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Chapter 4: network layer

chapter goals:
* understand principles behind network layer
services, focusing on data plane:
* network layer service models
* forwarding versus routing
* how a router works
* generalized forwarding

" instantiation, implementation in the Internet
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Network Iaxer

" transport segment from
sending to receiving host

= on sending side
encapsulates segments
into datagrams

" on receiving side, delivers
segments to transport
layer

= network layer protocols
in every host, router

" router examines header
fields in all IP datagrams
passing through it
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Two key network-layer functions

network-layer functions: analogy: taking a trip
*forwarding: move packets ® forwarding: process of
from router’ s input to getting through single
appropriate router output interchange

"routing: determine route

taken by packets from " routing: process of
source to destination planning trip from source

* routing algorithms to destination
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Network layer: data plane, control plane

Data plane

" |ocal, per-router function
" determines how datagram

arriving on router input
port is forwarded to
router output port

* forwarding function

values in arriving
packet header

11—
A —Sam

Control plane
" network-wide logic

" determines how datagram is
routed among routers along
end-end path from source host
to destination host

= two control-plane approaches:

* traditional routing algorithms:
implemented in routers

* software-defined networking
(SDN): implemented in
(remote) servers
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Per-router control Elane

Individual routing algorithm components in each and every
router interact in the control plane

control
plane

| | | | data

plane

0110
0111
1001

values in arriving

packet heade;
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Logically centralized control plane

A distinct (typically remote) controller interacts with local
control agents (CAs)

— Remote Controller —

control
plane

values in arriving |
packet header
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Network service model

Q: What service model for “channel” transporting
datagrams from sender to receiver?

example services for example services for a flow
individual datagrams: of datagrams:

= guaranteed delivery " in-order datagram

= guaranteed delivery with delivery
less than 40 msec delay " guaranteed minimum

bandwidth to flow

" restrictions on changes in
inter-packet spacing
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Network layer service models:

Guarantees ?

Network Service Congestion
Architecture  Model Bandwidth Loss Order Timing feedback
Internet  best effort none no no no no (inferred
via loss)
ATM CBR constant yes vyes yes no
rate congestion
ATM VBR guaranteed yes vyes yes no
rate congestion
ATM ABR guaranteed no yes no yes
minimum
ATM UBR none no vyes no no
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Router architecture overview

* high-level view of generic router architecture:

routing, management

- routing control pla_ne (§9ftware)

processor operates in mllllsecond

time frame

forwarding data plane

> > (hardware) operttes in

nanosecond

o | ° timeframe
° high-seed °
° switching °
° fabric °

> >
router input ports router output ports
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Input port functions

_ lookup,
_ link forwarding _
. line )| layer L, .| switch
| termination | | protocol I"""" fabric
(receive) _
queueing
/ /

physical layer: * ’
bit-level reception
data link layer: decentralized switching:

e.g., Ethernet = using header field values, lookup output
see chapter 5 port using forwarding table in input port
memory (“match plus action”)

= goal: complete input port processing at
‘line speed’
" queuing: if datagrams arrive faster than

forwarding rate into switch fabric
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Input port functions

\ 4

line

termination

/

link
layer
protocol
(receive)

lookup,
forwarding

queueing

physical layer: *
bit-level reception

data link layer:
e.g., Ethernet
see chapter 5

decentralizedévitching:

switch
fabric

" using header field values, lookup output
port using forwarding table in input port

memory (“match plus action”)

destination-based forwarding: forward based
only on destination IP address (traditional)

= generalized forwarding: forward based on

any set of header field values
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Destination-based forwarding

Destination Address Range

forwarding table

Link Interface

11001000

through
11001000

00010111

00010111

00010000

00010111

00000000

11111111

11001000

through
11001000

00010111

00010111

00011000

00011000

00000000

11111111

11001000

through
11001000

00010111

00010111

00011001

00011111

00000000

11111111

otherwise

Q: but what happens if ranges don’ t divide up so nicely?
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Longest prefix matching

- longest prefix matching

when looking for forwarding table entry for given
destination address, use longest address prefix that
matches destination address.

