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• Shrinking transistor sizes shall no longer be feasible in the years to come

The Key Technology to enable IC performance growth beyond the Moore’s Era

o The disruptive memristor technologies allow to fabricate nanodevices with state-dependent
resistances, capable to sense, store, and compute data in the very same physical medium.

S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in electronics,” Nature Electronics, vol. 1, no. 8, pp. 442–450, 2018

1.1. Introduction

Figure 1.2: Number of transistor per mm2 as function of time for the last 20 years and
projection for the future, with highlighted technology paradigm era. Adapted from [7]

(black dots) and an extrapolation up to the present day [8]. By now it should
have been reached the thermal fluctuation energy kT , which is at present
impossible with mainstream Complementary-Metal-Oxide-Semiconductor
(CMOS) technology. It has to be noted that the fluctuation energy is not the
fundamental lower bound of energy consumption, in fact Landauer itself
demonstrated the possibility of energy-conserving computation [9]. In the
Fig. 1.3 data from Intel CMOS technology and extrapolation from Interna-
tional Technology Roadmap for Semiconductors are also replotted, show-
ing that actual data and noways predictions are far away from Landauer
prediction. This is known as heat wall [6], referring to the fact that high
switching energy demand will end up in heating up the whole system. Tak-
ing inspiration from Moore’s and Landauer prediction to have better units
for computation, research on novel low energy, compact and scalable de-
vices has recently seen enthusiasm. Among this research on novel memory
devices has attracted both academia and industries with a special interest of
a class called resistive switching memories, dubbed memristors. Emerging
memories have been investigated not only for memory applications but also
for computing, solving in a single device or three problems, namely mem-
ory wall, thus executing computation inside the memory without transfer-
ring the data back and forth, Moore’s wall, enabling future and aggressive
scaling and heat wall, with low power low energy operation. In this chapter,
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1.3. Applications of memristive devices in novel computing architectures

Figure 1.11: Matrix-vector multiplication (MVM) in a crosspoint array. Input voltages Vj

are applied at the columns (TEs) while the rows (BEs) are connected at ground, which
is usually the virtual ground of a transimpedance amplifier (TIA). The output currents
provide the sum of weighted input voltages by the conductance state of the memristors.
Adapted from [100]

1.3.2 Analog computing with memristive arrays

Crosspoint arrays are compact memory ensembles, where a group of de-
vice is organized as a matrix, TE lines are connected together column by
column and BE lines are connected together row by row. This architecture
is extremely interesting for reducing the bit cell size, since the device area is
just 4F 2 where F is the lithographic feature size of the process technology.
Moreover this architecture can be used for accelerating algebra problems,
i.e. Matrix Vector Multiplication (MVM), as illustrated in Fig.1.11. A
voltage Vj is applied to the j-th column with j = 1, 2, ..., N where N is the
number of rows and columns. Being the rows tied to a ground node, usually
implemented with a transimpedance amplifier (TIA), the voltage induces a
current in every devices that is summed for devices on the same rows, such
that in every i-th row flows a current:

Ii =
X

j

(Gi,j) ⇤ Vj (1.1)

Equation 1.1 is an analog product of the conductance matrix Gi,j by an
input vector V j, and it shows the hardware implementation of a MVM
governed by Ohm’s law and Kirchhoff’s law [101]. Interestingly, this op-
eration only requires one step, when a full vector Vj is applied at the in-
put, the output currents Ii are calculated immediately, in contrast with dig-
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Chapter 1. Emerging memory devices for the future of computing

Figure 1.6: (a) Current-voltage (I-V) characteristics of RRAM device with HfOx insu-
lator layer, T i Top Electrode and C bottom electrode (inset). (b) I-V plots of different
analog programming states. Adapted from [18]

as competitors for mainstream memory technology such as CMOS based
SRAM, DRAM and Flash memories, for their interesting performance in
area, energy consumption, speed and endurance as shown in Fig. 1.5 [7]. In
the following, RRAM and PCM will be presented as a building block for
new computing systems. STT-MRAM also offers interesting memory [15]
and computing performances [16, 17] but it will not be discussed in this
work.

