Dimensionality Reduction of the Pinning Control Problem for Network Synchronization

Francesco Sorrentino¹, Shirin Panahi¹, Matteo Lodi², Marco Storace²

 The University of New Mexico, Department of Mechanical Engineering.
 Università of Genova, Dipartimento di Ingegneria Navale, Elettrica, Elettronica e delle Telecomunicazioni - DITEN.

Outline

- Dynamical Network
 - Definition
 - Representation
- Collective behavior
 - Synchronization
- Control
 - Pinning control

Figure: Starling murmuration ^a

^aPhoto: Donald Macauley

Dynamical Network

Overview

- Dynamical Network
 - Definition: Interactive dynamical units
 - Social
 - Economical
 - Biological
 - etc.
 - Representation: Graph Theory
 - Nodes
 - Links

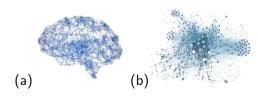


Figure: (a) Neural Network. (b) Graph

Dynamical Network

- Homogeneous,
 - Same dynamical system in each node, AND
 - Same interaction function between the nodes
- Heterogeneous
 - 1 Different Dynamical System in each nodes, OR
 - 2 Different interaction function between the nodes

Synchronization

• A general equation for a homogeneous network of coupled dynamical systems

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sigma \sum_{j=1}^N a_{ij} \boldsymbol{H}(\boldsymbol{x}_j(t)) \quad i = 1, \cdots, N$$
 (1)

- \circ \mathbf{x}_i : the m-dimensional state vector of the i^{th} dynamical system (oscillator),
- F: the dynamics of each oscillator,
- A: the connectivity matrix (topology of the network connections)
- \circ σ : the overall coupling strength
- **H**: the output function

Synchronization

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sigma \sum_{j=1}^N a_{ij} \boldsymbol{H}(\boldsymbol{x}_j(t)) \quad i = 1, \cdots, N$$

- Complete synchronization in homogeneous networks
 - Matrix A: Constant row sum (Usually Laplacian matrix L)
 - Synchronization manifold: $\mathbf{s}(t) = \mathbf{x}_1 = \mathbf{x}_2 = \cdots = \mathbf{x}_N$
- (b) Cluster synchronization
 - Cluster Synchronization of Networks via a Canonical Transformation for Simultaneous Block Diagonalization of Matrices
- (c) Complete synchronization in heterogeneous networks (links of different types)
 - Pinning control of networks: dimensionality reduction through simultaneous block-diagonalization of matrices

Complete Synchronization

Homogeneous network

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sigma \sum_{j=1}^N l_{ij} \boldsymbol{H}(\boldsymbol{x}_j(t)) \quad i = 1, \cdots, N$$
 (2)

- Synchronization,
 - Complete Synchronization,
 - Matrix L: Laplacian matrix (zero-row sum)
 - Synchronization manifold: $\mathbf{s}(t) = \mathbf{x}_1 = \mathbf{x}_2 = \cdots = \mathbf{x}_N$
- Stability analysis
 - Dynamics on synchronous manifold: $\dot{\boldsymbol{s}}(t) = \boldsymbol{F}(\boldsymbol{s}(t))$.
- Is this manifold stable?

Stability analysis

Master Stability Approach

- $(\mathbf{x}_i(t) = \mathbf{s}(t) + \delta \mathbf{x}_i(t))$
- $\lim_{t\to\infty} \delta \mathbf{x}_i(t) = 0$
- Linearized system of equations

$$\delta \dot{\boldsymbol{x}}_i(t) = D\boldsymbol{F}(\boldsymbol{s}(t))\delta \boldsymbol{x}_i(t) + \sigma \sum_{j=1}^N l_{ij}\boldsymbol{H}(\boldsymbol{s}(t))\delta \boldsymbol{x}_j(t) \quad i = 1, \cdots, N$$
 (3)

- Master Stability approach (Pecora & Caroll (1998))
 - Diagonalizing the Laplacian matrix L using eigenvalue decomposition