Destination Address Range Link interface

11001000 00010111 OO00LQ*** Axxkkxdkkxok 0

11001000 00010111 00011000 ***x**x*xkx 1

11001000 00010111 O00L11*** Hxkxkkxkx 2

otherwise 3

examples:
DA: 11001000 00010111 00010110 10100001 which interface?
DA: 11001000 00010111 00011000 10101010 which interface?
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Longest prefix matching

= we’'ll see why longest prefix matching is used
shortly, when we study addressing

" |ongest prefix matching: often performed using
ternary content addressable memories (TCAMs)

* content addressable: present address to TCAM: retrieve
address in one clock cycle, regardless of table size

* Cisco Catalyst: can up ~IM routing table entries in
TCAM
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Switching fabrics

* transfer packet from input buffer to appropriate
output buffer

= switching rate: rate at which packets can be

transfer from inputs to outputs

* often measured as multiple of input/output line rate
* N inputs: switching rate N times line rate desirable

* three types of switching fabrics

@_’ memo;

===

memory bus crossbar @ @
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Switching via memory

first generation routers:

= traditional computers with switching under direct control
of CPU

= packet copied to system’ s memory

= speed limited by memory bandwidth (2 bus crossings per
datagram)

g ! input output -+ -

[&5) (@)

[ ] m (gogrt memory (gogrt m
Blsmé‘l Ethem’et) Ethern’et) i 5555555

system bus
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Switching via a bus

" datagram from input port memory
to output port memory via a

shared bus
= bus contention: switching speed ===
limited by bus bandwidth ==

= 32 Gbps bus, Cisco 5600: sufficient bus
speed for access and enterprise
routers
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Switching via interconnection network

= overcome bus bandwidth limitations

" banyan networks, crossbar, other
interconnection nets initially
developed to connect processors in T

multiprocessor ===

= advanced design: fragmenting ==
dat.agram into fixed length cglls, crossbar @ @
switch cells through the fabric.

= Cisco 12000: switches 60 Gbps

through the interconnection
network
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Input port gueuing

= fabric slower than input ports combined -> queueing may
occur at input queues

* queueing delay and loss due to input buffer overflow!

* Head-of-the-Line (HOL) blocking: queued datagram at front
of queue prevents others in queue from moving forward

B - - - > = —
— il AN |
\
] iR N
I — . _ 4
switchy switch ,’ -,
fabr}c{ fabrics
| - - _|— =7
= . — o |
output port contention: one packet time later:
only one red datagram can be green packet
transferred. experiences HOL
lower red packet is blocked blocking
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Output ports

This slide in HUGELY important!

datagram
switch buffer
iy ||[1111]

queueing

link _
layer | line
protocol termination
(send)

= buffering required
from fabric faster
rate

Datagram (packets) can be lost
due to congestion, lack of buffers

= scheduling Priority scheduling — who gets best
datagrams performance, network neutrality
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Output port queueing

B - -> - - - ]
— \ m—
7 ‘7
- d | . ],
I i - /
switch /-/ ' SW't_Ch /N '
fabric / fabric /7 N
- 7 / \
N e — |
SN - | [ ] [
at t, packets more one packet time later

from input to output

= buffering when arrival rate via switch exceeds
output line speed

" gueueing (delay) and loss due to output port buffer
overflow!
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How much buffering?

* RFC 3439 rule of thumb: average buffering equal

to “typical” RTT (say 250 msec) times link
capacity C

* e.g.,, C = |0 Gpbs link: 2.5 Gbit buffer

" recent recommendation: with N flows, buffering
equal to

RTT-C

IN
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Scheduling mechanisms

" scheduling: choose next packet to send on link

= FIFO (first in first out) scheduling: send in order of
arrival to queue
* real-world example!?
* discard policy: if packet arrives to full queue: who to discard?
* tail drop: drop arriving packet
* priority: drop/remove on priority basis
* random: drop/remove randomly

> -
packet -_Q packet

arrivals queue link departures
(waiting area) (server)
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Scheduling policies: priority

priority scheduling: send
highest priority
queued packet

* multiple classes, with
different priorities

* class may depend on
marking or other
header info, e.g. IP
source/dest, port
numbers, etc.