1.2.1 Resistive Random Access Memories (RRAM)

RRAM [19] are Metal-Insulator-Metal (MIM) structures, with the possi-
bility of tuning the resistance among the two metal electrodes modifying
the material composition along a conductive filament or within the inter-
face layers. Resistive switching has been demonstrated for the first time in
1962 [20] but at that time it was not possible to grow thin insulant layers,
thus devices with operating voltages below 100 V, making it not suitable as
microelectronics component. In the recent years, with the progress in nano-
electronic fabrication technologies, development of insulation layers below
100 nm is now possible, thus the fabrication of RRAM with switching volt-
ages below 5 V making it appealing for memory applications [19]. Many
materials shows resistive switching, such as perovskite oxide [21] and bi-
nary metal materials. Initially, the most used materials were NiO [22]
and T iO2 [23]. Later CMOS compatible materials, such as s HfOx [24],
SiOx [25–27] and TaOx [28, 29] has been used. Physical switching mech-
anism is still under debate [19] , but it’s possible to say that two different
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Z. Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. Ielmini, “Solving matrix 
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o Memristors enable the hardware implementation of novel bio-inspired data processing paradigms, e.g. in-
memory computing, allowing to boost the performance of purely-CMOS hardware

• Nonlinear circuit and system theory assumes a primary role in the development of robust IC designs
with inherently-nonlinear memristor devices 2



Volatile Memristor Memories with Small-Signal Amplification Capability

o If, turning the power off, 𝑅(𝑥(𝑡), 𝑖 = 0A) is found to converge toward one state from an analogue continuum or toward one
of a few (at least two) isolated states, depending upon the initial condition 𝒙(0), the memristor is said to be non-volatile

𝑣 = 𝑣 𝒙, 𝑖 = 𝑅 𝒙, 𝑖 ' 𝑖,
(

𝑑𝒙
𝑑𝑡

= 𝒇 𝒙, 𝑖

• The most general definition of a nth order current-controlled memristorM is a Differential Algebraic Equation (DAE) set of the form

where 𝒙 = [𝑥!, … , 𝑥" ]#∈ ℝ" is a n-dimensional state, and 𝑅(𝒙, 𝑖) is a state- and input-dependent resistance

o Among the class of volatile memristors, those featuring a Negative Differential Resistance (NDR) region in their DC
current-voltage characteristic are of great interest
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Figure 1. Threshold switch characteristics and model schematic.
(a) Experimental and modeled current–voltage curve for a
110 ⇥ 110 nm2 niobium oxide threshold switch with an inset SEM
image of the crosspoint device. (b) Schematic cross section of the
device model during operation showing an electroformed NbO2
channel that consists of two cylindrical phases. (c) Schematic of the
relaxation oscillator circuit used in this work to characterize the
thermal transients within the phase transition threshold switch, U,
by means of measuring current transients with a 50 � input
impedance oscilloscope.

framework [23] and compared the model to the experimental
results, obtaining excellent agreement. We then utilized the
model in simulations to predict that a 10 nm radius device
could switch with an enthalpy input of 10 fJ in less than
100 ps. These results demonstrated that, at the nanoscale,
Joule-heating-induced CC-NDR devices can be compatible
with transistors in terms of switching speed and energy
requirements and thus could be extremely valuable in hybrid
integrated circuits [24–26].

2. Device fabrication and characterization

In order to experimentally examine the dynamics and
energetic properties of threshold switching in nanoscale
crosspoint devices, we fabricated niobium oxide devices
with the following nanoimprint lithography process. First,
a 110 nm wide bottom electrode was patterned on a Si
wafer with a 200 nm thick thermally grown oxide. This
bottom electrode consisted of a 2 nm thick Ti adhesion layer

under a 9 nm thick Pt conduction layer. Next, a 20 nm
thick amorphous Nb2O5 blanket layer was deposited over the
entire substrate at room temperature by reactively sputtering
a metallic Nb target with a gas mixture of 1/5:O2/Ar at
5 mTorr. The as-grown film composition and structure were
determined by in situ x-ray photoelectron spectroscopy (XPS)
and ex situ x-ray diffraction (XRD), respectively. Finally, a
crossing 110 nm wide, 11 nm thick Pt top electrode was
patterned with a liftoff process perpendicular to the bottom
electrode.

