
Computer
Networking: A Top
Down Approach

A note on the use of these Powerpoint slides:
We’re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.
They obviously represent a lot of work on our part. In return for use, we only
ask the following:
§ If you use these slides (e.g., in a class) that you mention their source

(after all, we’d like people to use our book!)
§ If you post any slides on a www site, that you note that they are adapted

from (or perhaps identical to) our slides, and note our copyright of this
material.

Thanks and enjoy! JFK/KWR

All material copyright 1996-2016
J.F Kurose and K.W. Ross, All Rights Reserved

7th edition
Jim Kurose, Keith Ross
Pearson/Addison Wesley
April 2016

Chapter 2
Application Layer

Application Layer 2-1

Application Layer 2-2

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-3

Chapter 2: application layer

our goals:
§ conceptual,

implementation aspects
of network application
protocols
• transport-layer

service models
• client-server

paradigm
• peer-to-peer

paradigm
• content distribution

networks

§ learn about protocols by
examining popular
application-level
protocols
• HTTP
• FTP
• SMTP / POP3 / IMAP
• DNS

§ creating network
applications
• socket API

Application Layer 2-4

Some network apps

§ e-mail
§ web
§ text messaging
§ remote login
§ P2P file sharing
§ multi-user network

games
§ streaming stored

video (YouTube, Hulu,
Netflix)

§ voice over IP (e.g.,
Skype)

§ real-time video
conferencing

§ social networking
§ search
§ …
§ …

Application Layer 2-5

Creating a network app

write programs that:
§ run on (different) end systems
§ communicate over network
§ e.g., web server software

communicates with browser
software

no need to write software
for network-core devices

§ network-core devices do not
run user applications

§ applications on end systems
allows for rapid app
development, propagation

application
transport
network
data link
physical

application
transport
network
data link
physical

application
transport
network
data link
physical

Application Layer 2-6

Application architectures

possible structure of applications:
§ client-server
§ peer-to-peer (P2P)

Application Layer 2-7

Client-server architecture

server:
§ always-on host
§ permanent IP address
§ data centers for scaling

clients:
§ communicate with server
§ may be intermittently

connected
§ may have dynamic IP

addresses
§ do not communicate directly

with each other

client/server

Application Layer 2-8

P2P architecture
§ no always-on server
§ arbitrary end systems

directly communicate
§ peers request service from

other peers, provide service
in return to other peers
• self scalability – new

peers bring new service
capacity, as well as new
service demands

§ peers are intermittently
connected and change IP
addresses
• complex management

peer-peer

Application Layer 2-9

Processes communicating

process: program running
within a host

§ within same host, two
processes communicate
using inter-process
communication (defined by
OS)

§ processes in different hosts
communicate by exchanging
messages

client process: process that
initiates communication

server process: process that
waits to be contacted

§ aside: applications with P2P
architectures have client
processes & server
processes

clients, servers

Application Layer 2-10

Sockets
§ process sends/receives messages to/from its socket
§ socket analogous to door

• sending process shoves message out door
• sending process relies on transport infrastructure on

other side of door to deliver message to socket at
receiving process

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Application Layer 2-11

Addressing processes

§ to receive messages,
process must have identifier

§ host device has unique 32-
bit IP address

§ Q: does IP address of host
on which process runs
suffice for identifying the
process?

§ identifier includes both IP
address and port numbers
associated with process on
host.

§ example port numbers:
• HTTP server: 80
• mail server: 25

§ to send HTTP message to
gaia.cs.umass.edu web
server:
• IP address: 128.119.245.12
• port number: 80

§ more shortly…

§ A: no, many processes
can be running on same
host

Application Layer 2-12

App-layer protocol defines
§ types of messages

exchanged,
• e.g., request, response

§ message syntax:
• what fields in messages

& how fields are
delineated

§ message semantics
• meaning of information

in fields
§ rules for when and how

processes send & respond
to messages

open protocols:
§ defined in RFCs
§ allows for interoperability
§ e.g., HTTP, SMTP
proprietary protocols:
§ e.g., Skype

Application Layer 2-13

What transport service does an app need?

data integrity
§ some apps (e.g., file transfer,

web transactions) require
100% reliable data transfer

§ other apps (e.g., audio) can
tolerate some loss

timing
§ some apps (e.g., Internet

telephony, interactive
games) require low delay
to be “effective”

throughput
§ some apps (e.g.,

multimedia) require
minimum amount of
throughput to be
“effective”

§ other apps (“elastic apps”)
make use of whatever
throughput they get

security
§ encryption, data integrity,

…

Application Layer 2-14

Transport service requirements: common apps

application

file transfer
e-mail

Web documents
real-time audio/video

stored audio/video
interactive games

text messaging

data loss

no loss
no loss
no loss
loss-tolerant

loss-tolerant
loss-tolerant
no loss

throughput

elastic
elastic
elastic
audio: 5kbps-1Mbps
video:10kbps-5Mbps
same as above
few kbps up
elastic

time sensitive

no
no
no
yes, 100’s
msec

yes, few secs
yes, 100’s
msec
yes and no

Application Layer 2-15

Internet transport protocols services

TCP service:
§ reliable transport between

sending and receiving
process

§ flow control: sender won’t
overwhelm receiver

§ congestion control: throttle
sender when network
overloaded

§ does not provide: timing,
minimum throughput
guarantee, security

§ connection-oriented: setup
required between client and
server processes

UDP service:
§ unreliable data transfer

between sending and
receiving process

§ does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother? Why is
there a UDP?

