Chapter 2
Application Layer ——

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs.

They obviously represent a /ot of work on our part. In return for use, we only

ask the following: COmp Utel'
= If you use these slides (e.g., in a class) that you mention their source ' .
(after all, we’ d like people to use our book!) Ne tworklng' A Top

= |f you post any slides on a www site, that you note that they are adapted
from (or perhaps identical to) our slides, and note our copyright of this DOW” ApproaCh

material.
7t edition
Thanks and enjoy! JFK/KWR Jim Kurose, Keith Ross
: . Pearson/Addison Wesley
© All material copyright 1996-2016 April 2016

J.F Kurose and K.W. Ross, All Rights Reserved o
Application Layer 2-1

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-2

Chapter 2: application layer

our goals: = |earn about protocols by
= conceptual, examining popular
implementation aspects application-level
of network application protocols
protocols « HTTP
* transport-layer ° FTP
service models « SMTP/POP3/IMAP
. * DNS
* client-server .
paradigm " creating network
applications
* peer-to-peer
paradigm * socket API

* content distribution
networks

Application Layer 2-3

Some network apps

" e-mail

= web

" text messaging
" remote login

= P2P file sharing

" multi-user network
games

" streaming stored
video (YouTube, Hulu,
Netflix)

voice over |P (e.g.,

Skype)
real-time video
conferencing

social networking

search

Application Layer 2-4

Creating a network app

write programs that:
" run on (different) end systems
" communicate over network

" e.g., web server software
communicates with browser
software

transport
network
_data link |
physical

no need to write software

network

for network-core devices - Y[data ik

physical

" network-core devices do not
run user applications

= applications on end systems
allows for rapid app
development, propagation

Application Layer 2-5

Application architectures

possible structure of applications:
» client-server
= peer-to-peer (P2P)

Application Layer 2-6

Client-server architecture

Server.

= always-on host

= permanent IP address
= data centers for scaling

clients:

= communicate with server

" may be intermittently
connected

" may have dynamic IP
addresses

" do not communicate directly
with each other

Application Layer 2-7

P2P architecture

—

" no always-on server

= arbitrary end systems
directly communicate

" peers request service from
other peers, provide service
in return to other peers

* self scalability — new
peers bring new service
capacity, as well as new
service demands

" peers are intermittently
connected and change IP
addresses

* complex management

peer-peer

Application Layer 2-8

Processes communicating

process: program running - clients, servers
within a host client process: process that
= within same host, two initiates communication

processes communicate
using inter-process

communication (defined by
ON))

server process: process that
waits to be contacted

= processes in different hosts
communicate by exchanging = aside: applications with P2P

MESSages architectures have client
processes & server
processes

Application Layer 2-9

Sockets

" process sends/receives messages to/from its socket
socket analogous to door
* sending process shoves message out door

* sending process relies on transport infrastructure on
other side of door to deliver message to socket at
receiving process

application

socket \

[~

application

controlled by
app developer

controlled
./ Internet b'yOS
N < »
g

Application Layer 2-10

Addressing processes

" to receive messages,

process must have identifier

" host device has unique 32-
bit IP address

= (). does IP address of host
on which process runs
suffice for identifying the
process!

= A: no, many processes

can be running on same

host

identifier includes both IP
address and port numbers
associated with process on
host.

example port numbers:
e HTTP server: 80
* mail server: 25

to send HT TP message to
gaia.cs.umass.edu web
server:

e |P address: 128.119.245.12
e port number: 80

more shortly...

Application Layer 2-11

App-layer protocol defines

types of messages
exchanged,

* e.g., request, response
message syntax:

* what fields in messages
& how fields are
delineated

message semantics

* meaning of information
in fields

rules for when and how
processes send & respond
to messages

open protocols:

* defined in RFCs

= allows for interoperability
" e.g, HTTP, SMTP
proprietary protocols:

" e.g., Skype

Application Layer 2-12

What transport service does an app heed?

data integrity throughput
" some apps (e.g., file transfer, = some apps (e.g.,
web transactions) require multimedia) require
100% reliable data transfer minimum amount of
" other apps (e.g., audio) can "c‘hroughpL’J’t to be
effective

tolerate some loss
= other apps (elastic apps)

timing make use of whatever
= some apps (e.g., Internet throughput they get
telephony, interactive security

games) require low delay

4 T, " encryption, data integrity,
to be effective

Application Layer 2-13

Transeort service reguirements: common apps

application dataloss throughput time sensitive
file transfer no loss elastic no
e-mail no loss elastic no
Web documents no loss elastic no

real-time audio/video

loss-tolerant

audio: 5kbps-1Mbps yes, 100’ s
video:10kbps-5Mbps msec

stored audio/video

loss-tolerant

same as above

interactive games loss-tolerant few kbps up yes, few secs
text messaging no loss elastic yes, 100’ s
msec
yes and no

Application Layer 2-14

Internet transport protocols services

g

TCP service:

reliable transport between
sending and receiving
process

flow control: sender won’ t
overwhelm receiver

congestion control: throttle
sender when network
overloaded

does not provide: timing,
minimum throughput
guarantee, security

connection-oriented: setup
required between client and
server processes

UDP service:

" unreliable data transfer
between sending and
receiving process

= does not provide: reliability,
flow control, congestion
control, timing,
throughput guarantee,
security, or connection
setup,

Q: why bother!? Why is
there a UDP?