Master Stability Function (MSF)

Diagonalizing

• Master stability equations: a set of independently evolving perturbations:

$$\dot{\boldsymbol{\eta}}_{j}(t) = [D\boldsymbol{F}(\boldsymbol{s}(t)) - \sigma \lambda_{j} D\boldsymbol{H}(\boldsymbol{s}(t))] \boldsymbol{\eta}_{j}(t), \tag{4}$$

where

$$egin{array}{ll} \lambda_1=0 & ext{parallel perturbation} \ \lambda_j & j=2,\cdots, ext{\it N} & ext{transverse perturbation} \end{array}$$

• MSF $\mathcal{M}(\sigma\lambda_i)$: The largest transverse Lyapunov exponent as a function of the parameter $\sigma\lambda_i$.

Stability analysis

Heterogeneous Network: Networks with different types of interactions

 The case of a heterogeneous networks with different types of interactions was first considered by F. Sorrentino in this paper: "Synchronization of hypernetworks of coupled dynamical systems, (2012)"

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sigma_A \sum_{j=1}^N I_{ij}^A \boldsymbol{H}_A(\boldsymbol{x}_j(t)) + \sigma_B \sum_{j=1}^N I_{ij}^B \boldsymbol{H}_B(\boldsymbol{x}_j(t))$$

$$\delta \dot{\mathbf{x}}_{i}(t) = D\mathbf{F}(\mathbf{s}(t))\delta \mathbf{x}_{i} + \sigma_{A} \sum_{j=1}^{N} I_{ij}^{A} D\mathbf{H}_{A}(\mathbf{s}(t))\delta \mathbf{x}_{j} + \sigma_{B} \sum_{j=1}^{N} I_{ij}^{B} D\mathbf{H}_{B}(\mathbf{s}(t))\delta \mathbf{x}_{j}$$
(5)

- The two Laplacian matrices L^A and L^B commute
- One of the networks (either L^A or L^B) is unweighted and fully connected
- One of the two networks (say, e.g., L^A) is such that $L^A_{ij} = a_j$ for $i,j=1,\cdots,N$ Francesco Sorrentino, University of New Mexico

Simultaneous Block Diagonalization

Given a set of $n \times n$ real matrices $\{A_1, A_2, \dots, A_N\}$, find an $n \times n$ orthogonal matrix P such that $P^T A_1 P, \dots, P^T A_N P$ are in a common block-diagonal form.

• Maehara, T., Murota, K. (2011)

$$\mathcal{M}_n := \text{Set of } n \times n \text{ matrices } (\{A_1, A_2, \cdots, A_N\})$$

Definition:A matrix *-algebra (subalgebra) T:

Subset of \mathcal{M}_n such that if

- 1) $I_n \in T$ AND
- 2) $A, B \in T$ AND
- 3) $\alpha, \beta \in R$ then $\Rightarrow \alpha A + \beta B, AB, A^T \in T$

Definition: T': Commutant algebra of T:

- 1) forms a matrix *-algebra
- 2) contains set of all matrices X that commute with every member of T Simon Fraser University every Mexico September 6 2024

Simultaneous Block Diagonalization

• **Theorem** There exist an orthogonal matrix *Q* such that:

$$Q^T T Q = \bigoplus_{I}^{N} T_{J}, \tag{6}$$

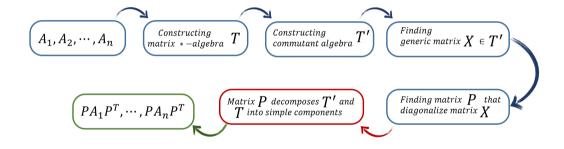
where each T_i is not further reducible.

- **Definition:**:Generic matrix If we sample a symmetric matrix $A \in T$ randomly, then A is generic with probability one.
- **Proposition.** Let $A \in T$ be a generic symmetric matrix. Then an orthogonal matrix that diagonalizes A decomposes T into simple components.

