A TOP-DOWN APPROACH

Transport Layer

KUROSE * ROSS

A note on the use of these Powerpoint slides:

We’ re making these slides freely available to all (faculty, students, readers).
They’re in PowerPoint form so you see the animations; and can add, modify,
and delete slides (including this one) and slide content to suit your needs. L
They obviously represent a /ot of work on our part. In return for use, we only

ask the following: CO

mputer
» If you use these slides (e.g., in a class) that you mention their source Networking: A TOp

(after all, we’ d like people to use our book!)

= |f you post any slides on a www site, that you note that they are adapted DO Wn Approach

from (or perhaps identical to) our slides, and note our copyright of this

material. 7th edition

Thanks and enjoy! JFK/IKWR Jim Ku rose, Keith Ross
All material copyright 1996-2016 Pearson/Addison Wesley

© J.F Kurose and K.W. Ross, All Rights Reserved April 2016

Transport Layer 2-1

Chapter 3: Transport Layer

our goals:

* understand principles = learn about Internet
behind transport transport layer protocols:
layer services: UDP: connectionless

 multiplexing, transport

demultiplexing * TCP: connection-oriented
* reliable data transfer reliable transport
e flow control * TCP congestion control

* congestion control

Transport Layer 3-2

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-3

Transport services and protocols

data link oY%

= provide logical communication
between app processes
running on different hosts

" transport protocols run in
end systems

* send side: breaks app
messages into segments,
passes to network layer

e rcv side: reassembles
segments into messages,
passes to app layer

" more than one transport
protocol available to apps

* Internet;: TCP and UDP

transport
networ

data link
physical

Transport Layer 3-4

Transport vs. network layer

= network layer: logical

, - household analogy:
communication 12 tids in Arn’s b .
ids in Ann s house sending
between hosts letters to |2 kids in Bill s
= transport layer: house:
Iogical = hosts = houses
communication " processes = kids |
between processes " app messages = letters in
e reli hances envelopes
refies oln,len a ‘ " transport protocol = Ann
network layer and Bill who demux to in-
services house siblings
= network-layer protocol =
postal service

Transport Layer 3-5

Internet transport-layer protocols

application
< DO

= reliable, in-order
delivery (TCP)
* congestion control
* flow control
* connection setup

= unreliable, unordered
delivery: UDP

* no-frills extension of
“best-effort” IP

" services not available:
* delay guarantees
* bandwidth guarantees

net

a

WL o) T o)
data li
<=~ hysic
Py network
<< netw data link
data linRe, hysical —
physical O
ork Y
' k
CEFID (p
q network |\
e data link S
O
|__networkKN[®,
data link
e S Call
network
data link
hysical
pysica network
data link
{ physical

ation

networ
data link
physical

Transport Layer 3-6

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-7

MuItiQIexing/demuItiEIexing

- multiplexing at sender:

handle data from multiple — demultiplexing at receiver: —
sockets, add transport header use header info to deliver
(later used for demultiplexing) received segments to correct
socket
application

application application [] socket

R Qprocess

transport netwaork trangport

network 4 netplork

link PPy;igal I{mk \
physical physical
g

Transport Layer 3-8

How demultiplexing works

" host receives |IP datagrams

* each datagram has source IP
address, destination IP
address

* each datagram carries one
transport-layer segment

* each segment has source,
destination port number
" host uses IP addresses &
port numbers to direct
segment to appropriate
socket

32 bits -

source port # | dest port #

other header fields

application
data

(payload)

TCP/UDP segment format

Transport Layer 3-9

Connectionless demultiplexing

" recall: created socket has " recall: when creating

host-local port #:

DatagramSocket mySocketl
= new DatagramSocket (12534) ;

= when host receives UDP
segment:

* checks destination port # —
in segment

* directs UDP segment to
socket with that port #

datagram to send into UDP
socket, must specify

* destination |P address

* destination port #

IP datagrams with same
dest. port #, but different
source |IP addresses

and/or source port
numbers will be directed
to same socket at dest

Transport Layer 3-10

Connectionless demux: example

DatagramSocket
serverSocket = new
PatagramSocket DatagramSocket DatagramSocket
mySocket2 = new g9 mySocketl = new
DatagramSocket (6428) ; DatagramSocket

(9157) ; (5775) ;

application

application application
A tramsport ol 41 Ja]
trangport netwohk trangport
nefwork Iin|< network
ink IJh‘/SiCEﬂ link
[‘f phydical phygical \
= - &
source port: 6428 source port: ?
’ dest port: 9157] dest port: ?
> le =7
source port: 9157 source port: ?
dest port: 6428 dest port: ?

Transport Layer 3-11

Connection-oriented demux

= TCP socket identified " server host may support
by 4-tuple: many simultaneous TCP
e source IP address sockets:
* source port number * each socket identified by
o dest IP address its own 4-tuple
» dest port number " web servers have

different sockets for

= demux: receiver uses all , :
each connecting client

four values to direct

segment to appropriate . non-pgrsistent HTTP will
socket have different socket for

each request

Transport Layer 3-12

Connection-oriented demux: examEIe

host: IP source IP,port: B,80
address A dest IP,port: A,9157

source IP,port: A,9157

application
a.P®P"C3ti0n - - - application
] o
m 4 Im \t an‘ pOI"t _I.m._‘@
tranI;port rletwork transpor
! twork
net.ivork =y lirfk ne -vvor
“hk = phygical link
*\g Phiea I server: |P physical E' E
B address B e

I host: P
source IP,port: C,5775 address C

dest IP,port: B,80

dest IP, port: B,80_

three segments, all destined to IP address: B,

source IPport: C,9157

dest IP,port: B,80

dest port: 80 are demultiplexed to different sockets Transport Layer 3-13

Connection-oriented demux: examEIe

application

al 4 |

tranI;port

threaded server

application

net*vork

lipk

phykical

host: IP
address A

source IP,port: B,80
dest IP,port: A,9157

source IP,port: A,9157
dest IP, port: B,80

source 1IP,port: C,5775

dest IP,port: B,80

source IPport: C,9157

dest IP,port: B,80

application
Ly B
transpor
network
link
server: I[P physical E' \
address B e
«+ host: IP
address C

Transport Layer 3-14

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-15

UDP: User Datagram Protocol [RFC 768]

11

= “ho frills,” “bare bones”
Internet transport
protocol

» “best effort” service, UDP

segments may be:
* lost

e delivered out-of-order
to app

® connectionless:

* no handshaking
between UDP sender,
receiver

* each UDP segment
handled independently
of others

= UDP use:

" streaming multimedia
apps (loss tolerant, rate
sensitive)

= DNS
= SNMP

= reliable transfer over
UDP:

" add reliability at
application layer

= application-specific error
recovery!