A scanning electron micrograph of a representative
device is included as figure 1(a). Before operation a 6 V, 10 µs
electroforming pulse was required to irreversibly modify the
low-bias resistance of the devices from the 10 G� virgin
state to the 1 M� operational regime. The forming step
has previously been attributed [12, 27] to a soft breakdown
process that generates a channel of crystalline NbO2, which
exhibits an insulator-to-metal transition at 1080 K [28],
within the oxide film. This explanation is similar to the
well-documented case of the electroformed TiO2 system, in
which a channel of reduced oxide forms that also exhibits
an insulator-to-metal transition [12, 29–31, 14]. A quasi-DC
current–voltage curve for an electroformed device is included
in figure 1(a), showing the threshold switching characteristic
of these devices. Note that in the experimental configuration
used for performing the quasi-DC voltage sweep, the negative
resistance region of the curve is unstable and there are
consequently no data points for that region. A cross-sectional
schematic of the device during operation is shown in
figure 1(b), illustrating our biphasic thermal switching model
for oxide threshold switches outlined in section 3.

We studied the switching dynamics of the nanodevices by
configuring them into a Pearson–Anson circuit [32, 33], a type
of van der Pol relaxation oscillator [34, 18], with the oxide
switch acting as the CC-NDR element. Relaxation oscillators
based on CC-NDR elements have been understood since
the early 1920s when Pearson and Anson first demonstrated
the effect using neon gas discharge tubes as the switching
elements [33, 32]. This circuit, as adapted for this experiment,
is shown schematically in figure 1(c). The CC-NDR element,
in this case the niobium oxide threshold switch, U, is
connected through the nanowire electrode series resistance,
Re, in parallel with an external capacitor, C. This parallel
combination is then attached to a DC source with a controlled
load resistance RL. We note that, although the threshold switch
itself has some intrinsic parallel capacitance, the nanoscale
size limits the magnitude to below one femtofarad, rendering
it negligible in comparison to the tens of picofarads of external
capacitance used in the experiment.

This classical circuit functions by spontaneously switch-
ing between two stages: in the first stage the switching
element is in the OFF (high resistance) state and the parallel
capacitor is charging, and in the second stage the switching
element is in the ON (low resistance) state and the parallel
capacitor is discharging. Transition between the stages occurs
when the CC-NDR element is driven to the instability points,
also referred to as the switching thresholds, which are located
at the two inflection points of the ‘S’ curve. When DC
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Figure 3. Component symbols (a), (e), neuristor layouts (b), (f), time series simulations (c), (g), and input time sensitivity (d), (h),
respectively, for the AND and NOT gates. The Z-input AND gate (b) weakly couples the input neuristors to the output neuristor because the
intermediate resistors damp the signals, and this requires simultaneous spiking on all inputs in order to excite an output (c). In the case of
the 3-input AND gate simulated in (c), one of the three spikes can arrive between 175 ns early and 75 ns late relative to the other two and
still trigger an output spike. The neuristor NOT gate (f) requires an assertion (ASRT) spike, which is propagated to the output neuristor
unless it is inhibited by an input spike, thus outputting the opposite of the input spike (g). The input spike must arrive less than 275 ns
earlier, and no later, than the assertion spike in order to inhibit an output (h).

OR gate is input time insensitive even with multiple inputs
since the first incident spike will be routed immediately to the
output, which in turn cannot be triggered for the remainder of
its refractory period. Thus the OR gate ignores late spikes (as
long as the latency is less than the refractory period).