SBD

- **Proposition.** If an orthogonal matrix Q decomposes a matrix *-algebra T into the simple components then Q also decomposes the commutant algebra T' into the simple components.
- * To find Q we need to sample a generic matrix X in T'

SBD Overview



Finding matrix *P*

- A matrix X needs to simultaneously commute with each one of the matrices A_k which means $[A_k, X] = A_k X X A_k = O_n$, k = 1, ..., M,
- Define the vectorizing function vec : $\mathbb{R}^{n \times m} \mapsto \mathbb{R}^{nm}$, we have:

$$\operatorname{vec}(A_k X - X A_k) = \operatorname{vec}(A_k X) - \operatorname{vec}(X A_k) = \operatorname{vec}(O_n), \quad k = 1, 2, \dots, M \quad (7)$$

- To find the matrix X:
 - Define matrix $Y_k = (I_n \otimes A_k (A_k)^T \otimes I_n)$
 - Look for a vector $\text{vec}(X) \in \bigcap_{k=1}^{M} \mathcal{N}(Y_k)$
- By calculating the matrix X, the matrix P is constructed as the eigenvectors of the matrix X.

Application of SBD to Synchronization of Networks

- Irving, D., Sorrentino, F. (2012)
 - Complete Synchronization of Heterogeneous Networks
- Zhang, Y., Motter, A. E. (2020)
 - Cluster Synchronization
- Panahi, S., Klickstein, I., Sorrentino, F. (2021).
 - Canonical Transformation
- Panahi, S., Lodi, M., Storace, M., Klickstein, I., Novello, G., Sorrentino, F.
 - Pinning control problem

SBD & Cluster Synchronization

"Cluster Synchronization of Networks via a Canonical Transformation for Simultaneous Block Diagonalization of Matrices, Chaos, 2021"

 Goal: Proposing a canonical transformation for simultaneous block diagonalization of matrices, applicable for investigating the cluster synchronization of networks

• Advantages:

- 1) Decouple the stability problem into subproblems of minimal dimensionality while preserving physically meaningful information
- 2) Applicable for both orbital and equitable partitions of the network nodes
- 3) Parametrization of the problem in a small number of parameters

Cluster synchronization

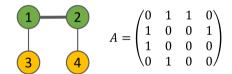
Given a network with adjacency matrix A:

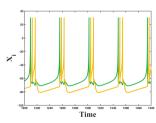
$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sum_{j=1}^N a_{ij} \boldsymbol{H}(\boldsymbol{x}_j(t)) \quad i = 1, \cdots, N$$

Simon Fraser University

- **Clusters**: The network nodes (\mathcal{V}) can be partitioned into C numbers of clusters $C_1, C_2, ..., C_C, \cup_{k=1}^C C_k = \mathcal{V}, C_k \cap C_\ell = \emptyset$ for $k \neq \ell$,
- Coloring of the Nodes: Partitioning of the nodes of the network induces a colored network, where each node i is assigned a color k if node i is in cluster C_k .
- Cluster Synchronization: Nodes in each cluster synchronize on the same time evolution but these time evolutions are different for nodes in different clusters

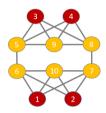
Francesco Sorrentino, University of New Mexico

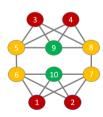




Cluster synchronization

- Equitable Clusters: all the nodes in one cluster has exactly the same number of neighbors in the other clusters regardless of the choice of the nodes
- Orbital Clusters: Nodes in the same orbital cluster can be swapped with each other without changing the overall network topology.





Cluster synchronization

 Quotient network: Describes a network for which all the nodes in each cluster collapse to a single quotient node.

$$Q = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

- Quotient matrix: $Q_{kl} = \sum_{i \in C_k} A_{ij}$ $i \in C_k$.
- Cluster synchronization dynamics:

$$\dot{\boldsymbol{s}}_k(t) = \boldsymbol{F}(\boldsymbol{s}_k(t)) + \sum_{l=1}^C Q_{kl} \boldsymbol{H}(\boldsymbol{s}_l(t)), \quad k, l = 1, 2, \cdots, C,$$

Cluster Indicator

Francesco Sorrentino, University of New Mexico

matrix:
$$E_k = \{e_{k_{ij}}\}_{N \times N}, e_{k_{ii}} = 1 \text{ if }$$
 node $i \in C_k$, otherwise 0.