* real world example?

high priority queue
(waiting area)

arrivals departures
_— _—
e _—
classify link
(server)

low priority queue
(waiting area)

ik
arrivals

®
1
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Scheduling policies: still more

Round Robin (RR) scheduling:
= multiple classes

= cyclically scan class queues, sending one complete
packet from each class (if available)

* real world example!?

arrivals ??
in O © 0

packet

4

service

departures 1

OXONORO), ®
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Scheduling policies: still more

Weighted Fair Queuing (WFQ):
» generalized Round Robin

= each class gets weighted amount of service in
each cycle

* real-world example!?

classify
arrivals
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The Internet network Iaxer

host, router network layer functions:

|

network
layer

|

transport layer: TCP, UDP

IP protocol
 addressing conventions

» datagram format

* packet handling conventions

routing protocols
* path selection
* RIP, OSPF, BGP

\-v forwarding

ICMP protocol

table .
D ——— e error reporting
* router
SHHRaHIE—
link layer

physical layer
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IP datagram format

IP protocol version

<
<

32 bits

number >
header length |\ |head.| type of
(bytes) = service length
ype”ofdata 1 46 bt identifier -{figs |—2gent
max number__[ time to | upper header
remaining hops | live [~ layer checksum

(decremented at
each router)

upper layer protocol/

32 bit destination IP address

to deliver payload to

options (if any)

how much overhead?
20 bytes of TCP
20 bytes of IP

= 40 bytes + app
layer overhead

data
(variable length,
typically a TCP

or UDP segment)

total datagram
length (bytes)

for
fragmentation/
reassembly

e.g. timestamp,
record route
taken, specify
list of routers
to visit.
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IP fragmentation, reassembly

* network links have MTU
(max.transfer size) -
largest possible link-level ==
frame :

« different link types, N
different MTUs —

= |arge IP datagram divided
(“fragmented”) within net

* one datagram becomes
several datagrams

* “reassembled” only at
final destination

* IP header bits used to
identify, order related
fragments

fragmentation:
in: one large datagram
out: 3 smaller datagrams

reassembly
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IP fragmentation, reassembly

length (1D | fragflag | offset I
example: =4000 [ =x =0 =0

4000 byte datagram
MTU = 1500 bytes

one large datagram becomes
several smaller datagrams

1480 bytes in length | ID | fragflag | offset

data field =1500 | =x =1 =
offset = / length [ID [fragflag | offset
1480/8 =1500 | = =1 =185

length (1D | fragflag | offset
=1040 | =x =0 =370

N
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|IP addressing: introduction

223.1.11
= |P address: 32-bit w [
identifier for host, router =
interface 223'1'1'2‘%— 223114 223129
" interface: connection - _ -
between host/router and «él— 993,113 27 N
physical link 223.1.1.3 | ‘ | 2231255

* router’ s typically have
multiple interfaces

* host typically has one or

223.1.2

—

two interfages (e.g., wired '|223'1'3'1 \l
Ethernet, wireless 802.11) = =
= |P addresses associated
with each interface 223.1.1.1 = 11011111 90000001 90000001 .0.0000001
223 1 1 1
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|IP addressing: introduction

223.1.1.1

Q: how are interfaces w
actually connected?

=" 223.1.2._@} =>

w =
A: we’ll learn about that 223'“'2«%
W

>< 223:1.1.4 223.1.2.9
in chapter 5, 6. & =3
|

A: wired Ethernet interfaces
connected by Ethernet switches

For now: don’t need to worry
about how one interface is
connected to another (with no

. ) A: wireless WiFi interfaces
intervening router)

connected by WiFi base station
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Subnets

= |P address:

* subnet part - high order
bits
* host part - low order
bits
» what s a subnet ?
* device interfaces with

same subnet part of IP
address

* can physically reach
each other without
intervening router

W/ 223.1.1.1 —
e -
=2
W/ 223.1.1.2 223.1.2.1
e — 223.1.1.4 223.1.2.9
w @
) — I 223.1.2.2 \w»w
"\sy —°
2231.1.3 223.1.3.27 =
subnet
223.1.34 | |223.1.3.2
\ & \ull
= =

network consisting of 3 subnets
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Subnets

recipe

to determine the
subnets, detach each
interface from its host
or router, creating
islands of isolated
networks

each isolated network
is called a subnet

223.1.1.0/24
223.1.2.0/24
W/ 223.1.1.1 =
e — —
\,\/ i
W/ 223.1.1.2 223.1.2.1
e — 223.1.1.4 223.1.2.9
w
) — 223.1.2.2 ﬁV \:
%;47 —°
2231.1.3 223113.27 =
subnet
223.1.34 | |223.1.3.2
\ \ull
= =
223.1.3.0/24

subnet mask: /24
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Subnets

how many!?

