCP, UDP, multicast, unicast
= Web, telnet, ftp
= Ad hoc routing, sensor networks
» Infrastructure: stats, tracing, error models, etc

Sep. 25, 2003 10

=nl.

i Ns Architecture

= Object-oriented (C++, OTcl)
= Modular approach
= Fine-grained object composition

+ Reusability

+ Maintenance

- Performance (speed and memory)
- Careful planning of modularity

Sep. 25, 2003 11

=nl.

C++ and OTcl Separation

= ‘data” / control separation

= C++ for “data”:
= per packet processing, core of ns
« fast to run, detailed, complete control

= OTcl for control:
= Simulation scenario configurations
= Periodic or triggered action
= Manipulating existing C++ objects
= fast to write and change

+ running vs. writing speed
- Learning and debugging (two languages)

Sep. 25, 2003 12

=nl.

Otcl and C++: The Duality

—_ C CH++
—— el
!_!\ 1
H ,/ C++/0Td * >
L | L_J split objects '.
C]
B oy N
otcl [e S i —

= OTcl (object variant of Tcl) and C++ share class
hierarchy

= TCICL is glue library that makes it easy to share
functions, variables, etc

Sep. 25, 2003

13

Basic otcl

Class Person

constructor:

Person instproc init {age} {
$self instvar age
set age_ $age

}

method:

Person instproc greet {} {
$self instvar age

puts “$age years old: How are
you doing?”

=nl.

subclass:
Class Kid -superclass Person
Kid instproc greet {} {

$self instvar age

puts “$age_ years old kid:
What's up, dude?”

}

set a [new Person 45]
set b [new Kid 15]

$a greet

$b greet

=> can easily make variations of existing things (TCP, TCP/Reno)

Sep. 25, 2003

14

Usmg ns

Simulation
model

Sep. 25, 2003

i Tutorial Schedule

» Ns fundamentals

Sep. 25, 2003

16

=nl.

i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data

Sep. 25, 2003 17

=nl.

i Creating Event Scheduler

s Create event scheduler
set ns [new Simulator]
s Schedule events

$ns at <time> <event>
= <event>: any legitimate ns/tcl commands

$ns at 5.0 “finish”
= Start scheduler
$Nns run

Sep. 25, 2003 18

i Discrete Event Scheduler

—

head
ead
B handler -> handle()

msert i time , uid , next , handler

Sep. 25, 2003 19

f N
(=pl)
=)
\ ,

Hello World - Interactive Mode

Batch mode:
simple.tcl

Interactive mode:
swallow 71% ns

set ns [new Simulator]

[o]

% set ns [new Simulator]

o3 $ns at 1 “puts \“Hello
% $ns at 1 “puts \“Hello World!\””

World!'\”” $Sns at 1.5 “exit”
1 Sns run
% Sns at 1.5 “exit” swallow 74% ns simple.tcl
2 Hello World!
% $ns run

Hello World! swallow 75%

swallow 72%

Sep. 25, 2003 20

=nl.

i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data

Sep. 25, 2003 21

=nl.

i Creating Network

= Nodes
set n0 [$ns node]
set nl1 [$ns node]
= Links and queuing

$ns <link_type> $n0 $n1 <bandwidth>
<delay> <queue_type>
= <link_type>: duplex-link, simplex-link

= <queue_type>: DropTail, RED, CBQ, FQ, SFQ,
DRR, diffserv RED queues

Sep. 25, 2003 22

an

Creating network - Node

n0 /=~ nl

Port
Classifier

\‘\\Unicast Multicast
\Node Node

Node entry Node entry

entry_ Multicast

Classifier

set n0 [ns_ node] Set ns_ [new Simulator —multicast on]
Set n1 [ns_ node]

Sep. 25, 2003 23

&)

i Creating network - Link

.
.
n ’ o~ n
I ~
. ~
. ~
. e
’ ~
. ~
. ~
<
, ~
. SN
.
~
4 ~
, ~
. ~
~

A

. Queue . Delay .| TTL .