Stability Analysis

• $\delta \mathbf{x}_i = (\mathbf{x}_i - \mathbf{s}_k), i \in \mathcal{C}_k$

$$\delta \dot{\boldsymbol{x}}(t) = \left[\sum_{c=1}^{C} E_c \otimes D\boldsymbol{F}(\boldsymbol{s}_c(t)) + \sum_{c=1}^{C} AE_c \otimes D\boldsymbol{H}(\boldsymbol{s}_c(t)) \right] \delta \boldsymbol{x}(t), \tag{8}$$

- Is it possible to reduce the *mN*-dimensional stability problem into a set of independent lower-dimensional equations?
- It is needed to simultaneously block diagonalize the set of C+1 matrices $\{A, E_1, E_2, \cdots, E_C\}$
 - IRR transformation (Pecora, L. M., Sorrentino, F., Hagerstrom, A. M., Murphy, T. E., & Roy, R. (2014)) ⇒ Orbital clusters
 - o SBD technique (Zhang, Y., & Motter, A. E. (2020))

Finding matrix P

 Assumption: Without loss of generality ⇒ we can order the network nodes so that:

$$E_{1} = \begin{pmatrix} I_{n_{1}} & 0 \\ 0 & 0_{N-n_{1}} \end{pmatrix} \quad E_{2} = \begin{pmatrix} 0_{n_{1}} & 0 & 0 \\ 0 & I_{n_{2}} & 0 \\ 0 & 0 & 0_{N-(n_{1}+n_{2})} \end{pmatrix} \quad \cdots \quad E_{C} = \begin{pmatrix} 0_{N-n_{C}} & 0 \\ 0 & I_{n_{C}} \end{pmatrix}$$

$$(9)$$

• Lemma 1. Any matrix P that commutes with the set of matrices E_i has the following block-diagonal structure,

$$P = \begin{pmatrix} P_1 & 0 & \cdots & 0 \\ 0 & P_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & P_C \end{pmatrix}$$
 (10)

- The transformation matrix *T*:
 - the eigenvectors of the matrix *P* for its columns
 - must also have the same block-diagonal structure as the matrix P

$$T = \begin{pmatrix} T_1 & 0 & \cdots & 0 \\ 0 & T_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & T_C \end{pmatrix}$$
 (11)

- $\bullet \ T^T = T^{-1} \Rightarrow T_k^T = T_k^{-1}$
- Each block T_k corresponds to each cluster $C_k \Rightarrow$ each block describes stability of either one cluster or a set of intertwined clusters
- After applying T, \exists one block corresponds to the quotient dynamics.
- $J_i = TE_iT^T = E_i$ for $i = 1, 2, \dots, C \Rightarrow T$ is 'Canonical'

• After applying T, we obtain,

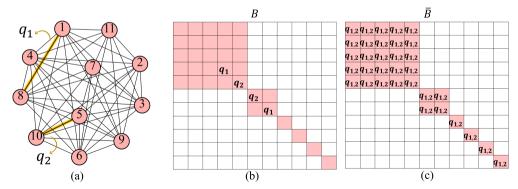
$$\dot{\boldsymbol{\eta}}(t) = \left[\sum_{k=1}^{C} J_k \otimes D\boldsymbol{F}(\boldsymbol{s}_k(t)) + \sum_{k=1}^{C} BJ_k \otimes D\boldsymbol{H}(\boldsymbol{s}_k(t))\right] \boldsymbol{\eta}(t),$$
 (12)