Application Layer 2-15

Internet apps: agelication, transport Erotocols

application underlying
application layer protocol transport protocol
e-mail SMTP [RFC 2821] TCP
remote terminal access Telnet [RFC 854] TCP
Web HTTP [RFC 2616] TCP
file transfer FTP [RFC 959] TCP

streaming multimedia HTTP (e.g., YouTube), TCP or UDP
RTP [RFC 1889]
Internet telephony SIP, RTP, proprietary

(e.qg., Skype) TCP or UDP

Application Layer 2-16

Securing TCP

TCP & UDP SSL is at app layer
" no encryption = apps use SSL libraries, that
= cleartext passwds sent into “talk” to TCP
socket traverse Internet in SSL socket API
Cleartext = cleartext passwords sent
SSL into socket traverse
= provides encrypted TCP Internet encrypted
connection = see Chapter 8

" data integrity

" end-point authentication

Application Layer 2-17

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-18

Web and HTTP

First, a review...
web page consists of objects

object can be HTML file, JPEG image, Java applet,
audio file,...

we
inc

b page consists of base HTML-file which

udes several referenced objects

each object is addressable by a URL, e.g.,

www.someschool.edu/someDept/pic.gif

— ———

host name path name

Application Layer 2-19

HTTP overview

HTTP: hypertext
transfer protocol

= Web' s application layer
protocol

» client/server model

* client: browser that
requests, receives,
(using HTTP protocol)
and displays Web
objects

* server: Web server
sends (using HTTP
protocol) objects in
response to requests

PC running
Firefox browser

iPhone running
Safari browser

server
running
Apache Web
server

Application Layer 2-20

HTTP overview (continued)

uses TCP: HTTP is “stateless ~

" client initiates TCP " server maintains no
connection (creates socket) information about
to server, port 80 past client requests

= server accepts TCP
connection from client aside -

= HTTP messages protocols that maintain
(application-layer protocol “state” are complex!
messages) exchanged = past history (state) must be
between browser (HTTP maintained
client) and Web server = if server/client crashes, their
(HTTP server) Yiews gf “state” may be

* TCP connection closed :,Zi%':\sc'islteednt’ must be

Application Layer 2-21

HT TP connections

non-persistent HT TP

" at most one object
sent over TCP
connection

e connection then
closed

* downloading multiple
objects required
multiple connections

persistent HTTP

* multiple objects can
be sent over single
TCP connection
between client, server

Application Layer 2-22

Non-persistent HT TP

suppose user enters URL: (contains text,
www . someSchool . edu/someDepartment/home.index references to 10
jpeg images)

la. HTTP client initiates TCP
connection to HTTP server
(Process) at |b. HTTP server at host
www.someSchool.edu on port www.someSchool.edu waiting
80 for TCP connection at port 80.
“accepts’ connection, notifying
2. HTTP client sends HTTP request client
message (containing URL) into
TCP connection socket. 3.HTTP server receives request
Message indicates that client message, forms response
wants object message containing requested
someDepartment/home.index object, and sends message into
its socket
time

Application Layer 2-23

Non-persistent HT TP (cont.)

/ 4. HTTP server closes TCP

5. HTTP client receives response
message containing html file,
displays html. Parsing html file,
finds 10 referenced jpeg objects

time
6. Steps |-5 repeated for each of

|0 jpeg objects

connection.

Application Layer 2-24

Non-persistent HT TP: response time

RTT (definition): time for a

small packet to travel from -
client to server and back (\g
. TNy
HTTP response time: initiate TP |
= one RTT to initiate TCP connection

connection RTT.

one RTT for HTTP request req“eSt_;/

file

and first few bytes of HTTP

RTT
response to return / t
file transmission time file —_
. received
non-persistent HT TP
response time = v ,
time

2RTTH+ file transmission
time

y
time

time to
transmit
file

Application Layer 2-25

Persistent HT TP

non-persistent HTTP issues:

" requires 2 RTTs per object

= OS overhead for each TCP
connection

" browsers often open
parallel TCP connections to
fetch referenced objects

persistent HTTP:

" server leaves connection
open after sending
response

subsequent HT TP
messages between same
client/server sent over
open connection

client sends requests as
soon as it encounters a
referenced object

as little as one RTT for all
the referenced objects

Application Layer 2-26

HTTP request message

" two types of HT TP messages: request, response

* HTTP request message:

* ASCII (human-readable format)
carriage return character

: line-feed character
request line

(GET, POST, T GET /index.html HTTP/l.l\r\I{a
HEAD Commands) ~HOStI www—net.cs.umass.edu\r\n
User-Agent: Firefox/3.6.10\r\n
header Accept: text/html,application/xhtml+xml\r\n
_ Accept-Language: en-us,en;q=0.5\r\n
lines | Accept-Encoding: gzip,deflate\r\n
carriage return, Accept-Charset: IS0-8859-1,utf-8;g=0.7\r\n
line feed at start Keep-Alive: 115\r\n
of line indicates Connection: keep-alive\r\n

———:\r\n
end of header lines

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer 2-27

HTTP request message: general format

method [sp| URL sp| version |cr|If Iri?]cguest
header field name value |cr|If N
1 header
T lines
header field name value |cr| If
cr | If
= entity body ~ body

Application Layer 2-28

Uploading form input

POST method:

" web page often includes
form input

" input is uploaded to server
in entity body

URL method:
= uses GET method

" input is uploaded in URL
field of request line:

www.somesite.com/animalsearch?monkeysé&banana

Application Layer 2-29

Method types

HTTP/1.0: HTTP/1.1:
= GET = GET, POST, HEAD
= POST = PUT
= HEAD * uploads file in entity
* asks server to leave body to path specified
requested object out in URL field
of response = DELETE

* deletes file specified in
the URL field

Application Layer 2-30

HTTP response message

status line
(protocol

status Code\; HTTP/1.1 200 OK\r\n

status phrase)

header
lines

data, e.g.,

Date: Sun, 26 Sep 2010 20:09:20 GMT\r\n

Server: Apache/2.0.52 (CentOS)\r\n

Last-Modified: Tue, 30 Oct 2007 17:00:02
GMT\r\n

ETag: "17dc6-a5c-b£f716880"\r\n

Accept-Ranges: bytes\r\n

Content-Length: 2652\r\n

Keep-Alive: timeout=10, max=100\r\n

Connection: Keep-Alive\r\n

Content-Type: text/html; charset=IS0-8859-
1\r\n

. \r\n

requested data data data data data
/

HTML file

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Application Layer 2-31

HT TP response status codes

= status code appears in 1st line in server-to-
client response message.