3.5. AND gate

Time sensitivity is introduced with the AND gate because it
requires multiple spikes to be incident within a time window
in order to trigger the output. The symbol and schematic for
a 3-input AND gate are shown respectively in figures 3(a)
and (b). The AND gate is structured like an OR gate, but the
input neuristors are weakly coupled to the receiving neuristor.
The identical damping resistors are chosen such that (nearly)
simultaneous spikes on all of the inputs are required to trigger
the receiver, as demonstrated by the time series simulation
shown in figure 3(c). The AND gate can be generalized to a
multiple input weighted threshold gate by utilizing different
coupling resistances. The time sensitivity of spike arrival,
shown in figure 3(d), is critical for successful operation of the
gate. The simulation shows that one of the three input spikes
can be between 175 ns early or 75 ns late relative to the other
two for proper output firing behavior.

3.6. NOT gate

The NOT gate, for which the symbol and schematic are shown
in figures 3(e) and (f), respectively, is the second RITS gate

and is necessary to implement the CA. Since neuristor logic
is dynamic, the NOT gate requires two inputs rather than the
single input for static logic. This is necessary because a spike
must be produced at the output when the input is inactive,
but the timing of that output spike needs to be clocked. Thus
we use an assertion (ASRT) signal in addition to an input
signal, and their relative input times are critical for successful
operation. As shown in the schematic, we use a ‘half neuristor’
at the input, which is weakly coupled to the assertion signal
and the receiving neuristor. The half-neuristor is simply a
standard neuristor with M2 replaced with a resistor R2. If a
signal is incident on the half-neuristor, it pulls down its output
node and lowers the amplitude of the ASRT signal sufficiently
to inhibit activation of the receiver. However, if there is no
activity on the input the ASRT signal can propagate freely to
the receiver. The time series simulation of the NOT operation
and its time sensitivity are shown in figures 3(g) and (h),
respectively. The input signal can arrive up 275 ns before the
ASRT signal and still successfully inhibit its propagation to
the receiver, but it cannot arrive any later since the receiver
will already have been triggered.

4. Rule 137 automaton design and simulation

We choose to use a binary one-dimensional cellular
automaton to demonstrate the computational universality of
neuristors, because the cells are simple to design and simulate
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Figure 1. Neuristor symbol (top left) with its detailed internal
circuitry, including two locally active channels each with a load
resistor, capacitor and locally active memristor (RL, C and M), and
an output stage (ROut and COut). The DC voltages applied to each
channel power the neuristor and enable signal gain, and are implicit
in the neuristor symbol as for other active elements.

2. Neuristor design and properties

The neuristor was originally conceptualized by Crane [22]
over 50 years ago as a device to emulate a biological neuron
by generating a voltage spike upon sufficient excitation.
The original intent was to build Boolean logic circuits with
such devices, but the overwhelming success of transistor
integrated circuits dampened the enthusiasm for neuristors.
With the recent realization of a nanoscale-memristor based
neuristor [17], the possibility has emerged of utilizing them
in applications including transistor-free logic in thin film
circuits as well as augmenting CMOS circuits in hybrid
silicon-nanodevice architectures [13]. The neuristor used in
this work, shown schematically in figure 1, is composed of
two Mott memristors, three resistors and three capacitors.
Each memristor is biased with a positive or negative DC
voltage and, in conjunction with a parallel capacitor, acts as
a switchable dynamic conduction channel that can deliver
power to the central core from the power lines. The coupling
resistors between channels act to stabilize the circuit when it is
inactive and the parallel RC output stage acts to couple signals
between neuristors.

The detailed operation of a single neuristor was outlined
previously [17], but is summarized here for convenience
(referring to figure 1). When there is no signal incident at the
input, the neuristor is at rest and the input and output nodes sit
at a constant midpoint potential between +VDC and �VDC.
Upon positive excitation at the input, capacitor C1 charges
further and, if the excitation exceeds a sharp threshold,
memristor M1 is driven to its conductive state by Joule heating
through the phase transition [11]. Subsequently, the core
depolarizes (drops in voltage towards �VDC), further charging
capacitor C2. Memristor M2 is then driven to its conductive
state and the core hyperpolarizes towards +VDC. The end

result is a spike generated through the output stage, which
may be coupled to one or more receiving neuristors. After
a spike is initiated, there is a refractory period during which
the neuristor returns to its rest state and temporarily cannot
be re-activated. As shown below, the connections between
neuristors can be engineered to create components for logic
circuits. The silicon devices most comparable in terms of
functionality to neuristors are threshold logic gates [23].