Transport Layer 3-16

UDP: segment header

length, in bytes of
UDP segment,
including header

32 bits

source port #

length <~ | checksum

— why is therea UDP? __

" NO connection

application establishment (which can
data add delay)
(payload)

" simple: no connection
state at sender, receiver

= small header size

" no congestion control:
UDP can blast away as fast
as desired

UDP segment format

Transport Layer 3-17

UDP checksum

Goal: detect “errors” (e.g., flipped bits) in transmitted

segment

sender:

" treat segment contents,
including header fields,
as sequence of 16-bit
integers

" checksum: addition
(one s complement sum)
of segment contents

= sender puts checksum
value into UDP checksum
field

receiver:

= compute checksum of
received segment

" check if computed checksum
equals checksum field value:

e NO - error detected

* YES - no error detected.
But maybe errors
nonetheless? More later

Transport Layer 3-18

Internet checksum: example

example: add two | 6-bit integers
11100110011 0011
1101010101 01O01O01

wmparound@10111o1110111011

sum

1011101110111 100
checksum 0100010001 O0O0O0OO01

Note: when adding numbers, a carryout from the most
significant bit needs to be added to the result

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-19

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-20

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()relicnble c:hclhhel)j

application
layer

transport
layer

(a) provided service

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-21

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

sending receiver I
process I process
| 1

IP()reliclble c:hc:mnel)j

application
layer

transport
layer

Junreliable chonnel)i

(a) provided service (b) service implementation

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-22

Principles of reliable data transfer

" important in application, transport, link layers
* top-10 list of important networking topics!

senalngl receiver I
Process process
! i

. rdt send()
L()rellclble c:hcmhel)j =

application
layer

deliver data()

=

8_ 5 reliable data reliable data

@ > fransfer protfocol transfer protocol

% O (sending side) (receiving side)

- udt_send ()¢ | packet | | packet] Irdt rev()

Junreliable chc:mhel)<1A

(a) provided service (b) service implementation

= characteristics of unreliable channel will determine
complexity of reliable data transfer protocol (rdt)

Transport Layer 3-23

Reliable data transfer: getting started

rdt send () : called from above, deliver data () : called by

(e.g., by app.). Passed data to rdt to deliver data to upper
deliver to receiver upper layer /
\ rdt_send() data Tdeliver_data ()

send |[reliable data reliable data recejve
side [fransfer protoco fransfer protocol i
(sending side) (receiving side) Slae
udt send()i packet packet Irdt_rcv ()
1‘-hOunreIiabIe channel)J
udt send () : called by rdt, rdt rcv () : called when packet
to transfer packet over arrives on rcv-side of channel

unreliable channel to receiver

Transport Layer 3-24

Reliable data transfer: getting started

we' llI;
* incrementally develop sender, receiver sides of
reliable data transfer protocol (rdt)

= consider only unidirectional data transfer
* but control info will flow on both directions!

= use finite state machines (FSM) to specify sender,

receiver

event causing state transition
actions taken on state transition

state: when in this
“state” next state
uniquely determined
by next event

|

Transport Layer 3-25

rdtl.0: reliable transfer over a reliable channel

g

* underlying channel perfectly reliable
* no bit errors
* no loss of packets

= separate FSMs for sender, receiver:

* sender sends data into underlying channel
* receiver reads data from underlying channel

Tw AV ait for rdt_send(data)
call from

above

*\Wait for
call from
below

rdt_rcv(packet)

extract (packet,data)
deliver_data(data)

packet = make pkt(data)
udt_send(packet)

sender receiver

Transport Layer 3-26

rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
* checksum to detect bit errors

= the question: how to recover from errors:

How do humans recover from “errors”
during conversation?

Transport Layer 3-27

rdt2.0: channel with bit errors

* underlying channel may flip bits in packet
* checksum to detect bit errors

" the question: how to recover from errors:
* acknowledgements (ACKs): receiver explicitly tells sender
that pkt received OK

* negative acknowledgements (NAKs): receiver explicitly tells
sender that pkt had errors

* sender retransmits pkt on receipt of NAK

" new mechanisms in rdt2.0 (beyond rdt1.0):
* error detection

* feedback: control msgs (ACK,NAK) from receiver to
sender

Transport Layer 3-28

rdt2.0: FSM specification

rdt_send(data)

sndpkt = make_pkt(data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

Wait for
call from
above

udt_send(sndpkt)

rdt_rcv(rcvpkt) && isACK(rcvpkt)
A

sender

receiver

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt_send(NAK)

Wait for
call from
below

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-29

rdt2.0: operation with no errors

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt

rdt_rcv(rcvpkt) &&
iISNAK(rcvpkt)

Wait for
call from
above

rdt_rcv(rcvpkt) &&
udt send(sndpkt) corrupt(rcvpkt)

udt_send(NAK)

. C

Wait for
call from
below

rdt_rcv(rcvpkt) && isACK(rcvpkt)
=
A

rdt rcv(rcvka &&
notcorrupt(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-30

rdt2.0: error scenario

rdt_send(data)

snkpkt = make_pkt(data, checksum)
udt send(sndpkt)

dt rcv

(rcvpkt) &&
|S I\ KK whl

-

Wait for
call from
above

rdt_rcv(rcvpkt) &&
corrupt(rcvpkt)

udt send(NAK

udt_send(sndpkt)

\]
rdt_rcv(rcvpkt) && isACK(rcvpkt) s
=
A

call from
below

rdt_rcv(rcvka &&
notcorrupt(rcvpkt)
extract(rcvpkt,data)
deliver_data(data)
udt_send(ACK)

Transport Layer 3-31

rdt2.0 has a fatal flaw!

what happens if handling duplicates:
ACK/NAK f:orrupted? " sender retransmits

" sender doesn t know current pkt if ACK/NAK
what happened at corrupted
receiver!