= some sample codes:
200 OK

* request succeeded, requested object later in this msg

301 Moved Permanently

* requested object moved, new location specified later in this msg
(Location:)

400 Bad Request

* request msg not understood by server

404 Not Found
* requested document not found on this server

505 HTTP Version Not Supported

Application Layer 2-32

Trying out HT TP (client side) for yourself

|. Telnet to your favorite Web server:

telnet gaia.cs.umass.edu 80 [~opens TCP connection to port 80
(default HTTP server port)

— at gaia.cs.umass. edu.
anything typed in will be sent

_ to port 80 at gaia.cs.umass.edu

2. type ina GET HTTP request:

GET /kurose ross/interactive/index.php HTTP/1.1
Host: gaia.cs.umass.edu

— by typing this in (hit carriage
return twice), you send
this minimal (but complete)
_GET request to HTTP server

3. look at response message sent by HTTP server!
(or use Wireshark to look at captured HTTP request/response)

Application Layer 2-33

User-server state: cookies

. . example:
many Web sites use cookies
= Susan always access Internet
four components: from PC
l) cookie header line of = visits specific e-commerce
HTTP response site for first time
message = when initial HTTP requests
2) cookie header line in arrives at site, site creates:
next HT TP request * unique ID
message * entry in backend
3) cookie file kept on database for ID

user s host, managed
by user’ s browser

4) back-end database at
Web site

Application Layer 2-34

Cookies: keeping “state” (cont.)

.

client

—

ebay 8734

usual http request msg

server

Amazon server

cookie file

usual http response
set-cookie: 1678

<
ebay 8734
amazon 1678

—

—

usual http request msg
cookie: 1678

creates ID

usual http response msg

one week later:

ebay 8734

—

amazon 1678

usual http request msg
cookie: 1678

usual http response msg

1678 for user \create backend
entry database
~a
cookie- access/v
— specific
action
access
cookie-
— > specific
action

Application Layer 2-35

Cookies (continued)

th%tr.cookles can be used cookies and privacy:

aside —

" cookies permit sites to

" authorization
learn a lot about you

" shopping carts

. m
" recommendations you r?ay supply name and
= user session state (Web €-mail to sites
e-mail)

how to keep “state

= protocol endpoints: maintain state at
sender/receiver over multiple
transactions

" cookies: http messages carry state

Application Layer 2-36

Web caches (proxy server)

goal: satisfy client request without involving origin server

= user sets browser: Web
accesses via cache

" browser sends all HTTP
requests to cache

* object in cache: cache
returns object

* else cache requests
object from origin
server, then returns
object to client

origin
server

origin
server

Application Layer 2-37

More about Web caching

" cache acts as both why Web caching?
client and server = reduce response time
¢ server fOI" Ol’igina| for Client request
requesting client .
* client to origin server " reduce traffic on an
. . . ’ .
= typically cache is institution s access link
installed by ISP " Internet dense with
. . 11 7
(university, company, caches: enables “poor
residential ISP) content providers to

effectively deliver
content (so too does

P2P file sharing)

Application Layer 2-38

Caching example:

assumptions:
= avg object size: 100K bits

" avg request rate from browsers to
origin servers:|5/sec

" avg data rate to browsers: .50 Mbps

= RTT from institutional router to any
origin server:?2 sec

= access link rate: 1.54 Mbps

consequences:
= LAN utilization: 15% problem!

= access link utilization

= total delay = Internet delay + access
delay + LAN delay

= 2 sec + minutes + usecs

origin
servers

1.54 Mbps
access link

Application Layer 2-39

Caching example: fatter access link

assumptions:

= avg object size: 100K bits

" avg request rate from browsers to
origin servers:|5/sec

" avg data rate to browsers: .50 Mbps

= RTT from institutional router to any
origin server:?2 sec

" access link rate: IT54-Mbps 154 Mbps

consequences:
= LAN utilization: 15%
= access link utilization =99%<.9.9%

= total delay = Internet delay + access
delay + LAN delay

= 2sec +‘mi-n.u,Q: usecs
msecs

origin
servers

access link 154 Mbps

Cost: increased access link speed (not cheap!)

Application Layer 2-40

Caching example: install local cache

assumptions:
= avg object size: 100K bits

" avg request rate from browsers to
origin servers:|5/sec

" avg data rate to browsers: .50 Mbps

= RTT from institutional router to any
origin server:?2 sec

origin
servers

= access link rate: 1.54 Mbps 1.54 Mbps
consequences: access link
= LAN utilization: 15%

= access link utilization = ?
= total delay = ?

How to compute link
utilization, delay?

Cost: web cache (cheap!)