Application Layer 2-16

Internet apps: application, transport protocols

application

e-mail
remote terminal access

Web
file transfer

streaming multimedia

Internet telephony

application
layer protocol

SMTP [RFC 2821]
Telnet [RFC 854]
HTTP [RFC 2616]
FTP [RFC 959]
HTTP (e.g., YouTube),
RTP [RFC 1889]
SIP, RTP, proprietary
(e.g., Skype)

underlying
transport protocol

TCP
TCP
TCP
TCP
TCP or UDP

TCP or UDP

Securing TCP

TCP & UDP
§ no encryption
§ cleartext passwds sent into

socket traverse Internet in
cleartext

SSL
§ provides encrypted TCP

connection
§ data integrity
§ end-point authentication

SSL is at app layer
§ apps use SSL libraries, that
“talk” to TCP

SSL socket API
§ cleartext passwords sent

into socket traverse
Internet encrypted

§ see Chapter 8

Application Layer 2-17

Application Layer 2-18

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-19

Web and HTTP

First, a review…
§ web page consists of objects
§ object can be HTML file, JPEG image, Java applet,

audio file,…
§ web page consists of base HTML-file which

includes several referenced objects
§ each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

host name path name

Application Layer 2-20

HTTP overview

HTTP: hypertext
transfer protocol

§ Web’s application layer
protocol

§ client/server model
• client: browser that

requests, receives,
(using HTTP protocol)
and “displays”Web
objects

• server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

server
running

Apache Web
server

iPhone running
Safari browser

Application Layer 2-21

HTTP overview (continued)

uses TCP:
§ client initiates TCP

connection (creates socket)
to server, port 80

§ server accepts TCP
connection from client

§ HTTP messages
(application-layer protocol
messages) exchanged
between browser (HTTP
client) and Web server
(HTTP server)

§ TCP connection closed

HTTP is “stateless”
§ server maintains no

information about
past client requests

protocols that maintain
“state” are complex!

§ past history (state) must be
maintained

§ if server/client crashes, their
views of “state” may be
inconsistent, must be
reconciled

aside

Application Layer 2-22

HTTP connections

non-persistent HTTP
§ at most one object

sent over TCP
connection
• connection then

closed
§ downloading multiple

objects required
multiple connections

persistent HTTP
§ multiple objects can

be sent over single
TCP connection
between client, server

Application Layer 2-23

Non-persistent HTTP
suppose user enters URL:

1a. HTTP client initiates TCP
connection to HTTP server
(process) at
www.someSchool.edu on port
80

2. HTTP client sends HTTP request
message (containing URL) into
TCP connection socket.
Message indicates that client
wants object
someDepartment/home.index

1b. HTTP server at host
www.someSchool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

(contains text,
references to 10

jpeg images)
www.someSchool.edu/someDepartment/home.index

Application Layer 2-24

Non-persistent HTTP (cont.)

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

time

Application Layer 2-25

Non-persistent HTTP: response time

RTT (definition): time for a
small packet to travel from
client to server and back

HTTP response time:
§ one RTT to initiate TCP

connection
§ one RTT for HTTP request

and first few bytes of HTTP
response to return

§ file transmission time
§ non-persistent HTTP

response time =
2RTT+ file transmission
time

time to
transmit
file

initiate TCP
connection

RTT
request
file

RTT

file
received

time time

Application Layer 2-26

Persistent HTTP

non-persistent HTTP issues:
§ requires 2 RTTs per object
§ OS overhead for each TCP

connection
§ browsers often open

parallel TCP connections to
fetch referenced objects

persistent HTTP:
§ server leaves connection

open after sending
response

§ subsequent HTTP
messages between same
client/server sent over
open connection

§ client sends requests as
soon as it encounters a
referenced object

§ as little as one RTT for all
the referenced objects

Application Layer 2-27

HTTP request message

§ two types of HTTP messages: request, response
§ HTTP request message:

• ASCII (human-readable format)

request line
(GET, POST,
HEAD commands)

header
lines

carriage return,
line feed at start
of line indicates
end of header lines

GET /index.html HTTP/1.1\r\n
Host: www-net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
Accept: text/html,application/xhtml+xml\r\n
Accept-Language: en-us,en;q=0.5\r\n
Accept-Encoding: gzip,deflate\r\n
Accept-Charset: ISO-8859-1,utf-8;q=0.7\r\n
Keep-Alive: 115\r\n
Connection: keep-alive\r\n
\r\n

carriage return character
line-feed character

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-28

HTTP request message: general format

request
line

header
lines

body

method sp sp cr lfversionURL

cr lfvalueheader field name

cr lfvalueheader field name

~~ ~~

cr lf

entity body~~ ~~

Application Layer 2-29

Uploading form input

POST method:
§ web page often includes

form input
§ input is uploaded to server

in entity body

URL method:
§ uses GET method
§ input is uploaded in URL

field of request line:

www.somesite.com/animalsearch?monkeys&banana

Application Layer 2-30

Method types

HTTP/1.0:
§ GET
§ POST
§ HEAD

• asks server to leave
requested object out
of response

HTTP/1.1:
§ GET, POST, HEAD
§ PUT

• uploads file in entity
body to path specified
in URL field

§ DELETE
• deletes file specified in

the URL field

Application Layer 2-31

HTTP response message

status line
(protocol
status code
status phrase)

header
lines

data, e.g.,
requested
HTML file

HTTP/1.1 200 OK\r\n
Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n
Server: Apache/2.0.52 (CentOS)\r\n
Last-Modified: Tue, 30 Oct 2007 17:00:02

GMT\r\n
ETag: "17dc6-a5c-bf716880"\r\n
Accept-Ranges: bytes\r\n
Content-Length: 2652\r\n
Keep-Alive: timeout=10, max=100\r\n
Connection: Keep-Alive\r\n
Content-Type: text/html; charset=ISO-8859-

1\r\n
\r\n
data data data data data ...

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/

Application Layer 2-32

HTTP response status codes

200 OK
• request succeeded, requested object later in this msg

301 Moved Permanently
• requested object moved, new location specified later in this msg

(Location:)
400 Bad Request

• request msg not understood by server
404 Not Found

• requested document not found on this server
505 HTTP Version Not Supported

§ status code appears in 1st line in server-to-
client response message.

§ some sample codes:

Application Layer 2-33

Trying out HTTP (client side) for yourself

1. Telnet to your favorite Web server:

opens TCP connection to port 80
(default HTTP server port)
at gaia.cs.umass. edu.

anything typed in will be sent
to port 80 at gaia.cs.umass.edu

telnet gaia.cs.umass.edu 80

2. type in a GET HTTP request:
GET /kurose_ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu by typing this in (hit carriage

return twice), you send
this minimal (but complete)
GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-34

User-server state: cookies

many Web sites use cookies
four components:

1) cookie header line of
HTTP response
message

2) cookie header line in
next HTTP request
message

3) cookie file kept on
user’s host, managed
by user’s browser

4) back-end database at
Web site

example:
§ Susan always access Internet

from PC
§ visits specific e-commerce

site for first time
§ when initial HTTP requests

arrives at site, site creates:
• unique ID
• entry in backend

database for ID

Application Layer 2-35

Cookies: keeping “state” (cont.)

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734 usual http request msg Amazon server
creates ID

1678 for user create
entry

usual http response
set-cookie: 1678ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

Application Layer 2-36

Cookies (continued)
what cookies can be used

for:
§ authorization
§ shopping carts
§ recommendations
§ user session state (Web

e-mail)

cookies and privacy:
§ cookies permit sites to

learn a lot about you
§ you may supply name and

e-mail to sites

aside

how to keep “state”:
§ protocol endpoints: maintain state at

sender/receiver over multiple
transactions

§ cookies: http messages carry state

Application Layer 2-37

Web caches (proxy server)

§ user sets browser: Web
accesses via cache

§ browser sends all HTTP
requests to cache

• object in cache: cache
returns object

• else cache requests
object from origin
server, then returns
object to client

goal: satisfy client request without involving origin server

client

proxy
server

client origin
server

origin
server

Application Layer 2-38

More about Web caching

§ cache acts as both
client and server
• server for original

requesting client
• client to origin server

§ typically cache is
installed by ISP
(university, company,
residential ISP)

why Web caching?
§ reduce response time

for client request
§ reduce traffic on an

institution’s access link
§ Internet dense with

caches: enables “poor”
content providers to
effectively deliver
content (so too does
P2P file sharing)

Application Layer 2-39

Caching example:

origin
servers

public
Internet

institutional
network

1 Gbps LAN

1.54 Mbps
access link

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

problem!

Application Layer 2-40

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 99%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

Caching example: fatter access link

origin
servers

1.54 Mbps
access link

154 Mbps 154 Mbps

msecs

Cost: increased access link speed (not cheap!)

9.9%

public
Internet

institutional
network

1 Gbps LAN

institutional
network

1 Gbps LAN

Application Layer 2-41

Caching example: install local cache

origin
servers

1.54 Mbps
access link

local web
cache

assumptions:
§ avg object size: 100K bits
§ avg request rate from browsers to

origin servers:15/sec
§ avg data rate to browsers: 1.50 Mbps
§ RTT from institutional router to any

origin server: 2 sec
§ access link rate: 1.54 Mbps

consequences:
§ LAN utilization: 15%
§ access link utilization = 100%
§ total delay = Internet delay + access

delay + LAN delay
= 2 sec + minutes + usecs

?
?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

public
Internet

Application Layer 2-42

Caching example: install local cache

Calculating access link
utilization, delay with cache:

§ suppose cache hit rate is 0.4
• 40% requests satisfied at cache,

60% requests satisfied at origin

origin
servers

1.54 Mbps
access link

§ access link utilization:
§ 60% of requests use access link

§ data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
§ utilization = 0.9/1.54 = .58