Unless explicitly mentioned below, all neuristors sim-
ulated in this work have identical characteristics for the
memristors, resistors and capacitors. The memristor model
used in the simulations has been reported previously [17],
where it was shown to accurately reproduce measurements
of experimental devices. We have included a list of the pa-
rameters and memristor equations as supplementary materials
(available at stacks.iop.org/Nano/24/384002/mmedia) for the
sake of completeness of this communication. The simulations
were performed with LTSPICE.

3. Logic component design and simulation

The digital logic components here are adapted from
Wilamowski’s [19] scheme for neuristor logic rather than
Crane’s original proposal [22]. Since neuristors are dynamic
threshold spiking devices, the logic design is based on the
existence, interpreted as logical ‘1’, or absence, logical ‘0’,
of a spike at the input of a gate within a specific time window.
The neuristor cannot interpret a static input and cannot latch a
state, so component-to-component synchrony through parallel
pathways is key for successfully designing a logic circuit.
Long-term memory can be constructed with storage rings or
feedback pathways [19], but for this work was not necessary.
There are two types of components that we cover in this
section, relative input timing insensitive (RITI) and relative
input timing sensitive (RITS), for which the coincidence of
the inputs is critical for appropriate operation. Even for RITI
components, global synchrony of parallel logic pathways is
still critical.

3.1. Buffer/delay

The simplest RITI component is the buffer, which propagates
an above-threshold input spike to the output node, with
the symbol shown in figure 2(a). It is constructed, shown
schematically in figure 2(b), by placing X neuristors in series.
The buffer can be used to amplify the signal at the input from
the threshold excitation amplitude to the characteristic output
signal of a given neuristor. This may be necessary in cases
where neuristors interface with some other type of circuitry,
such as a sensor or a lossy transmission line. Since each
neuristor has a characteristic propagation time, ⌧ , the buffer
also acts as a unity gain delay and is used here to maintain
synchrony through otherwise asynchronous parallel logic
pathways. The characteristic input/output relationship for the
buffer is shown in figure 2(c) for X = 3, showing a forward
propagation time of 3⌧ ⇡ 300 ns. Figure 2(c) also shows that
neuristors can sustain backward propagation if an appropriate
depolarization spike is incident on the output node. While
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Figure 5. Simulation results for a single rule 137 cell excited with all eight combinations of possible inputs. The cell responds with an
output spike only when the input combination is 000, 011 or 111, as expected for rule 137. The cell propagation delay is T = 1.3 µs.

Figure 6. (a) Time series responses of the spike outputs of each cell on a six-cell CA after the initial condition in which only cell 1 is set to
‘1’. The initial state is propagated according to rule 137 through the CA and results in the space–time pattern shown in panel (b) where red
represents an active cell and blue represents an inactive cell. This particular combination of initial condition and CA structure exhibits a
state evolution with a periodicity of nine cell propagation times (9 T).

is activated if any of the active codes were input. This OR
gate thus outputs the completed evaluation of rule 137, which
is then fed through a rectifier and fanned out to three output
nodes. The node at the center of the cell, just after the rectifier,
is connected to external circuitry that is used to read the cell
state for each cycle with a voltage probe as well as inject
current to set the initial state of a cell. The rectifier is used
at this node to prevent backward propagation of spikes when
the initial condition is set with external circuitry.

4.2. Rule 137 simulation results

The operation of a single rule 137 cell based on neuristor
logic is included as figure 5. The cell responds as designed:
it outputs a spike for each of the active input codes and is
inactive for each of the other codes. There is a cell propagation
time of T = 1.3 µs for the signal to propagate completely from
the input nodes to the output. The cumulative propagation
time for each stage of the cell, indicated at the bottom of
figure 4(a), is equivalent to a total of 13 neuristor propagation

time constants, or 13⌧ . These results are consistent with the
single-cell propagation time of ⌧ ⇡ 100 ns simulated for a
single buffer.

