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i Tutorial Schedule

= Introduction

= Ns fundamentals

= Ns programming internal
= Extending ns-2 Simulator
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i Introduction

s 1989: REAL network simulator

= 1995: DARPA VINT project at LBL, Xerox
PARC, UCB, and USC/ISI

= Present: DARPA SAMAN project and NSF
CONSER project

= Collaboration with other researchers
including CIRI
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http://www.cs.cornell.edu/home/skeshav/real/overview.html
http://www.isi.edu/nsnam/vint/index.html
http://www.isi.edu/nsnam/vint/index.html
http://www.isi.edu/saman/index.html
http://www.isi.edu/saman/index.html
http://www.isi.edu/conser/index.html
http://www.isi.edu/conser/index.html
http://www.aciri.org/

Ns Status

= Periodical release (ns-2.1b9a, July 2002)

= ~200K LOC in C++ and Otcl,

= ~100 test suites and 100+ examples

= 371 pages of ns manual

= Daily snapshot (with auto-validation)
= Stability validation

« http://www.isi.edu/nsnam/ns/ns-tests.html
= Platform support

= FreeBSD, Linux, Solaris, Windows and Mac
= User base

= > 1k institutes (50 countries), >10k users

= About 300 posts to ns-users@isi.edu every month

=nl.
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http://www.isi.edu/nsnam/ns/ns-tests.html
mailto:ns-users@isi.edu
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i Ns functionalities

= Wired world
= Routing DV, LS, PIM-SM
= Transportation: TCP and UDP
= Traffic sources:web, ftp, telnet, cbr, stochastic
= Queuing disciplines:drop-tail, RED, FQ, SFQ, DRR
= QoS: IntServ and Diffserv
= Emulation
= Wireless
= Ad hoc routing and mobile IP
= Directed diffusion, sensor-MAC
= [racing, visualization, various utilities
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=nl.
i “Ns” Components

= Ns, the simulator itself
= Nam, the network animator
= Visualize ns (or other) output
= Nam editor: GUI interface to generate ns scripts
= Pre-processing:
= Traffic and topology generators
= Post-processing:
= Simple trace analysis, often in Awk, Perl, or Tcl
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i Ns Models

= [raffic models and applications:
= Web, FTP, telnet, constant-bit rate, real audio
= Transport protocols:
= unicast: TCP (Reno, Vegas, etc.), UDP
= Multicast: SRM
= Routing and queuing:
= Wired routing, ad hoc rtg and directed diffusion
= queuing protocols: RED, drop-tail, etc
= Physical media:

= Wired (point-to-point, LANs), wireless (multiple
propagation models), satellite
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i Installation

= Getting the pieces
« Tcl/TK 8.x (8.3.2 preferred):

http://resource.tcl.tk/resource/software/tcltk/

= Otcl and TclCL:
http://otcl-tclcl.sourceforge.net

= Ns-2 and nam-1:
http://www.isi.edu/nsnam/dist

= Other utilities

» http://www.isi.edu/nsnam/ns/ns-build.html
= Tcl-debug, GT-ITM, xgraph, ...
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http://resource.tcl.tk/resource/software/tcltk/
http://resource.tcl.tk/resource/software/tcltk/
http://www.isi.edu/nsnam/dist
http://www.isi.edu/nsnam/ns/ns-build.html

i Tutorial Schedule

» Ns fundamentals
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i Ns-2, the Network Simulator

= A discrete event simulator
= Simple model
= Focused on modeling network protocols
= Wired, wireless, satellite
= TCP, UDP, multicast, unicast
= Web, telnet, ftp
= Ad hoc routing, sensor networks
» Infrastructure: stats, tracing, error models, etc
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i Ns Architecture

= Object-oriented (C++, OTcl)
= Modular approach
= Fine-grained object composition

+ Reusability

+ Maintenance

- Performance (speed and memory)
- Careful planning of modularity
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C++ and OTcl Separation

= ‘data” / control separation

= C++ for “data”:
= per packet processing, core of ns
« fast to run, detailed, complete control