$$\dot{\mathbf{Y}} = T^{-1}\delta\dot{\mathbf{X}} = \frac{\sqrt{2}}{2} \begin{pmatrix} \delta\dot{\mathbf{x}}_1 + \delta\dot{\mathbf{x}}_2 \\ -\delta\dot{\mathbf{x}}_3 - \delta\dot{\mathbf{x}}_4 \\ \delta\dot{\mathbf{x}}_1 - \delta\dot{\mathbf{x}}_2 \\ \delta\dot{\mathbf{x}}_3 - \delta\dot{\mathbf{x}}_4 \end{pmatrix} = \begin{pmatrix} DF(s_1) & 0 & 0 & 0 \\ 0 & DF(s_2) & 0 & 0 \\ 0 & 0 & DF(s_1) & 0 \\ 0 & 0 & 0 & DF(s_2) \end{pmatrix} \mathbf{Y}$$

$$+\begin{pmatrix} 0 & -DH(s_2) & 0 & 0 \\ -DH(s_1) & DH(s_2) & 0 & 0 \\ 0 & 0 & 0 & DH(s_2) \\ 0 & 0 & DH(s_1) & -DH(s_2) \end{pmatrix} Y,$$

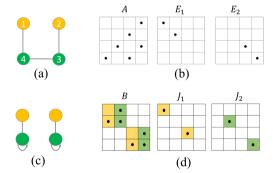
Advantages:

1) Compared to previous work [Zhang and Motter (2020)] it has lower number of nonzero entries that parametrize the matrices after the transformation



Advantages:

- 2) Each network node after the transformation belongs to one and only one cluster
- Canonical SBD

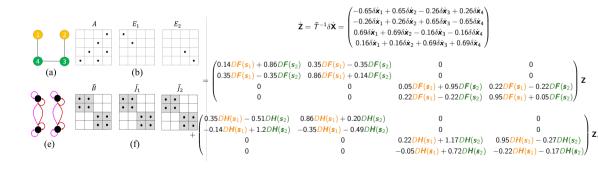


$$\dot{\mathbf{Y}} = T^{-1}\delta\dot{\mathbf{X}} = \frac{\sqrt{2}}{2} \begin{pmatrix} \delta\dot{\mathbf{x}}_1 + \delta\dot{\mathbf{x}}_2 \\ -\delta\dot{\mathbf{x}}_3 - \delta\dot{\mathbf{x}}_4 \\ \delta\dot{\mathbf{x}}_1 - \delta\dot{\mathbf{x}}_2 \\ \delta\dot{\mathbf{x}}_3 - \delta\dot{\mathbf{x}}_4 \end{pmatrix} = \begin{pmatrix} DF(\mathbf{s}_1) & 0 & 0 & 0 \\ 0 & DF(\mathbf{s}_2) & 0 & 0 \\ 0 & 0 & DF(\mathbf{s}_1) & 0 \\ 0 & 0 & 0 & DF(\mathbf{s}_2) \end{pmatrix} \mathbf{Y}$$

$$+ \begin{pmatrix} 0 & -DH(s_2) & 0 & 0 \\ -DH(s_1) & DH(s_2) & 0 & 0 \\ 0 & 0 & 0 & DH(s_2) \\ 0 & 0 & DH(s_1) & -DH(s_2) \end{pmatrix} \mathbf{Y},$$

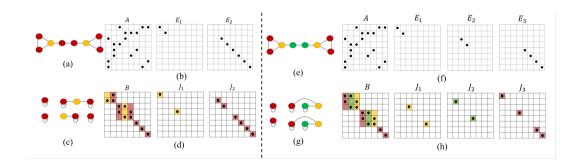
$$\dot{\boldsymbol{\eta}}(t) = \left[\sum_{k=1}^{C} J_k \otimes D\boldsymbol{F}(\boldsymbol{s}_k(t)) + \sum_{k=1}^{C} BJ_k \otimes D\boldsymbol{H}(\boldsymbol{s}_k(t))\right] \boldsymbol{\eta}(t),$$

• \tilde{T} SBD transformation



Advantages:

3) It is applicable for both orbital and equitable partitioning of the network nodes.