Application Layer 2-41

Caching example: install local cache

Calculating access link
utilization, delay with cache:

" suppose cache hit rate is 0.4

* 40% requests satisfied at cache,
60% requests satisfied at origin

origin
servers

= access link utilization:
= 60% of requests use access link
= data rate to browsers over access link
= 0.6*1.50 Mbps = .9 Mbps
= utilization = 0.9/1.54 = .58

1.54 Mbps
access link

= total delay P
= = (.6 * (delay from origin servers) +0.4 = | web
* (delay when satisfied at cache) A che
= =0.6 (2.0l) + 0.4 (~msecs) =~ |.2 secs

" less than with 154 Mbps link (and
cheaper too!)

Application Layer 2-42

Conditional GET

client [‘{ server
= Goal: don’ t send object if -
cache has up-to-date
cached version | HTTP request msg obiect
. .. If-modified-since: <date> |—)
* no object transmission not
delay —— modified
* lower link utilization — HTLﬁ_;i?fgnse before
= cache: specify date of 304 Not Modified <date>
cached copy in HTTP
request =0 @TTTTTTTSSSoSSSosso---
If-modified-since:
<date> —| HTTP request msg _
= server: response contains If-modified-since: <date> —, Obje.c.;t
: i modified
no object if cached copy ppe— - fter
: . response
is up-to-date: < HTTP/.0 200 OK <date>
Modified

Application Layer 2-43

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-44

Electronic mail

g

Three major components:

user agents
mail servers

simple mail transfer
protocol: SMTP

User Agent

11 . ?”
a.k.a. “mail reader
composing, editing, reading
mail messages

e.g., Outlook, Thunderbird,
iPhone mail client

outgoing, incoming
messages stored on server

outgoing

message queue

[0 user mailbox

Application Layer 2-45

Electronic mail: mail servers

mail servers:

" mailbox contains incoming
messages for user

" message queue of outgoing
(to be sent) mail messages

= SMTP protocol between
mail servers to send email
messages
* client: sending mail
server

« “server’: receiving mail
server

Application Layer 2-46

Electronic Mail: SMTP [RFC 2821]

uses TCP to reliably transfer email message from
client to server, port 25

direct transfer: sending server to receiving
server

three phases of transfer
* handshaking (greeting)
* transfer of messages
* closure
command/response interaction (like HTTP)
* commands: ASCII text
* response: status code and phrase

messages must be in 7-bit ASCI

Application Layer 2-47

Scenario: Alice sends message to Bob

1) Alice uses UA to compose 4) SMTP client sends Alice’ s
message to message over the TCP
bob@someschool.edu connection

2) Alice’ s UA sends message 5) Bob’ s mail server places the
to her mail server; message message in Bob’ s mailbox
placed in message queue 6) Bob invokes his user agent

3) client side of SMTP opens to read message
TCP connection with Bob’ s
mail server

Alice’ s mail server Bob’ s mail server

Application Layer 2-48

Sample SMTP interaction

NnoOnooaooanoanOanQun O n

220 hamburger.edu
HELO crepes.fr
250 Hello crepes.fr, pleased to meet you

: MAIL FROM: <alice(@crepes.fr>

250 alice@crepes.fr... Sender ok

RCPT TO: <bobfhamburger.edu>

250 bob@hamburger.edu ... Recipient ok

DATA

354 Enter mail, end with "." on a line by itself
Do you like ketchup?

How about pickles?

250 Message accepted for delivery

QUIT
221 hamburger.edu closing connection

Application Layer 2-49

Try SMTP interaction for yourself:

" telnet servername 25

" see 220 reply from server

= enter HELO, MAIL FROM, RCPT TO, DATA, QUIT
commands

above lets you send email without using email client (reader)

Application Layer 2-50

SMTP: final words

SMTP uses persistent
connections

SMTP requires message
(header & body) to be in
7-bit ASCI|

SMTP server uses
CRLEF.CRLF to
determine end of message

comparison with HTTP:

HTTP: pull
SMTP: push

both have ASCII
command/response
interaction, status codes

HTTP: each object

encapsulated in its own
response message

SMTP: multiple objects
sent in multipart message

Application Layer 2-51

Mail message format

SMTP: protocol for

exchanging email messages

RFC 822: standard for text
message format:

" header lines, e.g.,
e To:
* From:
* Subject:
different from SMTP

FROM, RCPT TO:
commands!

= Body: the “message”
* ASCII characters only

LV

h r
eade blank

line

Application Layer 2-52

Mail access protocols

mail access -
%i*g.?f’ﬁ SMTP SMIP protocol_, i
A (e.g., POP, o
MAB) -
Hin/mjuin Rinmin|
sender’ s mail receiver’ s mail
server server

= SMTP: delivery/storage to receiver s server

" mail access protocol: retrieval from server

* POP: Post Office Protocol [RFC 1939]: authorization,
download

* IMAP: Internet Mail Access Protocol [RFC [1730]: more
features, including manipulation of stored messages on
server

* HTTP: gmail, Hotmail, Yahoo! Malil, etc.