N
UV

dr(;phead_ +Agent/Null

Sep. 25, 2003 24

=nl.

i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data

Sep. 25, 2003 25

=nl.

Tracing and Monitoring

= Packet tracing:
= On all links: $ns trace-all [open out.tr w]
= On one specific link: $ns trace-queue $n0 $n1$tr

<Event> <time> <from> <to> <pkt> <size> -- <fid> <src> <dst> <seqg> <attr>
+ 1 0 2 cbr 210 ——————- 0 0.0 3.1 00
- 10 2 cbr 210 ————=——- 0 0.0 3.1 0 O
r 1.00234 0 2 cbr 210 -—————- 0 0.0 3.1 0 0

= Event tracing (support TCP right now)

= Record “event” in trace file: $ns eventtrace-all
E 2.2067203 0 4 TCP slow start 0 210 1

Sep. 25, 2003 26

i Tracing and Monitoring

$ns trace-all filename or $ns namtrace-all filename

head

=nl.

—O—1enqT _

*Queue

A 4

deqT

> Delay

* TTL

RecvT

drophead

A 4

drpT_

Sep. 25, 2003

Inserting trace object

27

=nl.

Tracing and Monitoring

= Queue monitor
set gmon [$ns monitor-queue $n0 $n1 $qg_f $sample_interval]

» Get statistics for a queue
$gmon set pdrops_

= Record to trace file as an optional
29.000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 O

= Flow monitor

set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops_

Sep. 25, 2003 28

i Tracing and Monitoring

$ns monitor-queue nodel node2
$ns at 0.0 gmon trace $filename

head

=nl.

—O—SnoopQ/in— Queue [SnoopQ/out— Delay — TTL

Recv

\drophead SnoopQ/Drop
|

Agent/Null

Sep. 25, 2003

N \ \

Queue Monitoring

29

=nl.

i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data

Sep. 25, 2003 30

=nl.

i Setup Routing

= Unicast

$ns rtproto <type>

<type>: Static, Session, DV, cost, multi-path
= Multicast

$ns multicast (right after [new Simulator])

$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

= Other types of routing supported: source routing, hierarchical
routing

Sep. 25, 2003 31

Setup routing

Classifier Classifier

Link nO-n1

A

Link n1-n0

Sep. 25, 2003 32

i Creating Connection and Traffic

= UDP

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp
$ns attach-agent $n1 $null
$ns connect $udp $null

Sep. 25, 2003

=nl.

= CBR
set src [new Application/Traffic/CBR]

= Exponential or Pareto on-off

set src [new
Application/Traffic/Exponential]

set src [new Application/Traffic/Pareto]

33

Creating Connection and Traffic

Port
Classifier

\ dst_=0.0
Agent/TCPSink

Port
Classifier N\, dst =1.0
O Agent/TCP

Link nO-n1

0

set tcp [new Agent/TCP] set tcpsink [new Agent/TCPSink]
ns_ attach-agent $n0 $tcp ns_ attach-agent $n1 $tcpsink

ns_ connect $tcp $tepsink

Sep. 25, 2003 34

=nl.

i Application-Level Simulation

= Features
= Build on top of existing transport protocol
=« Transmit user data, e.g., HTTP header
= Two different solutions
« TCP: Application/TcpApp
=« UDP: Agent/Message

Sep. 25, 2003 35

Application-Level Simulation |

Port
Classifier

Port
Classifier

Application/FTP

 dst =1.0 .-

Agent/TCP

Link nO-n1

0 0

A

Link n1-n0

set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 1.2 “$ftp start”

Sep. 25, 2003 36

=nl.

i Creating Traffic: Trace Driven

= Trace driven
set tfile [new Tracefile]
$tfile filename <file>
set src [new Application/Traffic/Trace]
$src attach-tracefile $tfile
<file>:
= Binary format (native!)
= inter-packet time (msec) and packet size (byte)