We then simulated a six-cell rule 137 CA with periodic
boundary conditions according to the wiring configuration
shown in the schematic in figure 4(b). The initial condition
used was simple and intended to demonstrate proper
functionality of the automaton: the first cell was active while
the rest were inactive. Subsequent states of each cell were
read by the external voltage probe described above. The
results of the simulation, shown in figure 6 as a spike
time series (a) and a space–time pattern (b), indicate that
the state of the automaton evolved as expected for this
rule and initial condition, returning to its initial state after
nine cell propagation periods, 9 T. Although this particular
six-cell automaton is too short to be useful, extending the
array sufficiently will endow universality, which provides
a proof-of-principal demonstration that neuristor logic is
capable of universal computation.
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Figure 4. (a) Schematic of the partial decoder used for implementing a rule 137 cell with neuristors. Each cell contains seven serial stages
that are labeled as A–G and listed with their characteristic transit times in terms of the single neuristor transit time ⌧ . The initial state set and
subsequent state read operations are performed, respectively, with a current source and a voltage probe connected from outside circuitry to
each cell. All parallel pathways must exhibit equal transit times with equal numbers of neuristors in order to maintain propagation
synchrony. (b) Wiring diagram for the six-cell automaton simulated in this work with implicit cell self-connections and periodic boundary
conditions.

and because the locality and periodicity of computation allows
for straightforward extrapolation of simulation on a few
cells to a general statement about universality. Our CA is a
one-dimensional array of simple binary compute cells each
of which possesses an update rule that, at each discrete time
step, maps the state of a given cell to a new state based on its
current state and those of its nearest neighbors. Formally, this
mapping can be stated as:

s
i

t+1 = Fn

⇣
s

i�1
t

, s
i

t
, s

i+1
t

⌘

for state s at time t, cell index i, rule index n and with s 2
{0, 1}. There are 256 possible rules Fn based on this definition,
and each rule has consequently been named according to its
decimal index n in the set of these possible rules [21]. We
are interested in the rules which, for specific initial conditions
and sufficient lengths, can be used to evaluate any computable
function. Rule 110 was conjectured by Wolfram [21] and
ultimately proven by Cook [20] to be a universal CA. Here we
implement rule 137, which is also universal, since it responds
to three input sequences rather than the five for rule 110 and
consequently requires less circuitry to implement. Both rules
are enumerated in table 1 for comparison.

4.1. Rule 137 circuit implementation

We implemented rule 137 in a single cell with a decoder,
schematically shown in figure 4(a), to identify the active input
codes (‘000’, ‘011’ and ‘111’) and subsequently output a

Table 1. The binary inputs and associated outputs that define
one-dimensional CA rules 110 and 137: 110 is remapped into 137
by exchanging 0 and 1 in the inputs and outputs.

(si�1
t

, s
i

t
, s

i+1
t

) F110 (·) F137 (·)
( 0, 0, 0 ) 0 1
( 0, 0, 1 ) 1 0
( 0, 1, 0 ) 1 0
( 0, 1, 1 ) 1 1
( 1, 0, 0 ) 0 0
( 1, 0, 1 ) 1 0
( 1, 1, 0 ) 1 0
( 1, 1, 1 ) 0 1

spike to its output nodes. The input lines are wired as drawn
from the appropriate cells, labeled by an index i, in order for
the automaton to calculate the rule successfully. The first stage
of the input is similar to a binary address decoder in which the
code and its complement are fed to an array of AND gates.
This requires that each input be first fed into a 1–2 fan out
that branches to a complement code branch with a NOT gate
and a code branch with a delay, which keep the pathways
synchronous. Since this circuit requires a NOT gate, an ASRT
line must be used that effectively acts as a cell clock.