Application Layer 2-53

POP3 protocol

authorization phase —

= client commands:
e user: declare username

+OK POP3 server ready
user bob

+OK

pass hungry

+OK user successfully logged on

* pass: password list
" server responses 1 498
P 2 912
. +OK
e —-ERR retr 1

: <message 1 contents>

transaction phase, client. —

= list: list message numbers c.iele 1

" retr: retrieve message by retr 2
number : <message 1 contents>
= dele: delete .
" quit dele 2
quit

+OK POP3 server signing off

|m QOOQONNnOQNNO®nN NN o||9 Q®n A0 9|

Application Layer 2-54

POP3 (more) and IMAP

IMAP

more about POP3

" previous example uses

POP3 “download and
delete” mode

e Bob cannot re-read e-
mail if he changes
client

POP3 “download-and-

keep”: copies of messages
on different clients

POP3 is stateless across
sessions

keeps all messages in one
place: at server

allows user to organize
messages in folders

keeps user state across
sessions:

* names of folders and
mappings between
message |Ds and folder
name

Application Layer 2-55

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-56

DNS: domain name system

people: many identifiers: Domain Name System:
* SSN, name, passport # = (distributed database
Internet hosts, routers: implemented in hierarchy of
e |P address (32 blt) _ many name SErvers
used for addressing = application-layer protocol: hosts,
datagrams name servers communicate to

. “name”, e.g, resolve names (address/name

www.yahoo.com - translation)
used by humans * note: core Internet function,

implemented as application-

Q: how to map between |IP
layer protocol

address and name, and I g
: e complexity at network’ s
vice versa ! complexity

Application Layer 2-57

DNS: services, structure

DNS services

hostname to IP address
translation
host aliasing

e canonical, alias names
mail server aliasing
load distribution

* replicated Web
servers: many IP
addresses correspond
to one name

why not centralize DNS?

single point of failure

traffic volume

distant centralized database
maintenance

A: doesn‘t scale!

Application Layer 2-58

DNS: a distributed, hierarchical database

Root DNS Servers

com DNS servers org DNS servers e@\ls s%rs
yahoo.com amazon.com pbs.org poly.edu umass.edu

DNS servers DNS servers DNS servers

DNS serversDNS servers

client wants IP for www.amazon.com; st approximation:

client queries root server to find com DNS server
client queries .com DNS server to get amazon.com DNS server

client queries amazon.com DNS server to get |P address for
www.amazon.com

Application Layer 2-59

DNS: root hame servers

= contacted by local name server that can not resolve name

" root name server:
* contacts authoritative name server if name mapping not known
* gets mapping
* returns mapping to local name server

c. Cogent, Herndon, VA (5 other sites)
d. U Maryland College Park, MD k. RIPE London (17 other sites)

h. ARL Aberdeen, MD _

j- Verisign, Dulles VA (69 other sites) i. Netnod, Stockholm (37 other sites)
e. NASA Mt View, CA | ==y m. WIDE Tokyo
f. Internet Software C. (5 other sites)

Palo Alto, CA (and 48 other

sites) \ ‘

a. Verisign, Los Angeles C/
(5 other sites)

b. USC-ISI Marina del Rey, CA
I. ICANN Los Angeles, CA
(41 other sites)

13 logical root name
servers worldwide

seach “server” replicated

g. US DoD Columbus, many times

OH (5 other sites)

Application Layer 2-60

TLD, authoritative servers

top-level domain (TLD) servers:

* responsible for com, org, net, edu, aero, jobs, museums,
and all top-level country domains, e.g.: uk, fr, ca, jp

* Network Solutions maintains servers for .com TLD
e Educause for .edu TLD

authoritative DNS servers:

* organization’ s own DNS server(s), providing
authoritative hostname to |IP mappings for organization s
named hosts

* can be maintained by organization or service provider

Application Layer 2-61

Local DNS name server

= does not strictly belong to hierarchy

= each ISP (residential ISP, company, university) has
one
 also called “default name server’

= when host makes DNS query, query is sent to its
local DNS server

* has local cache of recent name-to-address translation
pairs (but may be out of date!)

* acts as proxy, forwards query into hierarchy

Application Layer 2-62

DNS name

resolution example

" host at cis.poly.edu
wants IP address for
gaia.cs.umass.edu

iterated query:

= contacted server
replies with name of
server to contact

= “l don’ t know this
name, but ask this
14/
server

root DNS server

4 — —"
< g =
5 I

t

local DNS serve
dns.poly.edu

6 —
111 8 ! =
|
‘),

authoritative DNS server
B dns.cs.umass.edu
requesting host

cis.poly.edu E' :

&
gaia.cs.umass.edu

Application Layer 2-63

D N S name root DNS server
resolution example 5

2 d
recursive query. %

» puts burden of name Eﬂ = TLDDNS
resolution on Bll| server
contacted name local DNStsIerver H
server dns.poly.edu 5|14

" heavy load at upper 1 | 8
levels of hierarchy? - Bl

authoritative DNS server
B dns.cs.umass.edu
requesting host

cis.poly.edu E

NS
gaia.cs.umass.edu

Application Layer 2-64

DNS: caching, updating records

" once (any) name server learns mapping, it caches
mapping
* cache entries timeout (disappear) after some time (TTL)
* TLD servers typically cached in local name servers
* thus root name servers not often visited
= cached entries may be out-of-date (best effort
name-to-address translation!)

* if name host changes IP address, may not be known
Internet-wide until all TTLs expire

" update/notify mechanisms proposed |IETF standard
* RFC 2136

Application Layer 2-65

DNS records

DNS: distributed database storing resource records (RR)

RR format: (name, value, type, ttl)

type=A

" name is hostname

= value is IP address

type=NS

* name is domain (e.g.,
foo.com)
* value is hostname of

authoritative name
server for this domain

type=CNAME

" name IS alias name for some
(13 o b4
canonical” (the real) name

" www.ibm.com is really

servereast.backup2.ibm.com

= value is canonical name

type=MX

" value is name of mailserver
associated with name

Application Layer 2-66

DNS protocol, messages

" qguery and reply messages, both with same message
format

<+«—— 2bytes ——><«— 2bytes —»

message header //identification /ﬂags

= identification: 16 bit # for # ions # answer RRs
query, reply to query uses # authority RRs | # additional RRs
same #

" flags: questions (variable # of questions)