Sep. 25, 2003 37

Packet Flow

Addr

Classifier

Classifier

1 [0

entry

1

0

Application/FTP

 dst =1.0 .-

Agent/TCP

[]

L
Link nO-n1

Sep. 25, 2003

Link!l—nO

Classifier

Agent/TCPSink

0

38

=nl.

i Compare to Real World

= More abstract (much simpler):
= No addresses, just global variables

=« Connect them rather than name
lookup/bind/listen/accept

= Easy to change implementation
Set tsrc2 [new agent/TCP/Newreno]
Set tsrc3 [new agent/TCP/Vegas]

Sep. 25, 2003 39

Summary: Generic Script Structure ‘

set ns [new Simulator]
[Turn on tracing]
Create topology
Setup packet loss, link dynamics
Create routing agents
Create:
- multicast groups
- protocol agents
- application and/or setup traffic sources
Post-processing procs

Start simulation

H H= H H= H= O H O H= H= H= H

Sep. 25, 2003 40

i Tutorial Schedule

= Extending ns-2 Simulator

Sep. 25, 2003

41

i ns-2 Directory Structure

nam-1

example

 ns-lib.tcl

: Rz:ggz?(uefggll Ealidation test m

Sep. 25, 2003

42

Packet Format

Sep. 25, 2003

cmn header

ip header

tcp header

rtp header

trace header

43

i Outline

= Extending ns
« In OTcl

=« In C++
= New components

Sep. 25, 2003

44

*Add your tcl changes into ns

Sep. 25, 2003 45

Add your tcl change into ns

= tcl/lib/ns-lib.tcl

Class Simulator

source ../mysrc/msg.tcl

= Makefile
NS TCL LIB = \
tcl/mysrc/msg.tcl \

= Or: change Makefile.in, make distclean,
then ./configure --enable-debug ,

make depend and make

&)

Sep. 25, 2003

46

=nl.

i Extending ns in C++

= Modifying code
=« make depend
= Recompile
= Adding code in new files
=« Change Makefile
= make depend
= Frecompile

Sep. 25, 2003 47

&)

i Creating New Components

= Guidelines

= Inheritance Hierarchy
= C++ and otcl Interface
= Debugging

Sep. 25, 2003 48

=nl.
i Guidelines

= Decide its inheritance structure

s Create the class and fill in the virtual
functions

= Define otcl linkage functions

= Write the necessary otcl code to access
your agent

Sep. 25, 2003 49

i Class Hierarchy (Partial)

TclObject

NsObject

Connector

___——

Classifier

=nl.

Queue

Delay

Agent

Trace

AddrClassifier

McastClasifier

/

DropTail

RED

S——

TCP

Enq

Dng| Drop

Reno

SACK

Sep. 25, 2003

50

&)

i C++ and otcl Linkage

= [clClass
= [clObject: bind() method
= [clObject: command() method

Sep. 25, 2003 51

=nl.

i Object Granularity Tips

= Functionality

= Per-packet processing > C++

= Hooks, frequently changing code = OTcl
= Data management

=« Complex/large data structure > C++

= One-time configuration variables > OTcl

Sep. 25, 2003 52

=nl.

i Memory Conservation Tips

= Remove unused packet headers

= Avoid trace-all

= Use arrays for a sequence of variables
»« Instead of n$i, say n ($1i)

= Avoid OTcl temporary variables

= Use dynamic binding
» delay bind () instead of bind ()
= See object.{h,cc}

= See tips for running large sim in ns at
www.1lsi.edu/ns/nsnam/ns-largesim.html

Sep. 25, 2003 53

=nl.
i Debugging

\\7/

= printf() and puts
r gdb
= tcl debugger
= http://expect.nist.gov/tcl-debug/
= place debug 1 at the appropriate location
« trap to debugger from the script
= Single stepping through lines of codes

= examine data and code using Tcl-ish
commands

Sep. 25, 2003 54

=nl.