223.1.1.3

223.1.9.1 223.1.7.1

223.1.8.1

|
223.1.2.6 223.|’I.3.27
223.1.2.1] |223 1.2.2 223.1.3.1j |223.1.3.2
D/ -, ™ w,
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IP addressing: CIDR

CIDR: Classless InterDomain Routing
* subnet portion of address of arbitrary length

e address format; a.b.c.d/x, where x is # bits in
subnet portion of address

subnet g host
part part

11001000 00010111 00010000 00000000
200.23.16.0/23
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IP addresses: how to get one!

Q: How does a host get |IP address!?

* hard-coded by system admin in a file

* Windows: control-panel->network->configuration-
>tcp/ip->properties
* UNIX: /etc/rc.config

= DHCP: Dynamic Host Configuration Protocol:
dynamically get address from as server

° “plug-and-play”
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DHCP: Dynamic Host Configuration Protocol

goal: allow host to dynamically obtain its IP address from network
server when it joins network

* can renew its lease on address in use

* allows reuse of addresses (only hold address while
connected/“on”)

* support for mobile users who want to join network (more
shortly)

DHCP overview:

* host broadcasts “DHCP discover” msg [optional]

« DHCP server responds with “DHCP offer” msg [optional]
* host requests IP address: “DHCP request” msg

« DHCP server sends address: “DHCP ack” msg
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DHCP client-server scenario

DHCP
223.1.1.0/24 server
f V? 223.1.1.1
*‘!’\si
/ V{ 223.1.1.2
—~ 223114 223129
L/ @

e
223.1.3.1 |
\ \
i =

223.1.3.0/24

N

S9113 2281827 223'1'2'23;

223.1.2.0/24

I 223.1.3.2

arriving DHCP
client needs
address in this
network
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DHCP client-server scenario

DHCP server: 223.1.2.5 DHCP discover arriving
client
Broadcast: is there a
DHCP server out there? | < —>
4/DHCP offer

Broadcast: I'm a DHCP

\ server! Here's an IP

address you can use

DHCP request

Broadcast: OK. I'lltake | _—
that IP address!

DHCP ACK

\

Broadcast: OK. You've
got that IP address! [
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DHCP: more than IP addresses

DHCP can return more than just allocated IP
address on subnet:

* address of first-hop router for client
* name and IP address of DNS sever

* network mask (indicating network versus host portion
of address)
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DHCP: example

DHCP
UDP

UDP

IP

Eth

Phy

168.1.1.1
<

router with DHCP
server built into
router

" connecting laptop needs
its IP address, addr of
first-hop router, addr of

DNS server: use DHCP

* DHCP request encapsulated
in UDP, encapsulated in IP,
encapsulated in 802.1
Ethernet

* Ethernet frame broadcast
(dest: FFFFFFFFFFFF) on LAN,

received at router running
DHCP server

= Ethernet demuxed to IP

demuxed, UDP demuxed to
DHCP
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DHCP: example

DHCP = DCP server formulates
UDP DHCP ACK containing
[ [CIorcp P client’ s IP address, IP
WECEEE | Eth address of first-hop
' router for client, name &

IP address of DNS server

= encapsulation of DHCP
server, frame forwarded
to client, demuxing up to

- ; DHCP at client
HEEEEs=| Eth router with DHCP
T Dlbrice server built into = client now knows its IP
router address, name and IP

address of DSN server, IP
address of its first-hop
router
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DHCP: Wireshark
output (home LAN)

Message type: Boot Request (1)

Hardware type: Ethernet

Hardware address length: 6 ‘t

Hops: 0 I

Transaction ID: 0x6b3a11b7 eq ues

Seconds elapsed: 0

Bootp flags: 0x0000 (Unicast)
0.
0.
0.

Client IP address: 0.0.0.0
Your (client) IP address: 0.
Next server IP address: 0.
Relay agent IP address: 0.0.0.
Client MAC address: Wistro
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,1=1) DHCP Message Type = DHCP Request
Option: (61) Client identifier

Length: 7; Value: 010016D323688A;

Hardware type: Ethernet

Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Option: (t=50,I1=4) Requested IP Address = 192.168.1.101
Option: (t=12,1=5) Host Name = "nomad"
Option: (55) Parameter Request List

Length: 11; Value: 010F03062C2E2F1F21F92B

1 = Subnet Mask; 15 = Domain Name

3 = Router; 6 = Domain Name Server

44 = NetBIOS over TCP/IP Name Server

as

(0
0.
0.