§ total delay
§ = 0.6 * (delay from origin servers) +0.4

* (delay when satisfied at cache)
§ = 0.6 (2.01) + 0.4 (~msecs) = ~ 1.2 secs
§ less than with 154 Mbps link (and

cheaper too!)

public
Internet

institutional
network

1 Gbps LAN

local web
cache

Application Layer 2-43

Conditional GET

§ Goal: don’t send object if
cache has up-to-date
cached version
• no object transmission

delay
• lower link utilization

§ cache: specify date of
cached copy in HTTP
request
If-modified-since:
<date>

§ server: response contains
no object if cached copy
is up-to-date:
HTTP/1.0 304 Not
Modified

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0

304 Not Modified

object
not

modified
before
<date>

HTTP request msg
If-modified-since: <date>

HTTP response
HTTP/1.0 200 OK

<data>

object
modified

after
<date>

client server

Application Layer 2-44

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-45

Electronic mail

Three major components:
§ user agents
§ mail servers
§ simple mail transfer

protocol: SMTP

User Agent
§ a.k.a. “mail reader”
§ composing, editing, reading

mail messages
§ e.g., Outlook, Thunderbird,

iPhone mail client
§ outgoing, incoming

messages stored on server

user mailbox

outgoing
message queue

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-46

Electronic mail: mail servers

mail servers:
§ mailbox contains incoming

messages for user
§ message queue of outgoing

(to be sent) mail messages
§ SMTP protocol between

mail servers to send email
messages
• client: sending mail

server
• “server”: receiving mail

server

mail
server

mail
server

mail
server

SMTP

SMTP

SMTP

user
agent

user
agent

user
agent

user
agent

user
agent

user
agent

Application Layer 2-47

Electronic Mail: SMTP [RFC 2821]

§ uses TCP to reliably transfer email message from
client to server, port 25

§ direct transfer: sending server to receiving
server

§ three phases of transfer
• handshaking (greeting)
• transfer of messages
• closure

§ command/response interaction (like HTTP)
• commands: ASCII text
• response: status code and phrase

§ messages must be in 7-bit ASCI

Application Layer 2-48

user
agent

Scenario: Alice sends message to Bob

1) Alice uses UA to compose
message “to”
bob@someschool.edu

2) Alice’s UA sends message
to her mail server; message
placed in message queue

3) client side of SMTP opens
TCP connection with Bob’s
mail server

4) SMTP client sends Alice’s
message over the TCP
connection

5) Bob’s mail server places the
message in Bob’s mailbox

6) Bob invokes his user agent
to read message

mail
server

mail
server

1

2 3 4
5

6

Alice’s mail server Bob’s mail server

user
agent

Application Layer 2-49

Sample SMTP interaction
S: 220 hamburger.edu
C: HELO crepes.fr
S: 250 Hello crepes.fr, pleased to meet you
C: MAIL FROM: <alice@crepes.fr>
S: 250 alice@crepes.fr... Sender ok
C: RCPT TO: <bob@hamburger.edu>
S: 250 bob@hamburger.edu ... Recipient ok
C: DATA
S: 354 Enter mail, end with "." on a line by itself
C: Do you like ketchup?
C: How about pickles?
C: .
S: 250 Message accepted for delivery
C: QUIT
S: 221 hamburger.edu closing connection

Application Layer 2-50

Try SMTP interaction for yourself:

§ telnet servername 25
§ see 220 reply from server
§ enter HELO, MAIL FROM, RCPT TO, DATA, QUIT

commands

above lets you send email without using email client (reader)

Application Layer 2-51

SMTP: final words

§ SMTP uses persistent
connections

§ SMTP requires message
(header & body) to be in
7-bit ASCII

§ SMTP server uses
CRLF.CRLF to
determine end of message

comparison with HTTP:
§ HTTP: pull
§ SMTP: push

§ both have ASCII
command/response
interaction, status codes

§ HTTP: each object
encapsulated in its own
response message

§ SMTP: multiple objects
sent in multipart message

Application Layer 2-52

Mail message format

SMTP: protocol for
exchanging email messages

RFC 822: standard for text
message format:

§ header lines, e.g.,
• To:
• From:
• Subject:
different from SMTP MAIL

FROM, RCPT TO:
commands!