" sender adds sequence
number to each pkt

= receiver discards (doesn’ t
deliver up) duplicate pkt

= can’ tjust retransmit:
possible duplicate

— stop and wait
sender sends one packet,

then waits for receiver
response

Transport Layer 3-32

rdt2.1: sender, handles garbled ACK/NAKSs

rdt_send(data)

sndpkt = make_pkt(0, data, checksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISNAK(rcvpkt))

udt_send(sndpkt)

Wait for
ACK or

NAK 0

Wait for
call O fro
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt)

§ A
Wait for
rdt_rcv(rcvpkt) && Caglbl\lom
(corrupt(rcvpkt) ||
iSNAK (rcvpkt)) rdt_send(data)
udt_send(sndpkt) sndpkt = make_pkt(1, data, checksum)

udt_send(sndpkt)

Transport Layer 3-33

rdt2.1: receiver, handles garbled ACK/NAKs

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seqO(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

\
\

rdt_rcv(rcvpkt) && (corrupt(rcvpkt) \\ rdt_rcv(rcvpkt) && (corrupt(rcvpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

sndpkt = make_pkt(NAK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) && <
has_seq1(rcvpkt)

sndpkt = make_pkt(ACK, chksum)

udt_send(sndpkt)

rdt_rcv(rcvpkt) &&
not corrupt(rcvpkt) &&
has seqO(rcvpkt)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

rdt_rcv(rcvpkt) && notcorrupt(rcvpkt)
&& has_seq1(rcvpkt)

extract(rcvpkt,data)
deliver_data(data)

sndpkt = make_pkt(ACK, chksum)
udt_send(sndpkt)

Transport Layer 3-34

rdt2.|: discussion

sender: receiver:
" seq # added to pkt " must check if received
= two seq. # s (0,1) will packet is duplicate
suffice. Why? state indicates whether
: : | i
" must check if received ge:r# s expected pke
ACK/NAK corrupted :
. " note: receiver can not
" twice as many states know if its last
° state must | ACK/NAK received
remember whether OK at sender

“expected’ pkt should
have seq # of 0 or |

Transport Layer 3-35

rdt2.2: a NAK-free protocol

= same functionality as rdt2.1, using ACKs only

" instead of NAK, receiver sends ACK for last pkt
received OK

* receiver must explicitly include seq # of pkt being ACKed

" duplicate ACK at sender results in same action as
NAK: retransmit current pkt

Transport Layer 3-36

rdt2.2: sender, receiver fragments

rdt_send(data)
sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt) rdt_rcv(rcvpkt) &&

S~ s B
P, Wait for (_corrupt(rcvpkt) |
...................... call 0 from ACK ISACK(revpkt,1))
.................................... above 0 udt_send(sndpkt)
... sender FSM

... fragment rdt_rcv(rcvpkt)
...................................... && notcorrupt(rcvpkt)
ook 86 T && isACK(rcvpkt,0)

Comuptenikt || o e A
has. seq(rcvpkt)) receiver FSM

T—— fragment

—___ e

rdt rcv(rcvpkt) && notcorrupt(rcvpkt) e
&& has_seq1(rcvpkt)

extract(rcvpkt,data)

deliver_data(data)

sndpkt = make_pkt(ACK1, chksum)

udt_send(sndpkt) Transport Layer 3-37

rdt3.0: channels with errors and loss

new assumption:
underlying channel can

also lose packets (data,
ACKs)

* checksum, seq. #,
ACKs, retransmissions
will be of help ... but
not enough

approach: sender waits

g ”
reasonable” amount of
time for ACK
= retransmits if no ACK
received in this time

= if pkt (or ACK) just delayed
(not lost):

* retransmission will be
duplicate, but seq. # s
already handles this

* receiver must specify seq
of pkt being ACKed

" requires countdown timer

Transport Layer 3-38

rdt3.0 sender

rdt_send(data)

rdt_rcv(rcvpkt) &&

\
\

rdt_rcv(rcvpkt)
A

Wait for
call Ofrom
above

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,1)

stop_timer

timeout
udt_send(sndpkt) C
start_timer (_/

rdt_rcv(rcvpkt) &&
(corrupt(rcvpkt) ||
iISACK(rcvpkt,0))

A

sndpkt = make_pkt(0, data, checksum)

udt_send(sndpkt)

\ start_timer
—

(corrupt(rcvpkt) ||
iISACK(rcvpkt,1))

A

timeout

udt_send(sndpkt)
start_timer

rdt_rcv(rcvpkt)
&& notcorrupt(rcvpkt)
&& isACK(rcvpkt,0)

stop _timer

Wait for
call 1 from
above

rdt_rcv(rcvpkt)
A

rdt_send(data)

sndpkt = make_pkt(1, data, checksum)
udt_send(sndpkt)
start_timer

Transport Layer 3-39

rdt3.0 in action

sender receiver
send pkt0 ktO
\ rcv pkto
ack send ackO
rcv ackO
send pkt1 \K
rcv pktl
ack send ackl
rcv ackl
send pkt0 ktO

/

rcv pktO
ack send ackO

(a) no loss

sender
send pktO

rcv ack0
send pktl

recelver
ktO
\\ Fcv pkto
ack send ackO
\&1
X
loss

timeout
resend pktl

rcv ackl
send pkt0

/

kt1

f o

rcv pktl
ack send ackl

ktO

rcv pktO
ack send ackO

(b) packet loss

Transport Layer 3-40

rdt3.0 in action_

sender receiver
send pktO ktO
\\ rcv pkto
ack send ackO
rcv ackO
send pktl_ \K
rcv pktl
XW send ackl

loss
‘ t/meout_
resend pktl \K rcv pktl
(detect duEllcate)

ack send ac
rcv ackl
send pkt0 \Ito\‘
rcv pktO
ack send ackO
(c) ACK loss

sender receiver
send pktO
\\ Frcv pkto
send ackO
rcv ackO /
send pktl_ \\
rcv pktl
send ackl
ack1
‘ t/meout_
resend pktl rev pkti
rcv ackl pkt0 (detect duplicate)
send pkt0>< send ackl
rcv ackl rcv pkt0
send pkt0 send ackO
rcv pktO

/ (detect duplicate)
send ackO
(d) premature timeout/ delayed ACK

Transport Layer 3-41

Performance of rdt3.0

" rdt3.0 is correct, but performance stinks
" e.g.: | Gbps link, 15 ms prop. delay, 8000 bit packet:

L _ 8000 bits

=5 = . = 8 microsecs
Drans = R = 10° bits/sec
" U . 4o utilization — fraction of time sender busy sending
U L/R .008 — 0.00027

sender RTIT+L/R ~ 30.008

" if RTT=30 msec, | KB pkt every 30 msec: 33kB/sec thruput
over | Gbps link

" network protocol limits use of physical resources!