: OOOO
—~~
o
‘o9 o
ooo
o
A

(0.
_23: 68:8a (00:16:d3:23:68:8a)

Message type: Boot Reply (2)
Hardware type: Ethernet I’ep|y
Hardware address length: 6
Hops: 0
Transaction ID: 0x6b3a11b7
Seconds elapsed: 0
Bootp flags: 0x0000 (Unicast)
Client IP address: 192.168.1.101 (192.168.1.101)
Your (client) IP address: 0.0.0.0 (0.0.0.0)
Next server IP address: 192.168.1.1 (192.168.1.1)
Relay agent IP address: 0.0.0.0 (0.0.0.0)
Client MAC address: Wistron_23:68:8a (00:16:d3:23:68:8a)
Server host name not given
Boot file name not given
Magic cookie: (OK)
Option: (t=53,1=1) DHCP Message Type = DHCP ACK
Option: (t=54,1=4) Server Identifier = 192.168.1.1
Option: (t=1,1=4) Subnet Mask = 255.255.255.0
Option: (t=3,1=4) Router = 192.168.1.1
Option: (6) Domain Name Server
Length: 12; Value: 445747E2445749F244574092;
IP Address: 68.87.71.226;
IP Address: 68.87.73.242;
IP Address: 68.87.64.146
Option: (t=15,1=20) Domain Name = "hsd1.ma.comcast.net."
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|IP addresses: how to get one?

Q: how does network get subnet part of |P addr?
A: gets allocated portion of its provider ISP’ s address

space

ISP's block
Organization O

Organization 1
Organization 2

Organization 7

11001000 00010111 00010000 00000000 200.23.16.0/20

11001000 00010111 00010000 00000000 200.23.16.0/23

11001000 00010111 00010010 00000000 200.23.18.0/23

11001000 00010111 00010100 00000000 200.23.20.0/23
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Hierarchical addressing: route aggregation

hierarchical addressing allows efficient advertisement of routing
information:

Organization 0
200.23.16.0/23

Organization 1 \ “Send hi
end me anything
200.23.18.0/23 with addresses

Organization 2 T beginning
200.23.16.0/20”

200.23.20.0/23 . Fly-By-Night-ISP \
. . Internet
Organization 7 | /
200.23.30.0/23 -

- ISPs-R-Us Send me anything
with addresses

beginning
/ 199.31.0.0/16”
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Hierarchical addressing: more sEecific routes

ISPs-R-Us has a more specific route to Organization |

Organization 0
200.23.16.0/23

“Send me anything

with addresses

beginning
Fly-By-Night-ISP ~200.23.16.0/20

Organization 2

200.23.20.0/23

. . \ Internet
Organization 7 | /
//

200.23.30.0/23 -

“Send me anything

with addresses
beginning 199.31.0.0/16
or 200.23.18.0/23”

ISPs-R-Us

Organization 1

200.23.18.0/23
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IP addressing: the last word...

Q: how does an ISP get block of addresses!?

A: ICANN: Internet Corporation for Assigned
Names and Numbers http://www.icann.org/
* allocates addresses
* manages DNS
* assigns domain names, resolves disputes
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NAT: network address translation

«— restof »| «— |ocal network >
Internet (e.g., home network)
10.0.0/24 ', 10001
10.0.0.4 =
P _& 10.0.0.2
o T, e
13877 /
T 10003
=
all datagrams leaving local =~ datagrams with source or

network have same single  destination in this network
source NAT IP address:  have 10.0.0/24 address for
138.76.29.7 different source  source, destination (as usual)
port numbers
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NAT: network address translation

motivation: local network uses just one IP address as far
as outside world is concerned:

" range of addresses not needed from ISP: just one
IP address for all devices

" can change addresses of devices in local network
without notifying outside world

" can change ISP without changing addresses of
devices in local network

" devices inside local net not explicitly addressable,
visible by outside world (a security plus)
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NAT: network address translation

implementation: NAT router must:

= outgoing datagrams: replace (source IP address, port #) of
every outgoing datagram to (NAT IP address, new port #)

.. . remote clients/servers will respond using (NAT IP
address, new port #) as destination addr

= remember (in NAT translation table) every (source IP address,
port #) to (NAT IP address, new port #) translation pair

®* incoming datagrams: replace (NAT IP address, new port #) in
dest fields of every incoming datagram with corresponding
(source IP address, port #) stored in NAT table
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NAT: network address translation