= query or reply

= recursion desired answers (variable # of RRs)

" recursion available
= reply is authoritative authority (variable # of RRs)

additional info (variable # of RRs)

Application Layer 2-67

DNS protocol, messages

<+«—— 2bytes ——><«— 2bytes —»

identification flags

questions # answer RRs

authority RRs | # additional RRs

name, type fields
for a query

questions (variable # of questions)

RRs in response

answers (variable # of RRs)
to query

records for

authoritative servers authority (variable # of RRs)

~ additional ~helpful additional info (variable # of RRs)
info that may be used

Application Layer 2-68

Inserting records into DNS

= example: new startup “Network Utopia”
p p p

" register name networkuptopia.com at DNS registrar
(e.g., Network Solutions)

* provide names, IP addresses of authoritative name server
(primary and secondary)

* registrar inserts two RRs into .com TLD server:
(networkutopia.com, dnsl.networkutopia.com, NS)

(dnsl.networkutopia.com, 212.212.212.1, A)

" create authoritative server type A record for
www.networkuptopia.com; type MX record for
networkutopia.com

Application Layer 2-69

Attacking DNS

DDoS attacks

= bombard root servers
with traffic
* not successful to date
* traffic filtering

* local DNS servers cache
IPs of TLD servers,
allowing root server
bypass

= bombard TLD servers

 potentially more
dangerous

redirect attacks
" man-in-middle

* Intercept queries
= DNS poisoning

" Send bogus relies to
DNS server, which
caches

exploit DNS for DDoS

" send queries with
spoofed source
address: target |IP

" requires amplification

Application Layer 2-70

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-71

Pure P2P architecture

" no always-on server

" arbitrary end systems
directly communicate

= peers are intermittently
connected and change
IP addresses

examples:

e file distribution
(BitTorrent)

* Streaming (KanKan)
* VolP (Skype)

Application Layer 2-72

File distribution: client-server vs P2P

Question: how much time to distribute file (size F) from
one server to N peers!?

* peer upload/download capacity is limited resource

u.: server upload
capacity

d;: peer i download
capacity

d;
network (with abundant =D
=i

bandwidth) u,.\

u;: peer i upload
capacity

Application Layer 2-73

File distribution time: client-server

= server transmission: must
sequentially send (upload) N E
file copies:

* time to send one copy: Flu,
* time to send N copies: NF/u «g

" client: each client must
download file copy
* d_. = min client download rate

* min client download time: F/d

min

time to distribute F

| to N clients using DC_S > max{NF/uS,,F/dm,- n}
client-server approach /

/

increases linearly in N

Application Layer 2-74

File distribution time: P2P

= server transmission: must
upload at least one copy

* time to send one copy: F/u

= client: each client must
download file copy

* min client download time: F/d ..

= clients: as aggregate must download NF bits

 max upload rate (limiting max download rate) is u, + 2u;

time to distribute F
to N clients using Dpp > Max{F/ug, F/d, , NF/(us + Zu)}
P2P approach /

/
Increases linearly in N ... /
... but so does this, as each peer brings service capacity

Application Layer 2-75

Client-server vs. P2P: example

client upload rate = u, F/u=1 hour, u,=10u, d,,, 2 u,

Minimum Distribution Time

3.5

3

N
o

N

—_
(@)

—_—

o
o

o

= P2P

-o— Client-Server

o

35

Application Layer 2-76

P2P file distribution: BitTorrent

= file divided into 256Kb chunks
= peers in torrent send/receive file chunks

tracker: tracks peers torrent: group of peers
participating in torrent exchanging chunks of a file
=\

B

),

Alice arrives ...
... obtains list

of peers from tracker
... and begins exchanging

Application Layer 2-77

P2P file distribution: BitTorrent

" peer joining torrent:
* has no chunks, but will

accumulate them over time
from other peers

* registers with tracker to get
list of peers, connects to
subset of peers
(“neighbors”)

= while downloading, peer uploads chunks to other peers
= peer may change peers with whom it exchanges chunks
* churn: peers may come and go

" once peer has entire file, it may (selfishly) leave or
(altruistically) remain in torrent

Application Layer 2-78

BitTorrent: requesting, sending file chunks

requesting chunks: sending chunks: tit-for-tat

= at any given time, different = Alice sends chunks to those
peers have different subsets four peers currently sending her
of file chunks chunks at highest rate

= periodically, Alice asks each * other peers are choked by Alice
peer for list of chunks that (do not receive chunks from her)
they have * re-evaluate top 4 every|0 secs

= Alice requests missing = every 30 secs: randomly §elect
chunks from peers, rarest another peer, starts sending
first chunks

* “optimistically unchoke” this peer
* newly chosen peer may join top 4

Application Layer 2-79

BitTorrent: tit-for-tat

(1) Alice “optimistically unchokes” Bob
(2) Alice becomes one of Bob’ s top-four providers; Bob reciprocates
(3) Bob becomes one of Alice’ s top-four providers

higher upload rate: find better
trading partners, get file faster !

Application Layer 2-80

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and

content distribution
networks (CDNs)

2.7 socket programming
with UDP and TCP

Application Layer 2-81

Video Streaming and CDNs: context

» video traffic: major consumer of Internet bandwidth

* Netflix, YouTube: 37%, 16% of downstream
residential ISP traffic

« ~1B YouTube users, ~75M Netflix users
= challenge: scale - how to reach ~1B
users?
* single mega-video server won't work (why?)