§ Body: the “message”
• ASCII characters only

header

body

blank
line

Application Layer 2-53

Mail access protocols

§ SMTP: delivery/storage to receiver’s server
§ mail access protocol: retrieval from server

• POP: Post Office Protocol [RFC 1939]: authorization,
download

• IMAP: Internet Mail Access Protocol [RFC 1730]: more
features, including manipulation of stored messages on
server

• HTTP: gmail, Hotmail, Yahoo! Mail, etc.

sender’s mail
server

SMTP SMTP
mail access

protocol

receiver’s mail
server

(e.g., POP,
IMAP)

user
agent

user
agent

Application Layer 2-54

POP3 protocol

authorization phase
§ client commands:

• user: declare username
• pass: password

§ server responses
• +OK
• -ERR

transaction phase, client:
§ list: list message numbers
§ retr: retrieve message by

number
§ dele: delete
§ quit

C: list
S: 1 498
S: 2 912
S: .
C: retr 1
S: <message 1 contents>
S: .
C: dele 1
C: retr 2
S: <message 1 contents>
S: .
C: dele 2
C: quit
S: +OK POP3 server signing off

S: +OK POP3 server ready
C: user bob
S: +OK
C: pass hungry
S: +OK user successfully logged on

Application Layer 2-55

POP3 (more) and IMAP
more about POP3
§ previous example uses

POP3 “download and
delete” mode
• Bob cannot re-read e-

mail if he changes
client

§ POP3 “download-and-
keep”: copies of messages
on different clients

§ POP3 is stateless across
sessions

IMAP
§ keeps all messages in one

place: at server
§ allows user to organize

messages in folders
§ keeps user state across

sessions:
• names of folders and

mappings between
message IDs and folder
name

Application Layer 2-56

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-57

DNS: domain name system

people: many identifiers:
• SSN, name, passport #

Internet hosts, routers:
• IP address (32 bit) -

used for addressing
datagrams

• “name”, e.g.,
www.yahoo.com -
used by humans

Q: how to map between IP
address and name, and
vice versa ?

Domain Name System:
§ distributed database

implemented in hierarchy of
many name servers

§ application-layer protocol: hosts,
name servers communicate to
resolve names (address/name
translation)
• note: core Internet function,

implemented as application-
layer protocol

• complexity at network’s
“edge”

Application Layer 2-58

DNS: services, structure
why not centralize DNS?
§ single point of failure
§ traffic volume
§ distant centralized database
§ maintenance

DNS services
§ hostname to IP address

translation
§ host aliasing

• canonical, alias names
§ mail server aliasing
§ load distribution

• replicated Web
servers: many IP
addresses correspond
to one name

A: doesn‘t scale!

Application Layer 2-59

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

poly.edu
DNS servers

umass.edu
DNS serversyahoo.com

DNS servers
amazon.com
DNS servers

pbs.org
DNS servers

DNS: a distributed, hierarchical database

client wants IP for www.amazon.com; 1st approximation:
§ client queries root server to find com DNS server
§ client queries .com DNS server to get amazon.com DNS server
§ client queries amazon.com DNS server to get IP address for

www.amazon.com

… …

Application Layer 2-60

DNS: root name servers

§ contacted by local name server that can not resolve name
§ root name server:

• contacts authoritative name server if name mapping not known
• gets mapping
• returns mapping to local name server

13 logical root name
“servers” worldwide
•each “server” replicated
many times

a. Verisign, Los Angeles CA
(5 other sites)

b. USC-ISI Marina del Rey, CA
l. ICANN Los Angeles, CA

(41 other sites)

e. NASA Mt View, CA
f. Internet Software C.
Palo Alto, CA (and 48 other
sites)

i. Netnod, Stockholm (37 other sites)

k. RIPE London (17 other sites)

m. WIDE Tokyo
(5 other sites)

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD
h. ARL Aberdeen, MD
j. Verisign, Dulles VA (69 other sites)

g. US DoD Columbus,
OH (5 other sites)

Application Layer 2-61

TLD, authoritative servers

top-level domain (TLD) servers:
• responsible for com, org, net, edu, aero, jobs, museums,

and all top-level country domains, e.g.: uk, fr, ca, jp
• Network Solutions maintains servers for .com TLD
• Educause for .edu TLD

authoritative DNS servers:
• organization’s own DNS server(s), providing

authoritative hostname to IP mappings for organization’s
named hosts

• can be maintained by organization or service provider

Application Layer 2-62

Local DNS name server

§ does not strictly belong to hierarchy
§ each ISP (residential ISP, company, university) has

one
• also called “default name server”

§ when host makes DNS query, query is sent to its
local DNS server
• has local cache of recent name-to-address translation

pairs (but may be out of date!)
• acts as proxy, forwards query into hierarchy

Application Layer 2-63

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
3

4

5

6

authoritative DNS server
dns.cs.umass.edu

78

TLD DNS server

DNS name
resolution example

§ host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:
§ contacted server

replies with name of
server to contact

§ “I don’t know this
name, but ask this
server”

Application Layer 2-64

45

6

3

recursive query:
§ puts burden of name

resolution on
contacted name
server

§ heavy load at upper
levels of hierarchy?

requesting host
cis.poly.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.poly.edu

1

2
7

authoritative DNS server
dns.cs.umass.edu

8

DNS name
resolution example

TLD DNS
server

Application Layer 2-65

DNS: caching, updating records

§ once (any) name server learns mapping, it caches
mapping
• cache entries timeout (disappear) after some time (TTL)
• TLD servers typically cached in local name servers

• thus root name servers not often visited

§ cached entries may be out-of-date (best effort
name-to-address translation!)
• if name host changes IP address, may not be known

Internet-wide until all TTLs expire
§ update/notify mechanisms proposed IETF standard