NAT translation table

) . : 71: host 10.0.0.1
changes datagram 128.119 40 186. 80
source addr from 13876297, 5001 10001, 3345 . i ’
10.0.0.1, 3345 to e ..
138.76.29.7, 5001, ,
updates table S:10.0.0.1, 3345 j

‘ D: 128.119.40.186, 80

@ S: 138.76.29.7, 5001 j ﬁ

28
D: 128.119.40.186, 80 10.0.04
' ¥ _D 10.0.0.2
2

7 ,
138.76.29.7 " S:128.119.40.186, 80

It [, D: 10.0.0.1, 3345 _ '@'
[ S: 128.119.40.186, 80 _@ , o

/. D: 138.76.29.7, 5001 4: NAT router Q/ 10.0.0.3
3: reply arrives changes datagram =

dest. address: dest addr from

138.76.29.7, 5001 138.76.29.7, 5001 to 10.0.0.1, 3345

* Check out the online interactive exercises for more
examples: http://gaia.cs.umass.edu/kurose_ross/interactive/ Network Layer: Data Plane 4-57



NAT: network address translation

= | 6-bit port-number field:

* 60,000 simultaneous connections with a single
LAN-side address!

= NAT is controversial:
* routers should only process up to layer 3
* address shortage should be solved by IPvé
* violates end-to-end argument

* NAT possibility must be taken into account by app
designers, e.g., P2P applications

e NAT traversal: what if client wants to connect
to server behind NAT?
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Chapter 4: outline

4.1 Overview of Network 4.4 Generalized Forward and
layer SDN
* data plane * match
e control plane * action
4.2 What' s inside a router * OpenFlow examples
4.3 IP: Internet Protocol of match-plus-action in

* datagram format action

fragmentation
|IPv4 addressing

network address
translation

IPvé
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IPv6: motivation

" initial motivation: 32-bit address space soon to be
completely allocated.

= additional motivation:
* header format helps speed processing/forwarding
* header changes to facilitate QoS

IPv6 datagram format:
* fixed-length 40 byte header
* no fragmentation allowed
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|IPv6 datagram format

priority: identify priority among datagrams in flow

flow Label: identify datagrams in same “flow.”
(concept of ‘flow  not well defined).

next header: identify upper layer protocol for data

ver | pri flow label
payload len next hdr hop limit
source address
(128 bits)

destination address
(128 bits)

data

A

32 bits >
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Other changes from |IPv4

= checksum: removed entirely to reduce processing
time at each hop

= options: allowed, but outside of header, indicated
by “Next Header” field

= |[CMPv6: new version of ICMP

* additional message types, e.g. " Packet Too Big”
* multicast group management functions
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Transition from IPv4 to IPv6

" not all routers can be upgraded simultaneously
* no “flag days”
* how will network operate with mixed IPv4 and
IPvé routers?

" tunneling: IPv6 datagram carried as payload in |Pv4
datagram among IPv4 routers

IPv4 header fields IPv6 header fields

IPv4 squrce, dest addr IPv6 source dest addr IPv4 payload
MrT i | \ A\ =
T

A

IPv6 datagram ——
IPv4 datagram >

A
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Tunneling

IPv4 tunnel
connecting IPv6 routers
IPv6 IPv6 IPv6 IPv6
A B C D E F
IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
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Tunneling

IPv4 tunnel
connecting IPv6 routers
|()g|Ca| view: @—H—@
IPv6 IPv6

IPv6 IPv6

IPv6 IPv6 IPv4 IPv4 IPv6 IPv6
—_— —_— —_—  —
flow: X flow: X
src: A src: A
dest: F dest: F
data data

A-to-B: ! f E-to-F:
|_POV-6 | B-to-C: B-to-C: |-P(\)/-6 )
IPv6 inside IPv6 inside
IPv4

IPv4

Network Layer: Data Plane 4-65



|IPv6: adoption

" Google: 8% of clients access services via |IPvé

= NIST: |/3 of all US government domains are |Pvé
capable

= |ong (long!) time for deployment, use
*20 years and counting!

*think of application-level changes in last 20 years: WWW,
Facebook, streaming media, Skype, ...