Transport Layer 3-42

rdt3.0: stop-and-wait operation

sender receiver

first packet bit transmitted, t = 0 —fxe--------- - oo
last packet bit transmitted, t =L/ R¢

first packet bit arrives

RTT —last packet bit arrives, send ACK

ACK arrives, send next,
packet,t =RTT+L/R

U R 8 400027

sender RTT+[/R 30008

Transport Layer 3-43

Pipelined protocols

pipelining: sender allows multiple, “in-flight”, yet-
to-be-acknowledged pkts
* range of sequence numbers must be increased
* buffering at sender and/or receiver

data pqcke’r—»

data packets—» ‘p

<+— ACK packets

(a) a stop-and-wait protocol in operation (b) a pipelined protocol in operation

= two generic forms of pipelined protocols: go-Back-N,
selective repeat

Transport Layer 3-44

Pipelining: increased utilization

sender receiver

first packet bit transmitted, t = 0 - ------o oo ooooe
last bit transmitted, t =L/ R

first packet bit arrives
last packet bit arrives, send ACK

last bit of 2"d packet arrives, send ACK
last bit of 3" packet arrives, send ACK

RTT

ACK arrives, send next,
packet, t = RTT + L/ R [=

| 3-packet pipelining increases
utilization by a factor of 3!

U 3L/R 0024

sender™ rr e 7~ dooos ~ 0-00081

Transport Layer 3-45

Pipelined protocols: overview

Go-back-N:

= sender can have up to
N unacked packets in
pipeline

" receiver only sends
cumulative ack

* doesn’ t ack packet if
there’ s a gap

= sender has timer for
oldest unacked packet

* when timer expires,
retransmit all unacked
packets

Selective Repeat:

= sender can have up to N
unack’ ed packets in
pipeline

= rcvr sends individual ack
for each packet

= sender maintains timer
for each unacked packet

* when timer expires,
retransmit only that
unacked packet

Transport Layer 3-46

Go-Back-N: sender

= k-bit seq # in pkt header
= “window” of up to N, consecutive unack’ ed pkts allowed

send _base hexfsegnum dlready Usable. hof
\L i ack’ed yet sent
{11 AR TITETTINGG = EESS
t _ window size —2
N

ACK(n):ACKs all pkts up to, including seq # n - “cumulative
ACK”

* may receive duplicate ACKs (see receiver)
= timer for oldest in-flight pkt

timeout(n): retransmit packet n and all higher seq # pkts in
window

Transport Layer 3-47

GBN: sender extended FSM

rdt_send(data)

if (nextseqnum < base+N) {
sndpkt[nextseqnum] = make_pkt(nextsegnum,data,chksum)
udt_send(sndpkt[nextseqnum])
if (base == nextseqnum)

start_timer
nextseqnum-++
A else
— -, refuse data(data
base=1 * - ()

‘e
..
.

nextseqnum=1 .

* timeout
start_timer
O udt_send(sndpkt[base])
o Q udt_send(sndpkt[base+1])

rdt_rcv(rcvpkt)

&& corrupt(rcvpkt
() udt_send(sndpkt[nextsegnum-1])

rdt_rcv(rcvpkt) &&
notcorrupt(rcvpkt)

base = getacknum(rcvpkt)+1
If (base == nextsegnum)
stop_timer
else

start_timer
- Transport Layer 3-48

GBN: receiver extended FSM

default
udt_send(sndpkt) rdt_rev(rovpkt)
T~ (> && notcurrupt(rcvpkt)
A T~ - && hasseqgnum(rcvpkt,expectedsegnum)
= -
expectedseqgnum=1 Qextract(revpkt,data)
sndpkt = deliver_data(data)
make_pkt(0,ACK,chksum) sndpkt = make_pkt(expectedseqnum,ACK,chksum)
udt_send(sndpkt)
expectedsegnum-++

ACK-only: always send ACK for correctly-received
pkt with highest in-order seq #

* may generate duplicate ACKs
* need only remember expectedsegnum

" out-of-order pkt:

* discard (don’ t buffer): no receiver buffering!
* re-ACK pkt with highest in-order seq #

Transport Layer 3-49

GBN in action

sender window (N=4) sender receiver
5678 send pkt0
EPE): 5678 send pktl \ .
EPEY: 5678 send pktz-\ receive p::gl)’ seng acll:(i)
REE): 567 8 send pkt3 Xloss receive pkt., send ac
ait

(wait) receive pkt3, discard,
okEEE 678 rcv ack0, send pkt4 (re)send ackl
01EEYE¥6 78 rcv ackl, send pkt5 receive pkt4, discard,

(re)send ackl
receive pkt5, discard,

(re)send ack1l

ignore duplicate ACK

pkt 2 timeout |

R12 3 4 5 F& send pkt2
0 1EY6 7 8 send pkt3 \
send Bkt4 rcv pkt2, deliver, send ack2

E12 3 4 5 ¥

K12 3 4 5 i send pkt5 rcv pkt3, deliver, send ack3
rcv pkt4, deliver, send ack4

rcv pkt5, deliver, send ack5

Transport Layer 3-50

Selective repeat

" receiver individually acknowledges all correctly
received pkts

* buffers pkts, as needed, for eventual in-order delivery
to upper layer

= sender only resends pkts for which ACK not
received

* sender timer for each unACKed pkt

= sender window
* N consecutive seq # s
* limits seq #s of sent, unACKed pkts

Transport Layer 3-51

Selective repeat: sender, receiver windows

send_base nexfsegnum dlready Usable. not
, ack’ed yet sent
(U0 TOTAEECTT =t e
t __ window size —24
N

(a) sender view of sequence numbers

acceptable
(buffered) but ¥ (within window)
already ack’ed

ﬂﬂﬂﬂﬂﬂﬂﬂﬂllllllllllllﬂﬂﬂ |ogectedaer o

t _ window size—4

1 N

rcv_base

I out of order

(b) receiver view of sequence numbers

Transport Layer 3-52

Selective repeat

— sender
data from above:

" if next available seq # in
window, send pkt

timeout(n):
" resend pkt n, restart timer
ACK(n) iNn [sendbase,sendbase+N]:

= mark pkt n as received

" if n smallest unACKed pkt,

advance window base to
next unACKed seq #

— receiver
Pkt N 1IN [rcvbase, revbase+N-1]
= send ACK(n)
= out-of-order: buffer

" in-order: deliver (also
deliver buffered, in-order
pkts), advance window to
next not-yet-received pkt

Pl(t nin [rcvbase-N,rcvbase-1]
= ACK(n)

otherwise:

" ignore

Transport Layer 3-53

Selective repeat in action

sender window (N=4) sender receiver
PR 5678 send pktO
EBE): 567 ¢ send pktl \ receive pkt0, send ack0
EPE): 56738 send pkt2- : '
5678 send pkt3 ~Xoss receive pktl, send ackl
] wait
(wait) receive pkt3, buffer,
ollEX¥ 678 rcv ack0, send pkt4 send ack3
01EERE¥ 78 rcv ackl, send pkt5 receive pkt4, buffer
send ack4
ﬁrecord ack3 arrived receive pkt5, buffer,
pkt 2 timeout send acks
E12 3 4 5 ¥ send pkt2
VRl2 345 W record ack4 arrived .
0 1R 7 8 (E arr rcv pkt2; deliver pkt2,
Rl2 3 4 5 XA record acks arrived / pkt3, pkt4, pkt5; send ack?

Q: what happens when ack2 arrives?

Transport Layer 3-54

Selective repeat:
dilemma

example:

= seq# s:0,1,2,3
= window size=3

" receiver sees no

difference in two
scenarios!

= duplicate data
accepted as new in (b)

Q: what relationship
between seq # size
and window size to
avoid problem in (b)?

sender window receiver window

(after receipt) (after receipt)

0 12 KW k

EHEs 012 43\ — OofEE0 12

0 12 kYN 2 o 1EEN1 2
\» W3 0 1P

0] 1 2 3[J 2

Rl 2 3 0f 2
—— Wwill accept packet

(a) no problem with seq number 0

receiver can’t see sender side.
receiver behavior identical in both cases!
something’s (very) wrong!

[EBs012 —Rk0

BEFso12 —Rkt1 — ofEEl0 12

[EE: 012 —pkt2 0 1K1 2
‘974 7012-2

X
timeout X e

retransmlt pktO

[EEs012 \0\
(b) oops!

—, will accept packet
W/th seq number 0

Transport Layer 3-55

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-56

TC P: OverVieW RFCs: 793,1122,1323, 2018, 2581

" point-to-point: ® full duplex data:

* one sender, one receiver * bi-directional data flow
» reliable, in-order byte In same connection

stream: ¢ MSS: maximum segment
” size
* NO Mmessage . .
boundaries” ® connection-oriented:

= pipelined: * handshaking (exchange

of control msgs) inits
sender, receiver state
before data exchange

* flow controlled:

* sender will not
overwhelm receiver

* TCP congestion and
flow control set window
size

Transport Layer 3-57

TCP sesment structure

32 bits

A

URG: urgent data

(generally not used)\ source port # | dest port #

ACK: ACK #
valid

v

counting

by bytes

of data

(not segments!)

. sequence number
\ol\nowledgement number

PSH: push data now
(generally not used) —]

head
len wg ,I_JBSF receive window

7

bytes

Urg data pointer revr willing

RST. SYN, FIN:/

to accept

op}(s (variable length)

connection estab
(setup, teardown
commands)

Internet/

checksum
(as in UDP)

/ application

data
(variable length)

Transport Layer 3-58

TCP seq. numbers, ACKs

outgoing segment from sender

Sequence numbers° source port # dest port #
sequence number
¢ b)’te stream number of acknowledgement number
first byte in segment’ s || | rwnd
data checksum urg pointer
window size
acknowledgements: N
expected from other side
sender sequence number space
e cumulative ACK
. . sent sent, not- usable not
Q: how receiver handles ACKed |yetACKed butnot usable
out-of-order segments élig;\-t”) yet sent
e A: TCP spec doesn’ t say, incoming segment to sender
- up to implementor source port # dest port #
sequence number

R acknowledgement number

A rwnd

checksum urg pointer

Transport Layer 3-59

TCP seq. numbers, ACKs

Seq=42, ACK=79, data = ‘C
d\> host ACKs
receipt of
/ ‘C’, echoes

Seq=79, ACK=43, data = ‘C’ ¢
host ACKs back ‘C

receipt

of echoed ~—~—___
C Seq=43, ACK=K

simple telnet scenario

Transport Layer 3-60

TCP round trip time, timeout

Q: how to set TCP
timeout value!?

" l[onger than RTT
* but RTT varies
" too short: premature

timeout, unnecessary
retransmissions

" too long: slow reaction
to segment loss

Q: how to estimate RTT?

" SampleRTT: measured
time from segment
transmission until ACK
receipt

* ignore retransmissions

* SampleRTT will vary, want
estimated RTT “smoother”

* average several recent
measurements, not just
current SampleRTT

Transport Layer 3-61

TCP round trip time, timeout

EstimatedRTT = (1- o) *EstimatedRTT + o*SampleRTT

= exponential weighted moving average
" influence of past sample decreases exponentially fast
= typical value:a =0.125

RTT (milliseconds)

350 ~

300

250

200 -

150

100

RTT: gaia.cs.umass.edu to fantasia.eurecom.fr

& sampleRTT

EstimatedRTT

8 15 22 29 36 43 50 57 64 71 78 85 92 99 106

time (seconds) Transport Layer 3-62

TCP round trip time, timeout

" timeout interval: EstimatedRTT plus “safety margin”
* large variation in EstimatedRTT -> larger safety margin

= estimate SampleRTT deviation from EstimatedRTT:

DevRTT = (1-fB)*DevRTT +
f*| SampleRTT-EstimatedRTT |

(typically, B = 0.25)

TimeoutInterval = EstimatedRTT + 4*DevRTT
estimated RTT “safety margin”

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-63

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure

* reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-64

TCP reliable data transfer

= TCP creates rdt service
on top of IP” s unreliable

service
* pipelined segments S .
e cumulative acks let” s initially consider
+ single retransmission simplified TCP sender:
timer * ignore duplicate acks
B retransmissions ¢ ignore flow COﬂtf’Ol,
triggered by: congestion control