= OTcl for control:
= Simulation scenario configurations
= Periodic or triggered action
= Manipulating existing C++ objects
= fast to write and change

+ running vs. writing speed
- Learning and debugging (two languages)
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Otcl and C++: The Duality

—_ C CH++
—— el
!_!\ 1
H ,/  C++/0Td * >
L | L_J split objects '.
C ]
B oy N
otcl [ e S i —

= OTcl (object variant of Tcl) and C++ share class
hierarchy

= TCICL is glue library that makes it easy to share
functions, variables, etc

Sep. 25, 2003
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Basic otcl

Class Person

# constructor:

Person instproc init {age} {
$self instvar age
set age_ $age

}

# method:

Person instproc greet {} {
$self instvar age

puts “$age years old: How are
you doing?”

=nl.

# subclass:
Class Kid -superclass Person
Kid instproc greet {} {

$self instvar age

puts “$age_ years old kid:
What's up, dude?”

}

set a [new Person 45]
set b [new Kid 15]

$a greet

$b greet

=> can easily make variations of existing things (TCP, TCP/Reno)

Sep. 25, 2003
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i Tutorial Schedule

» Ns fundamentals
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i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data
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i Creating Event Scheduler

s Create event scheduler
set ns [new Simulator]
s Schedule events

$ns at <time> <event>
= <event>: any legitimate ns/tcl commands

$ns at 5.0 “finish”
= Start scheduler
$Nns run
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i Discrete Event Scheduler

—

head
ead
B handler -> handle()

msert i time , uid , next , handler
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Hello World - Interactive Mode

Batch mode:
simple.tcl

Interactive mode:
swallow 71% ns

set ns [new Simulator]

[o]

% set ns [new Simulator]

o3 $ns at 1 “puts \“Hello
% $ns at 1 “puts \“Hello World!\””

World!'\”” $Sns at 1.5 “exit”
1 Sns run
% Sns at 1.5 “exit” swallow 74% ns simple.tcl
2 Hello World!
% $ns run

Hello World! swallow 75%

swallow 72%
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i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data
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i Creating Network

= Nodes
set n0 [$ns node]
set nl1 [$ns node]
= Links and queuing

$ns <link_type> $n0 $n1 <bandwidth>
<delay> <queue_type>
= <link_type>: duplex-link, simplex-link

= <queue_type>: DropTail, RED, CBQ, FQ, SFQ,
DRR, diffserv RED queues
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Creating network - Node

n0 /=~ nl

Port
Classifier

\‘\\Unicast Multicast
\Node Node

Node entry Node entry

entry_ Multicast

Classifier

set n0 [ns_ node] Set ns_ [new Simulator —multicast on]
Set n1 [ns_ node]
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i Creating network - Link
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i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data

Sep. 25, 2003 25



=nl.

Tracing and Monitoring

= Packet tracing:
= On all links: $ns trace-all [open out.tr w]
= On one specific link: $ns trace-queue $n0 $n1$tr

<Event> <time> <from> <to> <pkt> <size> -- <fid> <src> <dst> <seqg> <attr>
+ 1 0 2 cbr 210 ——————- 0 0.0 3.1 00
- 10 2 cbr 210 ————=——- 0 0.0 3.1 0 O
r 1.00234 0 2 cbr 210 -—————- 0 0.0 3.1 0 0

= Event tracing (support TCP right now)

= Record “event” in trace file: $ns eventtrace-all
E 2.2067203 0 4 TCP slow start 0 210 1
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i Tracing and Monitoring

$ns trace-all filename or $ns namtrace-all filename

head

=nl.

—O—1enqT _

*Queue

A 4

deqT

> Delay

* TTL

RecvT

drophead

A 4

drpT_
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Inserting trace object
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Tracing and Monitoring

= Queue monitor
set gmon [$ns monitor-queue $n0 $n1 $qg_f $sample_interval]

» Get statistics for a queue
$gmon set pdrops_

= Record to trace file as an optional
29.000000000000142 0 1 0.0 0.0 4 4 0 1160 1160 O

= Flow monitor

set fmon [$ns_ makeflowmon Fid]
$ns_ attach-fmon $slink $fmon
$fmon set pdrops_
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i Tracing and Monitoring

$ns monitor-queue nodel node2
$ns at 0.0 gmon trace $filename

head

=nl.