*Why?
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Chapter 4: outline

4.1 Overview of Network 4.4 Generalized Forward and
layer SDN
* data plane * match
e control plane * action
4.2 What' s inside a router * OpenFlow examples
4.3 IP: Internet Protocol of match-plus-action in

* datagram format action

fragmentation
|IPv4 addressing

network address
translation

IPvé
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Generalized Forwarding and SDN

Each router contains a flow table that is computed and
distributed by a logically centralized routing controller

control plane

logically-centralized routing controller

data plane
local flow table
headers |counters |actions
1
o oofo] -

values in arriving
packet’ s header

A\
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OpenFlow data plane abstraction

= flow: defined by header fields

= generalized forwarding: simple packet-handling rules
e Pattern: match values in packet header fields

e Actions: for matched packet: drop, forward, modify, matched
packet or send matched packet to controller

* Priority: disambiguate overlapping patterns
* Counters: #bytes and #packets

=

Flow table in a router (computed and distributed by

controller) define router’s match+action rules
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OpenFlow data plane abstraction

= flow: defined by header fields

= generalized forwarding: simple packet-handling rules
e Pattern: match values in packet header fields

e Actions: for matched packet: drop, forward, modify, matched
packet or send matched packet to controller

* Priority: disambiguate overlapping patterns
* Counters: #bytes and #packets

1. src=1.2.*.*, dest=3.4.5.* - drop

2. src=**** dest=3.4.*.* 2> forward(2)
3. src=10.1.2.3, dest=*.*_.* * 2 send to controller

* - wildcard




OeenFIow: Flow Table Entries

Rule Action Stats
Packet + byte counters
1. Forward packet to port(s)
2. Encapsulate and forward to controller
3. Drop packet
4. Send to normal processing pipeline
5. Modify Fields
Switch | VLAN | MAC | MAC | Eth P P P TCP | TCP
Port ID src dst type Src Dst Prot | sport | dport

| |
Link layer Network layer

Transport layer



Examples

Destination-based forwarding:

Switch MAC |MAC [Eth LAN (IP IP IP TCP  [TCP ettt
Port rc dst ype |[ID Src Dst Prot [sport [dport

IP datagrams destined to IP address 51.6.0.8 should
be forwarded to router output port 6

Firewall:

Switch MAC [MAC [Eth LAN [IP IP IP TCP  [TCP Forward
Port rc dst ype |[ID Src Dst Prot [sport [dport

* * * * * k * * * 22 drop

do not forward (block) all datagrams destined to TCP port 22

witch MAC |MAC [Eth LAN |[IP IP IP TCP  [TCP Forward
Port rc dst ype (D Src Dst Prot [sport [dport
% % * * * 128.119.1.1 % * * * drop

do not forward (block) all datagrams sent by host 128.119.1.1



Examples

Destination-based layer 2 (switch) forwarding:

Switch MAC |MAC [Eth LAN (IP IP IP TCP  [TCP ettt
Port rc dst ype |[ID Src Dst Prot [sport [dport
S T T S St

layer 2 frames from MAC address 22:A7:23:11:E1:02
should be forwarded to output port 6
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OpenFlow abstraction

=  match+action: unifies different kinds of devices

= Router =" Firewall
* match: longest * match: IP addresses
destination IP prefix and TCP/UDP port
* action: forward out numbers
a link * action: permit or
= Switch deny
* match: destination = NAT
MAC address  match: IP address
* action: forward or and port
flood * action: rewrite

address and port
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E le:d f
OpenFlow example o e e

be sent to h3 or h4, via s1
match action and from there to s2
IP Src = 10.3.*.* "W/ Host hé
~ oo | forward(3) g
IP Dst = 10.2.*. <l 10.3.06

— e/ Host h4
4\{ 10.2.0.4

< U

«# 10.1.02 e match action
match action Host h3 ingress port = 2
10.2.0.3 forward(3
ingress port = 1 |IP Dst = 10.2.0.3 (3)
IP Src = 10.3.*.* | forward(4) ingress port = 2

IP Dst = 10.2.* * IP Dst = 10.2.0.4 | forward(4)




Chapter 4: done!

4.1 Overview of Network 4.4 Generalized Forward and
layer: data plane and SDN
control plane  match plus action

4.2 What' s inside a router - OpenFlow example

4.3 IP: Internet Protocol
* datagram format

* fragmentation Question: how do forwarding tables
* IPv4 addressing (destination-based forwarding) or
 NAT flow tables (generalized
. IPv6 forwarding) computed?
Answer: by the control plane (next
chapter)
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