• RFC 2136

Application Layer 2-66

DNS records

DNS: distributed database storing resource records (RR)

type=NS
• name is domain (e.g.,

foo.com)
• value is hostname of

authoritative name
server for this domain

RR format: (name, value, type, ttl)

type=A
§ name is hostname
§ value is IP address

type=CNAME
§ name is alias name for some
“canonical” (the real) name

§ www.ibm.com is really
servereast.backup2.ibm.com

§ value is canonical name

type=MX
§ value is name of mailserver

associated with name

Application Layer 2-67

DNS protocol, messages

§ query and reply messages, both with same message
format

message header
§ identification: 16 bit # for

query, reply to query uses
same #

§ flags:
§ query or reply
§ recursion desired
§ recursion available
§ reply is authoritative

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

2 bytes 2 bytes

Application Layer 2-68

name, type fields
for a query

RRs in response
to query

records for
authoritative servers

additional “helpful”
info that may be used

identification flags

questions

questions (variable # of questions)

additional RRs# authority RRs

answer RRs

answers (variable # of RRs)

authority (variable # of RRs)

additional info (variable # of RRs)

DNS protocol, messages

2 bytes 2 bytes

Application Layer 2-69

Inserting records into DNS

§ example: new startup “Network Utopia”
§ register name networkuptopia.com at DNS registrar

(e.g., Network Solutions)
• provide names, IP addresses of authoritative name server

(primary and secondary)
• registrar inserts two RRs into .com TLD server:
(networkutopia.com, dns1.networkutopia.com, NS)
(dns1.networkutopia.com, 212.212.212.1, A)

§ create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Attacking DNS

DDoS attacks
§ bombard root servers

with traffic
• not successful to date
• traffic filtering
• local DNS servers cache

IPs of TLD servers,
allowing root server
bypass

§ bombard TLD servers
• potentially more

dangerous

redirect attacks
§ man-in-middle

• Intercept queries
§ DNS poisoning

§ Send bogus relies to
DNS server, which
caches

exploit DNS for DDoS
§ send queries with

spoofed source
address: target IP

§ requires amplification
Application Layer 2-70

Application Layer 2-71

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-72

Pure P2P architecture
§ no always-on server
§ arbitrary end systems

directly communicate
§ peers are intermittently

connected and change
IP addresses

examples:
• file distribution

(BitTorrent)
• Streaming (KanKan)
• VoIP (Skype)

Application Layer 2-73

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers?
• peer upload/download capacity is limited resource

us

uN

dN

server

network (with abundant
bandwidth)

file, size F

us: server upload
capacity

ui: peer i upload
capacity

di: peer i download
capacityu2 d2

u1 d1

di

ui

Application Layer 2-74

File distribution time: client-server

§ server transmission: must
sequentially send (upload) N
file copies:
• time to send one copy: F/us

• time to send N copies: NF/us

increases linearly in N

time to distribute F
to N clients using

client-server approach
Dc-s > max{NF/us,,F/dmin}

§ client: each client must
download file copy
• dmin = min client download rate
• min client download time: F/dmin

us

network
di

ui

F

Application Layer 2-75

File distribution time: P2P

§ server transmission: must
upload at least one copy
• time to send one copy: F/us

time to distribute F
to N clients using

P2P approach

us

network
di

ui

F

DP2P > max{F/us,,F/dmin,,NF/(us + Sui)}

§ client: each client must
download file copy
• min client download time: F/dmin

§ clients: as aggregate must download NF bits
• max upload rate (limiting max download rate) is us + Sui

… but so does this, as each peer brings service capacity
increases linearly in N …

Application Layer 2-76

0

0.5

1

1.5

2

2.5

3

3.5

0 5 10 15 20 25 30 35

N

M
in

im
um

 D
is

tri
bu

tio
n

Ti
m

e P2P
Client-Server

Client-server vs. P2P: example

client upload rate = u, F/u = 1 hour, us = 10u, dmin ≥ us

Application Layer 2-77

P2P file distribution: BitTorrent

tracker: tracks peers
participating in torrent

torrent: group of peers
exchanging chunks of a file

Alice arrives …

§ file divided into 256Kb chunks
§ peers in torrent send/receive file chunks

… obtains list
of peers from tracker
… and begins exchanging
file chunks with peers in torrent

Application Layer 2-78

§ peer joining torrent:
• has no chunks, but will

accumulate them over time
from other peers

• registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

P2P file distribution: BitTorrent

§ while downloading, peer uploads chunks to other peers
§ peer may change peers with whom it exchanges chunks
§ churn: peers may come and go
§ once peer has entire file, it may (selfishly) leave or

(altruistically) remain in torrent

Application Layer 2-79

BitTorrent: requesting, sending file chunks

requesting chunks:
§ at any given time, different

peers have different subsets
of file chunks

§ periodically, Alice asks each
peer for list of chunks that
they have

§ Alice requests missing
chunks from peers, rarest
first

sending chunks: tit-for-tat
§ Alice sends chunks to those

four peers currently sending her
chunks at highest rate
• other peers are choked by Alice

(do not receive chunks from her)
• re-evaluate top 4 every10 secs

§ every 30 secs: randomly select
another peer, starts sending
chunks
• “optimistically unchoke” this peer
• newly chosen peer may join top 4

Application Layer 2-80

BitTorrent: tit-for-tat
(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-81

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks (CDNs)

2.7 socket programming
with UDP and TCP

Application Layer 2-82

Video Streaming and CDNs: context

• Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

• ~1B YouTube users, ~75M Netflix users
§ challenge: scale - how to reach ~1B

users?
• single mega-video server won’t work (why?)