* timeout events
* duplicate acks

Transport Layer 3-65

TCP sender events:

data rcvd from app:

" create segment with
seq #

" seq # is byte-stream
number of first data
byte in segment

= start timer if not
already running
* think of timer as for

oldest unacked
segment

* expiration interval:
TimeOutInterval

timeout;

" retransmit segment
that caused timeout

" restart timer
ack revd:

= if ack acknowledges
previously unacked
segments

* update what is known
to be ACKed

* start timer if there are
still unacked segments

Transport Layer 3-66

TCP sender (simplified)

data received from application above
create segment, seq. #: NextSegNum
pass segment to IP (i.e., “send”)
NextSegNum = NextSegqNum + length(data)
A if (timer currently not running)

“a start timer
NextSegNum = InitialSeqNum
SendBase = InitialSegNum

timeout

retransmit not-yet-acked segment

with smallest seq. #
start timer

ACK received, with ACK field value y

if (y > SendBase) {
SendBase =y

[* SendBase—1: last cumulatively ACKed byte */

if (there are currently not-yet-acked segments)
start timer

else stop timer

}

Transport Layer 3-67

TCP: retransmission scenarios

I
@)
n
~
>

[®

e—— timeout ——*

S

\
Seq=92, 8 bytes of data

x,

Seq=92, 8 bytes of data

/

ACK=100

—

lost ACK scenario

Ho
-

-
ACK=100

Host A

e ——

SendBase=92

—— timeout ——

SendBase=100
SendBase=120

SendBase=120

d e

Seq=92, 8 bytes of data

/
/

Seq=100, 20 bytes of dat

ACK=100
ACK=120

\

Seq=92, 8

bytes of data\

\

ACK=120

\

premature timeout

Transport Layer 3-68

TCP: retransmission scenarios

I
(®)
0
~t
>

I

——— timeout —*

Ho
\u

n

4

/

Seq=92, 8 bytes of data

\

Seq=100, 20 bytes@d{

ACK=100
X
ACK=120

/

\

Seq=120, 15 bytes of data

\

cumulative ACK

B

=

Transport Layer 3-69

TCP ACK generation [RFC 1122, RFC 2581]

event at receiver TCP receiver action

arrival of in-order segment with delayed ACK. Wait up to 500ms
expected seq #. All data up to for next segment. If no next segment,
expected seq # already ACKed send ACK

arrival of in-order segment with immediately send single cumulative
expected seq #. One other ACK, ACKing both in-order segments
segment has ACK pending

arrival of out-of-order segment immediately send duplicate ACK,
higher-than-expect seq. # . indicating seq. # of next expected byte
Gap detected

arrival of segment that immediate send ACK, provided that
partially or completely fills gap segment starts at lower end of gap

Transport Layer 3-70

TCP fast retransmit

" time-out period often
relatively long:

* long delay before
resending lost packet

" detect lost segments
via duplicate ACKs.

e sender often sends
many segments back-
to-back

* if segment is lost, there
will likely be many
duplicate ACKs.

— TCP fast retransmit —

if sender receives 3
ACKSs for same data

(“triple duplicate ACKs"),

resend unacked
segment with smallest
seq #
" |ikely that unacked
segment lost, so don’ t

wait for timeout

Transport Layer 3-71

TCP fast retransmit

Host A Host B
= =

— Seq=92, 8 bytes of data

Seq= 100,73‘Dy-ssu‘d'a\ta.
\X

ACK=100
ACK=100

)

timeout

/

ACK=100
Ve

TSeq=100, 20 bytes of data

A 4

fast retransmit after sender
receipt of triple duplicate ACK

Transport Layer 3-72

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

e flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-73

TCP flow control —_—

application
application may process
remove data from I
application
TCP socket buffersrv | appication
TCP socket OS5
receiver buffers
... Slower than TCP N
receiver is delivering —— ‘
(sender is sending) TCP
code
[l _ |
. IP
flow control code w
receiver controls sender, so T
’ I >
sender won t overflow , : b . =
receiver s buffer by transmitting from sender|
too much, too fast _
receiver protocol stack

Transport Layer 3-74

TCP flow control

. 11 o 7
= receiver advertises free

buffer space by including to application process
rwnd value in TCP header rtj
of receiver-to-sender)
segments RcvBuffer buffered data
* RevBuffer size setvia _T_
socket options (typical default rwnd free buffer space
is 4096 bytes))l
* many operating systems t

autoadjust RcvBuffer

= sender Iimits amount of
unacked (in-flight”) data to
receiver s rwnd value

" guarantees receive buffer
will not overflow

TCP segment payloads

receiver-side buffering

Transport Layer 3-75

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-76

Connection Management

before exchanging data, sender/receiver “handshake”:

" agree to establish connection (each knowing the other willing
to establish connection)

" agree on connection parameters

application application

O
connection state: ESTAB
connection Variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

connection state: ESTAB
connection variables:
seq # client-to-server
server-to-client
rcvBuffer Size
at server,client

f’ V{ network network
i
. ‘
Socket clientSocket = Socket connectionSocket =
newSocket ("hostname" , "port welcomeSocket.accept() ;

number") ;

Transport Layer 3-77

Agreeing to establish a connection

2-way handshake:

B - 4
= Let’ s talk -
oK __T®ESTAB
ESTAB &

g

choose x
\req_conn(&

—8 ESTAB
acc_conn(x)
ESTAB &

Q: will 2-way handshake
always work in
network?

= variable delays

" retransmitted messages (e.g.
req_conn(x)) due to
message loss

" message reordering
V4 11 1}/ .
" can t see other side

Transport Layer 3-78

Agreeing to establish a connection

2-way handshake failure scenarios:

N/

choose x

retransmit
req_conn(x)

ESTAB

client™

terminates

\req_conn(>_<L>

% ESTAB

acc_conn(x)

req_conn(x)

\

_ connection _
X completes

forgets x

ESTAB

half open connection!