—O—SnoopQ/in— Queue [SnoopQ/out— Delay — TTL

Recv

\drophead SnoopQ/Drop
|

Agent/Null
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i Ns programming internal

= Create the event scheduler

= Create network

= Turn on tracing

= Setup routing

= Create transport connection

= Create traffic

= Transmit application-level data
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i Setup Routing

= Unicast

$ns rtproto <type>

<type>: Static, Session, DV, cost, multi-path
= Multicast

$ns multicast (right after [new Simulator])

$ns mrtproto <type>
<type>: CtrMcast, DM, ST, BST

= Other types of routing supported: source routing, hierarchical
routing
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Setup routing

Classifier Classifier

Link nO-n1

A

Link n1-n0
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i Creating Connection and Traffic

= UDP

set udp [new Agent/UDP]
set null [new Agent/Null]
$ns attach-agent $n0 $udp
$ns attach-agent $n1 $null
$ns connect $udp $null

Sep. 25, 2003
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= CBR
set src [new Application/Traffic/CBR]

= Exponential or Pareto on-off

set src [new
Application/Traffic/Exponential]

set src [new Application/Traffic/Pareto]
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Creating Connection and Traffic

Port
Classifier

\ dst_=0.0
Agent/TCPSink

Port
Classifier N\, dst =1.0
O Agent/TCP

Link nO-n1

0

set tcp [new Agent/TCP] set tcpsink [new Agent/TCPSink]
ns_ attach-agent $n0 $tcp ns_ attach-agent $n1 $tcpsink

ns_ connect $tcp $tepsink
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i Application-Level Simulation

= Features
= Build on top of existing transport protocol
=« Transmit user data, e.g., HTTP header
= Two different solutions
« TCP: Application/TcpApp
=« UDP: Agent/Message
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Application-Level Simulation |

Port
Classifier

Port
Classifier

Application/FTP

 dst =1.0 .-

Agent/TCP

Link nO-n1

0 0

A

Link n1-n0

set ftp [new Application/FTP]
$ftp attach-agent $tcp
$ns at 1.2 “$ftp start”
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i Creating Traffic: Trace Driven

= Trace driven
set tfile [new Tracefile]
$tfile filename <file>
set src [new Application/Traffic/Trace]
$src attach-tracefile $tfile
<file>:
= Binary format (native!)
= inter-packet time (msec) and packet size (byte)
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Packet Flow

Addr

Classifier

Classifier

1 [0

entry

1

0

Application/FTP

 dst =1.0 .-

Agent/TCP

[ ]

L
Link nO-n1
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i Compare to Real World

= More abstract (much simpler):
= No addresses, just global variables

=« Connect them rather than name
lookup/bind/listen/accept

= Easy to change implementation
Set tsrc2 [new agent/TCP/Newreno]
Set tsrc3 [new agent/TCP/Vegas]
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Summary: Generic Script Structure ‘

set ns [new Simulator]
[Turn on tracing]
Create topology
Setup packet loss, link dynamics
Create routing agents
Create:
- multicast groups
- protocol agents
- application and/or setup traffic sources
Post-processing procs

Start simulation

H H= H H= H= O H O H= H= H= H
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i Tutorial Schedule

= Extending ns-2 Simulator

Sep. 25, 2003
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i ns-2 Directory Structure

nam-1

example

 ns-lib.tcl

: Rz:ggz?(uefggll Ealidation test m

Sep. 25, 2003
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Packet Format

Sep. 25, 2003

cmn header

ip header

tcp header

rtp header

trace header
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i Outline

= Extending ns
« In OTcl

=« In C++
= New components

Sep. 25, 2003
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*Add your tcl changes into ns
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Add your tcl change into ns

= tcl/lib/ns-lib.tcl

Class Simulator

source ../mysrc/msg.tcl

= Makefile
NS TCL LIB = \
tcl/mysrc/msg.tcl \

= Or: change Makefile.in, make distclean,
then ./configure --enable-debug ,

make depend and make

& )