§ challenge: heterogeneity
§ different users have different capabilities (e.g.,

wired versus mobile; bandwidth rich versus
bandwidth poor)

§ solution: distributed, application-level
infrastructure

§ video traffic: major consumer of Internet bandwidth

§ video: sequence of images
displayed at constant rate
• e.g., 24 images/sec

§ digital image: array of pixels
• each pixel represented

by bits
§ coding: use redundancy

within and between images
to decrease # bits used to
encode image
• spatial (within image)
• temporal (from one

image to next)

Multimedia: video

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-83

Multimedia: video
§ CBR: (constant bit rate):

video encoding rate fixed
§ VBR: (variable bit rate):

video encoding rate changes
as amount of spatial,
temporal coding changes

§ examples:
• MPEG 1 (CD-ROM) 1.5

Mbps
• MPEG2 (DVD) 3-6 Mbps
• MPEG4 (often used in

Internet, < 1 Mbps)

……………………..

spatial coding example: instead
of sending N values of same
color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

……………….…….

frame i

frame i+1

temporal coding example:
instead of sending
complete frame at i+1,
send only differences from
frame i

Application Layer 2-84

Streaming stored video:

simple scenario:

video server
(stored video)

client

Internet

Application Layer 2-85

Streaming multimedia: DASH

§ DASH: Dynamic, Adaptive Streaming over HTTP
§ server:

• divides video file into multiple chunks
• each chunk stored, encoded at different rates
• manifest file: provides URLs for different chunks

§ client:
• periodically measures server-to-client bandwidth
• consulting manifest, requests one chunk at a time

• chooses maximum coding rate sustainable given
current bandwidth

• can choose different coding rates at different points
in time (depending on available bandwidth at time)

Application Layer 2-86

Streaming multimedia: DASH

§ DASH: Dynamic, Adaptive Streaming over HTTP
§ “intelligence” at client: client determines

• when to request chunk (so that buffer starvation, or
overflow does not occur)

• what encoding rate to request (higher quality when
more bandwidth available)

• where to request chunk (can request from URL server
that is “close” to client or has high available
bandwidth)

Application Layer 2-87

Content distribution networks

§ challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

§ option 1: single, large “mega-server”
• single point of failure
• point of network congestion
• long path to distant clients
• multiple copies of video sent over outgoing link

….quite simply: this solution doesn’t scale

Application Layer 2-88

Content distribution networks

§ challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

§ option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)
• enter deep: push CDN servers deep into many access

networks
• close to users
• used by Akamai, 1700 locations

• bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

• used by Limelight

Application Layer 2-89

Content Distribution Networks (CDNs)

§ subscriber requests content from CDN

§ CDN: stores copies of content at CDN nodes
• e.g. Netflix stores copies of MadMen

where’s Madmen?
manifest file

• directed to nearby copy, retrieves content
• may choose different copy if network path congested

Application Layer 2-90

Content Distribution Networks (CDNs)

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
§ from which CDN node to retrieve content?
§ viewer behavior in presence of congestion?
§ what content to place in which CDN node?

“over the top”

more .. in chapter 7

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
§ video stored in CDN at http://KingCDN.com/NetC6y&B23V

netcinema.com

KingCDN.com

1

1. Bob gets URL for video
http://netcinema.com/6Y7B23V
from netcinema.com web page

2
2. resolve http://netcinema.com/6Y7B23V
via Bob’s local DNS

netcinema’s
authoratative DNS

3

3. netcinema’s DNS returns URL
http://KingCDN.com/NetC6y&B23V 4

4&5. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,
which returns IP address of KingCDN
server with video

56. request video from
KINGCDN server,
streamed via HTTP

KingCDN
authoritative DNS

Bob’s
local DNS
server

Application Layer 2-92

Case study: Netflix

1

1. Bob manages
Netflix account

Netflix registration,
accounting servers

Amazon cloud

CDN
server

2
2. Bob browses
Netflix video 3

3. Manifest file
returned for
requested video

4. DASH
streaming

upload copies of
multiple versions of
video to CDN servers

CDN
server

CDN
server

Application Layer 2-93

Application Layer 2-94

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP
2.3 electronic mail

• SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications
2.6 video streaming and

content distribution
networks

2.7 socket programming
with UDP and TCP

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

Application Layer 2-95

Internet

controlled
by OS

controlled by
app developer

transport

application

physical
link

network

process

transport

application

physical
link

network

process
socket

Socket programming

Two socket types for two transport services:
• UDP: unreliable datagram
• TCP: reliable, byte stream-oriented