(no client!)

retransmit
reg_conn(x)

ESTAB

retransmit
data(x+1)

\req_coan(L‘

acc_conn(x)

4 ata(x+ 1L~
N\

connection

1
client
terminates

~ 7 x completes ~

\
req_conn(x)

data(x+1)

% ESTAB

accept
data(x+1)

server
forgets x

ESTAB
accept
data(x+1)

Transport Layer 3-79

TCP 3-way handshake

client state -, E server state

LISTEN i LISTEN
choose init seq num, x

send TCP SYN msg [~
SYNSENT SYNbit=1, Seq=x
choose init seq num, y
send TCP SYNACK

" | msg, acking SYN SYN RCVD
SYNbit=1, Seq=y
ACKbit=1: ACKnum=x+1

v received SYNACK(x)
ESTAB indicates server is live; /
send ACK for SYNACK; |~
this segment may contain | ACKbit=1, ACKnum=y+1

client-to-server data
T~ received ACK(y)

indicates client is live v
ESTAB

Transport Layer 3-80

TCP 3-way handshake: FSM

Socket connectionSocket =
welcomeSocket.accept() ;
A .
Socket clientSocket =
SYN(X) v newSocket ("hostname", "port
rnb " ,.
SYNACK(seq=y,ACKnum=x+1) number”)
create new socket for SYN(seq=x)
communication back to client
l v
‘ ‘ SYNACK(seg=y,ACKnum=x+1)

ACK(ACKnum=y-+1) ACK(ACKnum=y-+1)

Transport Layer 3-81

TCP: closing a connection

= client, server each close their side of connection
* send TCP segment with FIN bit = |

= respond to received FIN with ACK

* on receiving FIN, ACK can be combined with own FIN
* simultaneous FIN exchanges can be handled

Transport Layer 3-82

TCP: closing a connection

client state
ESTAB

clientSocket.close ()

FIN_ WAIT 1 can no longer
send but can
l receive data
FIN WAIT 2 wait for server
T - close
TIMED_ WAIT —.
timed wait
for 2*max
segment lifetime
CLOSED J,

w

T Fibit=1
it=1, Seq=X\‘
/
ACKbit=1; ACKnum=x+1
—

/
‘/FLNbit=1, seq=y
\

ACKbit=1; ACKnum=y+1
\

can still
send data

can no longer
send data

server state

ESTAB

CLOSE_WAIT

LAST ACK

CLOSED

Transport Layer 3-83

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-84

Principles of congestion control

congestion:

= informally: “too many sources sending too much
data too fast for network to handle

= different from flow control!
" manifestations:
* lost packets (buffer overflow at routers)

* long delays (queueing in router buffers)
= 3 top-10 problem!

Transport Layer 3-85

Causes/costs of congestion: scenario |

original data: 7"in throughput: 7\'out
two senders, two Y.
. A
receivers Host A 4
one router, infinite buffers unlimited shared
‘ .

. . . output link buffers

output link capacity: R S L,;[m— ﬁ

Nno retransmission

B) /:

e RREEA]

~H

R/24-----mememe- . |
i > i
3 | © :
1 GJ 1
= i S i
i i
Ain R/2 Min R/2
" maximum per-connection % large delays as arrival rate, A,
throughput: R/2 approaches capacity

Transport Layer 3-86

Causes/costs of congestion: scenario 2

" one router, finite buffers

" sender retransmission of timed-out packet
* application-layer input = application-layer output: A, =

}“out

* transport-layer input includes retransmissions : A, > Ai,

A : original data |
in - Org a1,

out

A'.: original data, plus
retransmitted data

— S v

Ss=—— “EENRERR

o

finite shared output
link buffers

Transport Layer 3-87

Host B

Causes/costs of congestion: scenario 2

. . . R/z_ ____________ i
idealization: perfect ;
knowledge 5 |
= sender sends only when ~ |
router buffers available i

B1—)\, : original data \
' . A
copy A'..: original data, plus out
retransmitted data
A free buffer space! E

— S v

Ss=—— “EENRERR

finite shared output
link buffers

Transport Layer 3-88

Causes/costs of congestion: scenario 2

Idealization: known loss
packets can be lost,
dropped at router due
to full buffers

= sender only resends if
packet known to be lost

—a. Kin :

copy [l \

original data

original data, plus
retransmitted data

no buffer space!
>

=HENARNR

A — Aoyt

Transport Layer 3-89

Causes/costs of congestion: scenario 2

Idealization: known loss ~/
packets can be lost,
dropped at router due
to full buffers

= sender only resends if
packet known to be lost

when gending at R/2,
some/packets are
retrapsmissions but
asymptotic goodput
is still R/2 (why?)

}“out

; R/2
7\‘in

Ai, : original data

A — Aot

free buffer space! | E
S v %

=HENARNR

A'.: original data, plus
retransmitted data

Transport Layer 3-90

C

auses/costs of congestion: scenario 2

Realistic: duplicates

packets can be lost, dropped at
router due to full buffers

sender times out prematurely, <

sending two copies, both of
which are delivered

-(e {)]
i 7\’II'\
[] '
A in

R/2

out

free buffer space!
>

=HENARNR

__

when sending at R/2,
some packets are
retransmissions
including duplicated
that are delivered!

R/2

' kout

Transport Layer 3-91

Causes/costs of congestion: scenario 2

Realistic: duplicates

2] S — e —
= packets can be lost, dropped at A
router due to full buffers when sending at R/2,
. *g | some pagke_ts are
" sender times out prematurely, < . retransmissions
. . : including duplicated
Sendmg two COpIEs, both of | that are delivered!
which are delivered % R2
in

“costs’ of congestion:

= more work (retrans) for given “goodput”

" unneeded retransmissions: link carries multiple copies of pkt
* decreasing goodput

Transport Layer 3-92

Causes/costs of congestion: scenario 3

Q: what happens as A, and A,
increase !

A:asred) increases,all arriving
blue pkts at upper queue are
dropped, blue throughput = 0

= four senders
" multihop paths
" timeout/retransmit

Host A

Xin . original data 7Lout Host B

A’ original data, plus
retransmitted data

finite shared output
li

k buffers ‘ E

Host D

Transport Layer 3-93

Causes/costs of congestion: scenario 3

C/2

7‘“out
L

11 b4 .
another cost of congestion:

= when packet dropped, any “upstream
transmission capacity used for that packet was
wasted!