i ns—>nam Interface

s Color

= Node manipulation
= Link manipulation
= Topology layout

= Protocol state

s Misc

Sep. 25, 2003 55

nam Interface: Color

= Color mapping
Sns color 40 red
Sns color 41 blue

Sns color 42 chocolate

= Color < flow id association
Stcp0 set fid 40 ;# red packets
Stcpl set fid 41 ;# blue packets

[ﬁnﬁ

Sep. 25, 2003

56

=nl.

nam Interface: Nodes

= Color

Snode color red

= Shape (can’t be changed after sim starts)

Snode shape box ;# circle, box, hexagon

= Marks (concentric “shapes”)
Sns at 1.0 “S$Sn0 add-mark mO blue box”
Sns at 2.0 “$n0 delete-mark m0”

= Label (single string)

Sns at 1.1 “$n0 label \”web cache 0\"”

Sep. 25, 2003 57

=nl.

nam Interfaces: Links

s Color

$ns duplex-link-op $n0 $nl color "green"

= Label

$ns duplex-link-op $n0 $nl label "abced"

= Dynamics (automatically handled)
Sns rtmodel Deterministic {2.0 0.9 0.1} $n0O $nl

= Asymmetric links not allowed

Sep. 25, 2003 58

=nl.

i nam Interface: Topo Layout

= 'Manual” layout: specify everything

Sns duplex-link-op $n(0) $n(l) orient right
Sns duplex-link-op $n(l) $n(2) orient right
$ns duplex-link-op $n(2) $n(3) orient right
$ns duplex-link-op $n(3) $n(4) orient 60deg

= If anything missing - automatic layout

Sep. 25, 2003 59

=nl.

i nam Interface: Misc

= Annotation

= Add textual explanation to your
simulation

sns at 3.5 "Sns trace-annotate \“packet
Cilf()f)\\"\\

= Set animation rate

Sns at 0.0 "Sns set-animation-rate
O.lms"

Sep. 25, 2003 60

i Help and Resources

= Ns and nam build questions
» http://www.isi.edu/nsnam/ns/ns-build.html
= Ns mailing list: ns-users@isi.edu
= Ns manual and tutorial (in distribution)
m [CL: http://dev.scriptics.com/scripting

= Otcl tutorial (in distribution):
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html

Sep. 25, 2003 61

http://www.isi.edu/nsnam/ns/ns-build.html
http://www.isi.edu/nsnam/ns/ns-build.html
mailto:ns-users@isi.edu
mailto:ns-users@isi.edu
http://dev.scriptics.com/scripting
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html

	NS-2 Tutorial
	Tutorial Schedule
	Introduction
	Ns Status
	Ns functionalities
	“Ns” Components
	Ns Models
	Installation
	Tutorial Schedule
	Ns-2, the Network Simulator
	Ns Architecture
	C++ and OTcl Separation
	Otcl and C++: The Duality
	Basic otcl
	Using ns
	Tutorial Schedule
	Ns programming internal
	Creating Event Scheduler
	Discrete Event Scheduler
	Hello World - Interactive Mode
	Ns programming internal
	Creating Network
	Creating network - Node
	Creating network - Link
	Ns programming internal
	Tracing and Monitoring
	Tracing and Monitoring
	Tracing and Monitoring
	Tracing and Monitoring
	Ns programming internal
	Setup Routing
	Setup routing
	Creating Connection and Traffic
	Creating Connection and Traffic
	Application-Level Simulation
	Application-Level Simulation
	Creating Traffic: Trace Driven
	Packet Flow
	Compare to Real World
	Summary: Generic Script Structure
	Tutorial Schedule
	ns-2 Directory Structure
	Packet Format
	Outline
	Add your tcl changes into ns
	Add your tcl change into ns
	Extending ns in C++
	Creating New Components
	Guidelines
	Class Hierarchy (Partial)
	C++ and otcl Linkage
	Object Granularity Tips
	Memory Conservation Tips
	Debugging
	ns?nam Interface
	nam Interface: Color
	nam Interface: Nodes
	nam Interfaces: Links
	nam Interface: Topo Layout
	nam Interface: Misc
	Help and Resources