Application of the Canonical Transformation in Real Networks

Table: Real networks analysis. N is the number of nodes, E the number of edges, N_{ntc} is the number of nontrivial clusters, $\max(|n_c|)$ is the size of the largest equitable cluster. We include the average runtime in seconds for calculation of the transformation matrix T and of the transformation matrix T using the code from [Zhang and Motter (2020)].

Name	N	E	N _{ntc}	$\max(n_c)$	Average Runtime for \tilde{T}	Average Runtime for T
ca-netscience: Scientist Collaboration Network	379	914	70	6	25.0745	6.4077
Chilean Power Grid Network	218	527	29	7	2.9198	1.9107
Power Grid Network of Western Germany	491	665	43	5	41.7946	14.4780
celegans-dir: Metabolic Network	453	2025	28	4	24.6675	12.6427
Us Airline	332	2126	31	12	11.0195	5.8412
Erdos971	429	1312	20	3	16.92	10.0446
bio-diseasome: Biological Network	516	1188	95	6	90.5763	13.9930
fb-forum: Social network	899	7036	16	5	171.0608	65.6710

SBD and Pinning Control

Pinning control of networks:

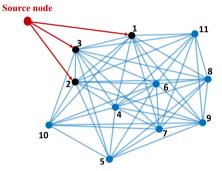
dimensionality reduction through simultaneous block-diagonalization of matrices

Considering pinning control signals : $\mathbf{u}_i(t)$

$$\dot{\boldsymbol{x}}_i(t) = \boldsymbol{F}(\boldsymbol{x}_i(t)) + \sum_{j=1}^N L_{ij}\boldsymbol{G}(\boldsymbol{x}_j(t)) + \boldsymbol{\mathsf{u}}_i(t), \quad (13a)$$

$$\mathbf{u}_{i}(t) = \gamma r_{i}[\mathbf{H}(\mathbf{x}_{t}(t)) - \mathbf{H}(\mathbf{x}_{i}(t))], \qquad (13b)$$

$$i = 1, \dots, N$$



• Previous work (see e.g., Sorrentino, F., Di Bernardo, M., Garofalo, F., Chen, G. (2007)) has dealt with $\mathbf{H} = \mathbf{G}$.

Synchronization

• Completely synchronized solution $x_1(t) = x_2(t) = \cdots = x_n(t) = x_s(t)$, which obeys,

$$\dot{\boldsymbol{x}}_s(t) = \boldsymbol{F}(\boldsymbol{x}_s(t)). \tag{14}$$

• 'Target' synchronous solution, $\mathbf{x}_t(t)$ produced by the initial condition \mathbf{x}_t^0 ,

$$\dot{\boldsymbol{x}}_t(t) = \boldsymbol{F}(\boldsymbol{x}_t(t)), \qquad \boldsymbol{x}_t(0) = \boldsymbol{x}_t^0. \tag{15}$$

• Considering small perturbations $\delta \mathbf{x}_i = (\mathbf{x}_i - \mathbf{x}_t)$ and stacking them together in one vector:

$$\delta \dot{\mathbf{X}}(t) = [I_N \otimes D\mathbf{F}(\mathbf{x}_t(t)) + L \otimes D\mathbf{G}(\mathbf{x}_t(t))$$
(16)

$$-\gamma R \otimes D\mathbf{H}(\mathbf{x}_t(t))]\delta \mathbf{X}(t),$$

SBD and Pining control problem

$$\delta \dot{\mathbf{X}}(t) = [I_N \otimes D\mathbf{F}(\mathbf{x}_t(t)) + L \otimes D\mathbf{G}(\mathbf{x}_t(t)) - \gamma R \otimes D\mathbf{H}(\mathbf{x}_t(t))]\delta \mathbf{X}(t).$$

We need to find transformation matrix T = SBD(R, L)