Transport Layer 3-94

Chapter 3 outline

3.1 transport-layer
services

3.2 multiplexing and
demultiplexing

3.3 connectionless
transport: UDP

3.4 principles of reliable
data transfer

3.5 connection-oriented
transport: TCP

* segment structure
 reliable data transfer

* flow control

* connection management

3.6 principles of congestion
control

3.7 TCP congestion control

Transport Layer 3-95

TCP congestion control: additive increase
multiplicative decrease
" agpproach: sender increases transmission rate (window

size), probing for usable bandwidth, until loss occurs

* additive increase: increase cwnd by | MSS every
RTT until loss detected

* multiplicative decrease: cut cwnd in half after loss

additively increase window size ...
... until loss occurs (then cut window in half)

J

AIMD saw tooth
behavior: probing
for bandwidth

cwnd: TCP sender
congestion window size
|

time
Transport Layer 3-96

TCP Congestion Control: details

sender sequence number space

— cwnd ——s! TCP sending rate:
I e
bytes, wait RTT for
Jast byte t\ L lastbyte ACKS, then send
el etAdked S more bytes
e d
= sender limits transmission: rate w bytes/sec
LastByteSent- < cwnd
LastByteAcked

* cwnd is dynamic, function
of perceived network
congestion

Transport Layer 3-97

TCP Slow Start

= when connection begins,
Increase rate
exponentially until first
loss event:
* initially cwnd = | MSS
* double cwnd every RTT

* done by incrementing
cwnd for every ACK
received

" summary: initial rate is
slow but ramps up
exponentially fast

QUr segments

time

Transport Layer 3-98

TCP: detecting, reacting to loss

" |oss indicated by timeout:
* cwnd set to | MSS;

* window then grows exponentially (as in slow start)
to threshold, then grows linearly

" |oss indicated by 3 duplicate ACKs: TCP RENO

* dup ACKs indicate network capable of delivering
some segments

* cwnd is cut in half window then grows linearly

= TCP Tahoe always sets cwnd to | (timeout or 3
duplicate acks)

Transport Layer 3-99

TCP: switching from slow start to CA

Q: when should the

exponential
increase switch to - TP Reno
linear? . 177
8 & 10
A: when cwnd gets N P
to |/2 of its value g5
before timeout. Se ssthresh
S TCP Tahoe
2_
Implementation‘ 0 [I I L I I I L |
i d O 1 2 3 45 6 7 8 9 10 111213 14 15
™ val‘iable SSthreSh Transmission round

= on loss event, ssthresh
is set to |/2 of cwnd just
before loss event

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Transport Layer 3-100

S

U

mmary: TCP Congestion Control

duplicate ACK __hew ACH IE IE |

cwnd = cwnd + MSS « (MSS/cwnd)

dupACKcount++ new ACK dupACKcount = 0
cwnd = cwnd+MSS transmit new segment(s), as allowed

dupACKcount =0

m />transmit new segment(s), as allowed
cwnd > ssthresh

A

cwnd =1 MSS
ssthresh = 64 KB

_dupACKcount=0__ A
(f “’Q\ timeout
¢ $))'ssthresh = cwnd/2
CS e~ g supicate ACK
(‘f timeout dupACKcount = 0 dupACKcount++
5 asthresh sthresh = cwnd/2 4 retransmit missing segment A
cwnd = 1 MSS
dupACKcount =0 fpf-\Q\
retransmit missing segment ((: N
timeout'\\, J) >
ssthresh = cwnd/2
cwnd = 1 New ACK
dupACKcount =0 “wnd = ssthresh
dupACKcount == retransmit missing segment dS\;,)VAnC}Zc%S[J n‘[e=so dupACKcount ==
ssthresh= cwnd/2 ssthresh= cwnd/2
cwnd = ssthresh + 3 cwnd = ssthresh + 3
retransmit missing segment retransmit missing segment

duplicate ACK

cwnd = cwnd + MSS
transmit new segment(s), as allowed

Transport Layer 3-101

TCP throughput

= avg. TCP thruput as function of window size, RTT?
* ignore slow start, assume always data to send

= W: window size (measured in bytes) where loss occurs
* avg. window size (# in-flight bytes) is ¥4 W
* avg. thruput is 3/4W per RTT

W/2 —

avg TCP thruput =

/

/

4

/

3 W
RTT bytes/sec

/

/

/

Transport Layer 3-102

7

TCP Futures: TCP over “long, fat pipes

= example: 1500 byte segments, |00ms RTT, want
|0 Gbps throughput

" requires W = 83,333 in-flight segments

* throughput in terms of segment loss probability, L
[Mathis 1997];

_1.22-MSS
TCP throughput = RTTJf

=?» to achieve 10 Gbps throughput, need a loss rate of L
= 210" — g very small loss rate!

" new versions of TCP for high-speed

Transport Layer 3-103

TCP Fairness

fairness goal: if K TCP sessions share same
bottleneck link of bandwidth R, each should have
average rate of R/K

TCP connection 1

&
Swaoc
-, ﬂottleneck
g router

TCP conneétivgn 2 capacity R

Transport Layer 3-104

Why is TCP fair?

two competing sessions:
= additive increase gives slope of |, as throughout increases
" multiplicative decrease decreases throughput proportionally

equal bandwidth share

loss: decrease window by factor of 2
congestion avoidance: additive increase

loss: decrease window by factor of 2
congestion avoidance: additive increase

Connection 2 throughput 2o

Connection 1 throughput R

Transport Layer 3-105

Fairness gmorez

Fairness and UDP

" multimedia apps often
do not use TCP

* do not want rate
throttled by congestion
control

= instead use UDP:

e send audio/video at
constant rate, tolerate
packet loss

Fairness, parallel TCP
connections

" application can open
multiple parallel
connections between
two hosts

= web browsers do this

" e.g, link of rate R with 9

existing connections:

* new app asks for | TCP, gets
rate R/10

* new app asks for || TCPs,
gets R/2

Transport Layer 3-106

Explicit Congestion Notification (ECN)

network-assisted congestion control:

= two bits in IP header (ToS field) marked by network router
to indicate congestion

" congestion indication carried to receiving host

" receiver (seeing congestion indication in IP datagram))
sets ECE bit on receiver-to-sender ACK segment to
notify sender of congestion

TCP ACK segment Ny
source S destination

T . e

ECN=00
/
IP datagram

Transport Layer 3-107

A

Chapter 3: summary

= principles behind transport
layer services:
* multiplexing,
demultiplexing

next:

O Ieaving the network
“edge’ (application,

* reliable data transfer transport layers)
* flow control = into the network
* congestion control “core”
" jnstantiation, " two network layer
implementation in the chapters:
Internet * data plane
« UDP * control plane

. TCP

Transport Layer 3-108