» challenge: heterogeneity

= different users have different capabilities (e.g.,
wired versus mobile; bandwidth rich versus
bandwidth poor)

= solution: distributed, application-level

infrastructure

(11| Tube:

W AEES

wwvw. Kankan.c

— R E® A KR

7
/{ O N\

Application Layer 2-82

. . . spatial coding example: instead
IVI m o d of sending N values of same
u Itl e d I a" VI eo color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

" video: sequence of images
displayed at constant rate

* e.g., 24 images/sec
= digital image: array of pixels
* each pixel represented
by bits
" coding: use redundancy

g . frame |
within and between images
to decrease # bits used to
encode image

* spatial (Wlthln image) temporal coding example:

instead of sending
° temporal (from one complete frame at i+1,
image to next) send only differences from frame j+1

frame i

Application Layer 2-83

. . . spatial coding example: instead
IVI m o d of sending N values of same
u Itl e d I a" VI e O color (all purple), send only two
values: color value (purple) and
number of repeated values (N)

= CBR: (constant bit rate):
video encoding rate fixed

= VBR: (variable bit rate):
video encoding rate changes
as amount of spatial,
temporal coding changes

" examples:

* MPEG | (CD-ROM) I.5 frame i
Mbps
+ MPEG2 (DVD) 3-6 Mbps
« MPEGH4 (often used in fﬁgzgggaéfgg;’;ﬁ’nzxamp’e’
Internet, < | MbPS) complete frame at i+1,
send only differences from .
frame i frame j+1

Application Layer 2-84

Streaming stored video:

simple scenario:

S

]

client

video server
(stored video)

Intern

Application Layer 2-85

Streaming multimedia: DASH

= DASH: Dynamic, Adaptive Streaming over HTTP

" server:
* divides video file into multiple chunks
* each chunk stored, encoded at different rates
* manifest file: provides URLs for different chunks
= client:
* periodically measures server-to-client bandwidth
* consulting manifest, requests one chunk at a time

* chooses maximum coding rate sustainable given
current bandwidth

* can choose different coding rates at different points
in time (depending on available bandwidth at time)

Application Layer 2-86

Streaming multimedia: DASH

" DASH: Dynamic, Adaptive Streaming over HT TP

* “intelligence” at client: client determines

* when to request chunk (so that buffer starvation, or
overflow does not occur)

* what encoding rate to request (higher quality when
more bandwidth available)

* where to request chunk (can request from URL server

that is “close” to client or has high available
bandwidth)

Application Layer 2-87

Content distribution networks

= challenge: how to stream content (selected from
millions of videos) to hundreds of thousands of
simultaneous users?

= option I: single, large “mega-server”
* single point of failure
* point of network congestion
* long path to distant clients
* multiple copies of video sent over outgoing link

....quite simply: this solution doesn’t scale

Application Layer 2-88

Content distribution networks

" challenge: how to stream content (selected from

millions of videos) to hundreds of thousands of
simultaneous users!?

= option 2: store/serve multiple copies of videos at
multiple geographically distributed sites (CDN)

* enter deep: push CDN servers deep into many access
networks

* close to users
* used by Akamai, 1700 locations

* bring home: smaller number (10’s) of larger clusters in
POPs near (but not within) access networks

* used by Limelight

Application Layer 2-89

Content Distribution Networks (CDNs)

= CDN: stores copies of content at CDN nodes
* e.g. Netflix stores copies of MadMen
" subscriber requests content from CDN

* directed to nearby copy, retrieves content
* may choose different copy if network path congested

—
——

e———)
——]J
=

———
/ 4 (‘ —
T ——
—)

——
——

manifest file

where’'s Maumen L = =

——
=
——
gt = ———
= Ee—
e) ——
=

FE - L

1
Application Layer 2-90

Content Distribution Networks (CDNs)
“over the top™
p W

N L

Internet host-host communication as a service

OTT challenges: coping with a congested Internet
* from which CDN node to retrieve content?
= viewer behavior in presence of congestion!?
* what content to place in which CDN node?
more .. Iin chapter 7

CDN content access: a closer look

Bob (client) requests video http://netcinema.com/6Y7B23V
= video stored in CDN at http://KingCDN.com/NetCéy&B23V

A

g_j-v' if;
i
2. resolve http://netcinema.com/6Y7B23V

II W Bob’s local DNS
6. request video from ’J\ \ Bob’s
KINGCDN server, | local DNS
streamed via HTTP / I server
uasURL

{C6y&B23V

1. Bob gets URL for video
http://netcinema.com/6Y7B23V

from netcinema.com web page

485. Resolve
http://KingCDN.com/NetC6y&B23
via KingCDN’s authoritative DNS,

0 returns P address of KingCDN
with video

3. netcinema’s DN$
http://KingCDN.co

Application Layer 2-92

Case study: Netflix

copies of
versions of
CDN servers

Netflix registration,

accounting servers . : S
J 3. Manifest file A

2. Bob browses returned for \
Netflix video @D@ equested video \

1. Bob manages

Netflix account A |

|

%" 4.DASH
Ca% streaming
&4

Application Layer 2-93

Chapter 2: outline

2.1 principles of network
applications

2.2 Web and HTTP

2.3 electronic mail
« SMTP, POP3, IMAP

2.4 DNS

2.5 P2P applications

2.6 video streaming and
content distribution
networks

2.7 socket programming
with UDP and TCP

Application Layer 2-94

Socket programming

goal: learn how to build client/server applications that
communicate using sockets

socket: door between application process and end-
end-transport protocol

application

socket \

application

controlled by
app developer

controlled
by OS

Internet

A
v

Application Layer 2-95

Socket programming

Two socket types for two transport services:
UDP: unreliable datagram
TCP: reliable, byte stream-oriented

Application Example:

. client reads a line of characters (data) from its
keyboard and sends data to server

2. server receives the data and converts characters
to uppercase

3. server sends modified data to client

4. client receives modified data and displays line on
Its screen

Application Layer 2-96

Socket programming with UDP

UDP: no “connection” between client & server
* no handshaking before sending data

= sender explicitly attaches IP destination address and
port # to each packet

" receiver extracts sender |IP address and port# from
received packet

UDP: transmitted data may be lost or received
out-of-order

Application viewpoint:
= UDP provides unreliable transfer of groups of bytes
(“datagrams”) between client and server

Application Layer 2-97

Client/server socket interaction: UDP

server (running on serverIP)

create socket, port= x:
serverSocket =
socket(AF_INET,SOCK_ DGRAM)

read datagram fmm/

serverSocket

write reply to —

serverSocket —
specifying

client address,

port number

client

create socket:
clientSocket =
socket(AF _INET,SOCK_DGRAM)

Create datagram with server IP and

port=x; send datagram via
clientSocket

read 'datagram from
clientSocket

close
clientSocket

Application 2-98

Example app: UDP client

Python UDPClient
include Python’s socket

i » from socket import *
ibrary

serverName = ‘hostname’
serverPort = 12000
create UDP socketfor______ clientSocket = socket(AF _INET,
server

SOCK_DGRAM)
get user keyboard

input . message = raw_input(’'Input lowercase sentence:’)
Attach server name, portto clientSocket.sendto(message.encode(),
message; send into socket

(serverName, serverPort))

read reply characters from — modifiedMessage, serverAddress =
socket into string

clientSocket.recvfrom(2048)
print out received string —— print modifiedMessage.decode()
and close socket
clientSocket.close()

Application Layer 2-99

ExamEIe app: UDP server

Python UDPServer

from socket import *
serverPort = 12000
create UDP socket » serverSocket = socket(AF _INET, SOCK_DGRAM)

pind socke? olocalPol___, serverSocket.bind((", serverPort))

print (“ The server is ready to receive”)

loop forever > while True:

Read from UDP socketinto | message, clientAddress = serverSocket.recvfrom(2048)
message, getting client’s -

address (client IP and port) modifiedMessage = message.decode().upper()

send upper case string — " ServerSocket.sendto(modifiedMessage.encode(),

back to this client clientAddress)

Application Layer 2-100

Socket programming with TCP

client must contact server

" server process must first be

running

server must have created
socket (door) that

. ’
welcomes client s contact

client contacts server by:

Creating TCP socket,
specifying IP address, port
number of server process

when client creates socket:
client TCP establishes
connection to server TCP

= when contacted by client,
server TCP creates new socket
for server process to
communicate with that
particular client

* allows server to talk with
multiple clients

* source port numbers used
to distinguish clients
(more in Chap 3)

application viewpoint:
TCP provides reliable, in-order

byte-stream transfer (“pipe”)
between client and server

Application Layer 2-101

Client/server socket interaction: TCP

server (running on hostid) client

create socket,

port=x, for incoming
request:

serverSocket = socket()

wait for incoming TCP create socket,

connection requeSt €= == == = == == == =P connect to hostid, port=x
connectionSocket = CONNECtion setup clientSocket = socket()

serverSocket.accept()

—_— 1 send request using
read request from / clientSocket
connectionSocket

write reply to — !l

connectionSocket — read reply from
clientSocket

close 1 l
connectionSocket close
clientSocket

Application Layer 2-102

Example app: TCP client

Python TCPClient

from socket import *
serverName = 'servername’

create TCP socket for serverPort = 12000
server, remote port 12000, clientSocket = socket(AF_INETCSOCK_STREAM
clientSocket.connect((serverName,serverPort))

sentence = raw_input(‘'Input lowercase sentence:’)
Noneedtoattach server______, clientSocket.send(sentence.encode())
name, port

modifiedSentence = clientSocket.recv(1024)

print (‘From Server:’, modifiedSentence.decode())

clientSocket.close()

Application Layer 2-103

Example app: TCP server

Python TCPServer

from socket import *
create TCP welcoming serverPort = 12000
socket > serverSocket = socket(AF_INET,SOCK_STREAM)
serverSocket.bind((”,serverPort))
serverSocket.listen(1)
print “The server is ready to receive’

while True:

severwaitsonaccept) . connectionSocket, addr = serverSocket.accept()
for Incoming requests, new

socket created on return

server begins listening for
incoming TCP requests

loop forever

v

»sentence = connectionSocket.recv(1024).decode()
read bytes from socket (but

not address as in UDP) capitalizedSentence = sentence.upper()
close connection to this —— connectionSocket.send(capitalizedSentence.
client (but not welcoming
socket) enCOde())

connectionSocket.close()
Application Layer 2-104

Chapter 2: summary

our study of network apps now complete!

= application architectures = specific protocols:
* client-server e HTTP
* P2P » SMTP, POP, IMAP

= application service

requirements: * DNS
+ reliability, bandwidth, delay * P2P:BitTorrent
" |nternet transport service * video streaming, CDNs
model _ . . " socket programming;
CoecpErenied TCRUDP soders

* unreliable, datagrams: UDP

Application Layer 2-105

Chapter 2: summary

most importantly: learned about protocols!

" typical request/reply important themes:
message exchange:

* client requests info or
service * in-band, out-of-band

* server responds with = centralized vs. decentralized
data, status code

" message formats:
* headers: fields giving

" control vs. messages

= stateless vs. stateful

" reliable vs. unreliable message

info about data transfer
+ data: info(payload) = “complexity at network
being communicated edge”

Application Layer 2-106