Sep. 25, 2003
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i Extending ns in C++

= Modifying code
=« make depend
= Recompile
= Adding code in new files
=« Change Makefile
= make depend
= Frecompile
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i Creating New Components

= Guidelines

= Inheritance Hierarchy
= C++ and otcl Interface
= Debugging
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i Guidelines

= Decide its inheritance structure

s Create the class and fill in the virtual
functions

= Define otcl linkage functions

= Write the necessary otcl code to access
your agent
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i Class Hierarchy (Partial)

TclObject

NsObject

Connector

___——

Classifier

=nl.

Queue

Delay

Agent

Trace

AddrClassifier

McastClasifier

/

DropTail

RED

S——

TCP

Enq

Dng| Drop

Reno

SACK

Sep. 25, 2003
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i C++ and otcl Linkage

= [clClass
= [clObject: bind() method
= [clObject: command() method

Sep. 25, 2003 51



=nl.

i Object Granularity Tips

= Functionality

= Per-packet processing > C++

= Hooks, frequently changing code = OTcl
= Data management

=« Complex/large data structure > C++

= One-time configuration variables > OTcl
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i Memory Conservation Tips

= Remove unused packet headers

= Avoid trace-all

= Use arrays for a sequence of variables
»« Instead of n$i, say n ($1i)

= Avoid OTcl temporary variables

= Use dynamic binding
» delay bind () instead of bind ()
= See object.{h,cc}

= See tips for running large sim in ns at
www.1lsi.edu/ns/nsnam/ns-largesim.html
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i Debugging

\\7/

= printf() and puts
r gdb
= tcl debugger
= http://expect.nist.gov/tcl-debug/
= place debug 1 at the appropriate location
« trap to debugger from the script
= Single stepping through lines of codes

= examine data and code using Tcl-ish
commands
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i ns—>nam Interface

s Color

= Node manipulation
= Link manipulation
= Topology layout

= Protocol state

s Misc
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nam Interface: Color

= Color mapping
Sns color 40 red
Sns color 41 blue

Sns color 42 chocolate

= Color < flow id association
Stcp0 set fid 40 ;# red packets
Stcpl set fid 41 ;# blue packets

[ﬁnﬁ

Sep. 25, 2003
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nam Interface: Nodes

= Color

Snode color red

= Shape (can’t be changed after sim starts)

Snode shape box ;# circle, box, hexagon

= Marks (concentric “shapes”)
Sns at 1.0 “S$Sn0 add-mark mO blue box”
Sns at 2.0 “$n0 delete-mark m0”

= Label (single string)

Sns at 1.1 “$n0 label \”web cache 0\"”
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nam Interfaces: Links

s Color

$ns duplex-link-op $n0 $nl color "green"

= Label

$ns duplex-link-op $n0 $nl label "abced"

= Dynamics (automatically handled)
Sns rtmodel Deterministic {2.0 0.9 0.1} $n0O $nl

= Asymmetric links not allowed
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i nam Interface: Topo Layout

= 'Manual” layout: specify everything

Sns duplex-link-op $n(0) $n(l) orient right
Sns duplex-link-op $n(l) $n(2) orient right
$ns duplex-link-op $n(2) $n(3) orient right
$ns duplex-link-op $n(3) $n(4) orient 60deg

= If anything missing - automatic layout
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i nam Interface: Misc

= Annotation

= Add textual explanation to your
simulation

sns at 3.5 "Sns trace-annotate \“packet
Cilf()f)\\"\\

= Set animation rate

Sns at 0.0 "Sns set-animation-rate
O.lms"
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i Help and Resources

= Ns and nam build questions
» http://www.isi.edu/nsnam/ns/ns-build.html
= Ns mailing list: ns-users@isi.edu
= Ns manual and tutorial (in distribution)
m [CL: http://dev.scriptics.com/scripting

= Otcl tutorial (in distribution):
ftp://ftp.tns.lcs.mit.edu/pub/otcl/doc/tutorial.html
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