These six pathways are then fanned out or delayed further
according to how many 1’s or 0’s each input needs for
recognition of the active codes. This results in nine pathways,
one for each digit in the entire active code set. These are then
fed into three 3-input AND gates, which discriminate whether
or not an active code was input, and then an OR gate that
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STATE EQUATION OF AN EXTENDED MEMRISTOR

OHM’S LAW OF AN EXTENDED MEMRISTOR

main application: development of brain-like computing machines⇒

with lim
!→#$

𝑅(𝒙, 𝑖) ≠ ∞



• Volatile Memristors with NDR effects induce complex bio-mimetic
phenomena, e.g. the emergence of an All-or-None Spike reminiscent of
neuronal dynamics, in electrical circuits

The Origin for Complexity 4

Sketch of an Action Potential (a) and of a Spiking Neuron (b)

(a) (b)

• But how does complexity originate? What are the necessary conditions
for a physical system to exhibit emergent phenomena?



Illustrative scenario – Action Potential Propagation in a Chain of Neurons
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Hodgkin-Huxley (HH) [hod52] neuron axon membrane circuit model

(a) Time course of the capacitor voltage of the isolated cell for 𝐼%&' = 0A

vC,2RC RC vC,3vC,1 vC,Q-1 vC,QRC RC

C(1) C(2) C(3) C(Q-1) C(Q)

RC

One-dimensional array of identical diffusively-coupled HH neurons

(b) Time course of the capacitor voltage of each of the 𝑄 = 9 identical cells of the
array for 𝐼%&' = 0A. All cells except C(1) share the same initial condition as in (a)

(a)
(b)

A.L. Hodgkin, and A.F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol., vol. 117, pp. 500–544, 1952
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Chua’s Riddle
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• This is yet another example of Complexity. How may this happen?



What is 
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the

?Black Box
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Chua’s Riddle
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Hint : the Black Box contains just two basic 
linear two-terminal circuit elements
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The Answer
to 

Chua’s Riddle 
is the Essence of the 
Edge of Chaos
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Schrödinger, Prigogine, Eigen,
Gell-Mann, Turing, and Smale

have all been searching for a missing 
new Physics Principle 
to explain Complexity

in physical systems
12



and its Pearl,

the Edge of Chaos,

13

is in fact the

Missing New Principle

The Local Activity



Local Activity 
Principle

Complex and Emergent 

phenomena are impossible

without Local Activity
14



Necessary Conditions for Complexity

Erwin Schrödinger :
•External Supply of energy

Ilya Prigogine :
•Presence of nonlinearity

15



CijkCijk

Batteries Diodes with strictly -
monotone increasing 
constitutive relations 

Positive 
Resistances

• Each cell of the network is made of arbitrary interconnections of electrical
elements endowed with the two aforementioned conditions for Complexity

16

Positive 
Capacitances

Positive 
Inductances

• The coupling circuit is made up of positive linear resistors

• This would still prove insufficient for Complexity to emerge in the cellular array

Cellular Nonlinear Network



•Amplification of fluctuations

17

Necessary Conditions for Complexity

Murray Gell-Mann :



Fluctuations
in which physical variable ?

Ø position ?
Ø velocity ?
Ø pressure ?
Ø temperature ?
Ø chemical concentration ?
Ø voltage ?
Ø current ?

18



Answer:
None of 
the above !

19



20



21



Locally Active Memristor

Definition:

A current-controlled memristor M is locally active at an Operating 
Point 𝑄 = (𝑉$ , 𝐼$) if there exists an admissible small-signal stimulus 
𝛿i(t) such that

𝛿ℇ(𝑡!, ̅𝑡) = )
"!

̅"
𝛿𝑣(𝜏) , 𝛿i(𝜏) d𝜏 < 0

for some finite time ̅𝑡
A current-controlled memristor 

biased at 𝑄 = (𝑉!, 𝐼!)

+

_

𝑖(t) = 𝐼$+𝛿i(t)

𝑣(t) = 𝑉$+𝛿𝑣(t)

23
• Let us first introduce relevant preliminaries

• Luckily, there exists a powerful theorem
which simplifies this investigation

• Impractical for Testing!