Application Layer 2-96

Application Example:
1. client reads a line of characters (data) from its

keyboard and sends data to server
2. server receives the data and converts characters

to uppercase
3. server sends modified data to client
4. client receives modified data and displays line on

its screen

Socket programming with UDP

UDP: no “connection” between client & server
§ no handshaking before sending data
§ sender explicitly attaches IP destination address and

port # to each packet
§ receiver extracts sender IP address and port# from

received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
§ UDP provides unreliable transfer of groups of bytes

(“datagrams”) between client and server

Application Layer 2-97

Client/server socket interaction: UDP

close
clientSocket

read datagram from
clientSocket

create socket:
clientSocket =
socket(AF_INET,SOCK_DGRAM)

Create datagram with server IP and
port=x; send datagram via
clientSocket

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_DGRAM)

read datagram from
serverSocket

write reply to
serverSocket
specifying
client address,
port number

Application 2-98

server (running on serverIP) client

Application Layer 2-99

Example app: UDP client

from socket import *
serverName = ‘hostname’
serverPort = 12000
clientSocket = socket(AF_INET,

SOCK_DGRAM)
message = raw_input(’Input lowercase sentence:’)
clientSocket.sendto(message.encode(),

(serverName, serverPort))

modifiedMessage, serverAddress =
clientSocket.recvfrom(2048)

print modifiedMessage.decode()
clientSocket.close()

Python UDPClient
include Python’s socket
library

create UDP socket for
server

get user keyboard
input
Attach server name, port to
message; send into socket

print out received string
and close socket

read reply characters from
socket into string

Application Layer 2-100

Example app: UDP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET, SOCK_DGRAM)
serverSocket.bind(('', serverPort))
print (“The server is ready to receive”)
while True:

message, clientAddress = serverSocket.recvfrom(2048)
modifiedMessage = message.decode().upper()
serverSocket.sendto(modifiedMessage.encode(),

clientAddress)

Python UDPServer

create UDP socket

bind socket to local port
number 12000

loop forever

Read from UDP socket into
message, getting client’s
address (client IP and port)

send upper case string
back to this client

Socket programming with TCP

client must contact server
§ server process must first be

running
§ server must have created

socket (door) that
welcomes client’s contact

client contacts server by:
§ Creating TCP socket,

specifying IP address, port
number of server process

§ when client creates socket:
client TCP establishes
connection to server TCP

§ when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client
• allows server to talk with

multiple clients
• source port numbers used

to distinguish clients
(more in Chap 3)

Application Layer 2-101

TCP provides reliable, in-order
byte-stream transfer (“pipe”)
between client and server

application viewpoint:

Client/server socket interaction: TCP

Application Layer 2-102

wait for incoming
connection request
connectionSocket =
serverSocket.accept()

create socket,
port=x, for incoming
request:
serverSocket = socket()

create socket,
connect to hostid, port=x
clientSocket = socket()

server (running on hostid) client

send request using
clientSocketread request from

connectionSocket

write reply to
connectionSocket

TCP
connection setup

close
connectionSocket

read reply from
clientSocket

close
clientSocket

Application Layer 2-103

Example app: TCP client

from socket import *
serverName = ’servername’
serverPort = 12000
clientSocket = socket(AF_INET, SOCK_STREAM)
clientSocket.connect((serverName,serverPort))
sentence = raw_input(‘Input lowercase sentence:’)
clientSocket.send(sentence.encode())
modifiedSentence = clientSocket.recv(1024)
print (‘From Server:’, modifiedSentence.decode())
clientSocket.close()

Python TCPClient

create TCP socket for
server, remote port 12000

No need to attach server
name, port

Application Layer 2-104

Example app: TCP server

from socket import *
serverPort = 12000
serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((‘’,serverPort))
serverSocket.listen(1)
print ‘The server is ready to receive’
while True:

connectionSocket, addr = serverSocket.accept()

sentence = connectionSocket.recv(1024).decode()
capitalizedSentence = sentence.upper()
connectionSocket.send(capitalizedSentence.

encode())
connectionSocket.close()

Python TCPServer

create TCP welcoming
socket

server begins listening for
incoming TCP requests

loop forever

server waits on accept()
for incoming requests, new
socket created on return

read bytes from socket (but
not address as in UDP)

close connection to this
client (but not welcoming
socket)

Chapter 2: summary

§ application architectures
• client-server
• P2P

§ application service
requirements:
• reliability, bandwidth, delay

§ Internet transport service
model

• connection-oriented,
reliable: TCP

• unreliable, datagrams: UDP

our study of network apps now complete!

Application Layer 2-105

§ specific protocols:
• HTTP
• SMTP, POP, IMAP
• DNS
• P2P: BitTorrent

§ video streaming, CDNs
§ socket programming:

TCP, UDP sockets

§ typical request/reply
message exchange:

• client requests info or
service

• server responds with
data, status code

§ message formats:
• headers: fields giving

info about data
• data: info(payload)

being communicated

Application Layer 2-106

important themes:
§ control vs. messages

• in-band, out-of-band
§ centralized vs. decentralized
§ stateless vs. stateful
§ reliable vs. unreliable message

transfer
§ “complexity at network

edge”

Chapter 2: summary
most importantly: learned about protocols!