- Finding matrix *P*:
 - \circ matrix R can be rewritten,

$$R = \begin{pmatrix} I_s & 0 \\ 0 & \mathbf{0}_{N-s} \end{pmatrix}, \tag{17}$$

• The matrix *P* has has the following block-diagonal structure,

$$P = \begin{pmatrix} P_1 & 0 \\ 0 & P_2 \end{pmatrix} \tag{18}$$

Transformation matrix T

$$T = \begin{pmatrix} T_1 & 0 \\ 0 & T_2 \end{pmatrix},$$

(19)

Driven and Undriven Blocks

• By applying Transformation T to the pair (L, R), we have:

$$T^{-1}LT = L_T = \bigoplus_{j=1}^{l} \hat{L}_j, T^{-1}RT = R_T = \bigoplus_{j=1}^{l} \hat{R}_j,$$
 (20)

• L_T and R_T are block-diagonal:

$$L_{\mathcal{T}} = \begin{pmatrix} L_d & 0 \\ 0 & L_{ud} \end{pmatrix} \qquad R_{\mathcal{T}} = \begin{pmatrix} R_d & 0 \\ 0 & 0_{(N-c)} \end{pmatrix}, \tag{21}$$

• Equation (16) can be split into the one driven and one undriven equations,

$$\dot{\boldsymbol{\eta}}_d(t) = [I_c \otimes D\boldsymbol{F}(\boldsymbol{x}_s(t)) + L_d \otimes D\boldsymbol{G}(\boldsymbol{x}_s(t)) - \gamma R_d \otimes D\boldsymbol{H}(\boldsymbol{x}_s(t))] \boldsymbol{\eta}_d(t),$$

$$\dot{\boldsymbol{\eta}}_{ud}(t) = [I_{N-c} \otimes D\boldsymbol{F}(\boldsymbol{x}_s(t)) + L_{ud} \otimes D\boldsymbol{G}(\boldsymbol{x}_s(t))] \boldsymbol{\eta}_{ud}(t).$$
(22)

• Dimension of the driven pair (L_d, R_d) = the rank of the controllability matrix of

Transformation \hat{T}

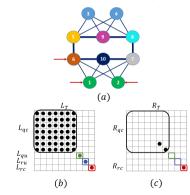
- $\hat{T} = T_c T_q$
 - \circ T_c : Decouples the problem (16) into a controllable equation and an uncontrollable equation
 - \circ T_q : Decouples the problem (16) into a quotient equation and a redundant equation.
- By applying \hat{T} to the pair (L, R), we have:

Application of transformation \hat{T}

 The pair (L, R) is decoupled by application of the transformation T
into four blocks.

Pair	Туре	Size	
(L_{qc},R_{qc})	Quotient controllable block (qc)	и	
$\left(L_{rc},R_{rc}\right)$	Redundant controllable block (rc)	c-u	
$(L_{qu},0)$	Quotient uncontrollable block (qu)	N-c	
$(L_{ru},0)$	Redundant uncontrollable block (ru)	N - C	

• The transformation \hat{T} leads to a finest SBD of the pair (L,R).



Pinned node selection and multiple driven blocks

- Dimension of the driven pair is affected by
 - Topology of the network
 - Number and choice of the pinned nodes
- it is possible to have the multiple driven pairs (L_d^1, R_d^1) , (L_d^2, R_d^2) ,..., (L_d^w, R_d^w) , where $L_d \oplus_{i=1}^w L_d^i$ and $R_d \oplus_{i=1}^w R_d^i$.
 - A pinned node symmetry (PNS) is a symmetry of the pair (L, R) i.e. a permutation matrix Π that
 - commutes with both matrices I and R
 - it swaps two or more pinned nodes
 - Choosing two or more pinned nodes which belong to the same PNS results into independent driven pairs for each one of these pinned nodes.

Conclusion

- Application of SBD to Synchronization of Dynamical Networks
 - Canonical SBD Transformation on Cluster Synchronization
 - MATLAB code to compute the canonical SBD for the cluster synchronization is available online and can be accessed from https://github.com/SPanahi/Clustered-SBD
 - SBD & Pinning Control Problem in Heterogeneous Networks

Thank you!