M



Solve 𝑥̇ = 𝑓(𝑥, 𝐼%) = 0

Recipe for the derivation of the DC voltage-current locus of a memristor

State solutions: 𝑋& 𝐼% , … , 𝑋' 𝐼%

⇓
Calculate the corresponding voltage values from Ohm‘s law

⇓
Mark the following points on the current-voltage plane

Repeat the above procedure for each value of 𝐼% ∈ (−∞,∞)

⇓

𝑥̇ = 𝑓(𝑥, 𝑖)
𝑣 = 𝑅 𝑥 + 𝑖

𝑉& 𝐼% = 𝑅 𝑋& 𝐼% , 𝐼%, … , 𝑉' 𝐼% = 𝑅 𝑋' 𝐼% , 𝐼%

𝐼%, 𝑉&(𝐼%) , … , (𝐼%, 𝑉'(𝐼%))

• First-oder current-controlled generic memristor model:

⇒

!

𝑉/V

𝐼/A

⇓
Interpolate the current-voltage pairs derived in all the iterations

𝑉((𝐼%)

𝐼%

𝑉&(𝐼%)

𝑉)(𝐼%)

0
0

Memristor DC 𝑉 − 𝐼 characteristic

• Apply a DC current source 𝑖% = 𝐼% across the generic memristor ⇒ 𝐼 = 𝐼%

⇒

𝐼"

𝑖

M

+

_
𝑣

𝑄&=(𝐼%, 𝑉&)

𝑄)=(𝐼%, 𝑉))

𝑄(=(𝐼%, 𝑉()

24



Small-signal impedance of a current-driven memristor

𝒙̇ = 𝒇 𝒙, 𝑖
𝑣 = 𝑅 𝒙, 𝑖 / 𝑖

DAE set of a nth-order extended
memristor, 𝒙 = 𝑥!, 𝑥", … , 𝑥# $ ∈ ℝ#

𝑍! 𝑠 ≜
ℒ{𝛿𝑣(𝑡)}
ℒ{𝛿𝑖(𝑡)} =

𝑎" + 𝑎# < 𝑠 + 𝑎$ < 𝑠$ +⋯+ 𝑎% < 𝑠%

𝑏" + 𝑏# < 𝑠 + 𝑏$ < 𝑠$ +⋯+ 𝑏& < 𝑠&

1.   Linearize the DAE set about an operating point 𝑄 = (𝐼$ , 𝑉$)

A current-controlled memristor 
biased at 𝑄 = (𝑉!, 𝐼!)

+

_

𝑖(t) = 𝐼B+𝛿i(t)

𝑣(t) = 𝑉B+𝛿𝑣(t)
0

25Memristor DC 𝑉 − 𝐼 characteristic

𝑉/V

𝐼/A

𝑉$ = 𝑉(𝐼$)

𝐼$
0
0

𝑄=(𝐼$ , 𝑉$)
2.   Transform the linearized system in the Laplace domain

3.   The local impedance of the memristor is computed via

with 𝑚 ≤ 𝑛.

Steps:

with lim
%→'(

𝑅(𝒙, 𝑖) ≠ ∞
M



Local Activity Theorem

A current-driven one-port is Locally Active at Q ⇔ any one of 4 conditions applies:

27

• Note: conditions 2. and 3. refer to marginal cases

1. ZQ (s) has a pole in Re{s} > 0

2. ZQ (s) has a simple pole s = jωP on the imaginary axis, and

Res(ZQ , jωP) ≜ lim
)⟶jωP

𝑠 − jωP 𝑍+(𝑠)

is either a complex number or a negative real number

3. ZQ (s) has a multiple pole s = jωP on the imaginary axis

4. ℜ{ZQ (jω)} < 0 for at least one real-valued ω = ω0



A one-port

is said to be on the 

Edge of Chaos

if

it is locally active at some 

asymptotically-stable

operating point Q

Definition: Edge of Chaos

1. ZQ (s) has a pole in Re{s} > 0

2. ZQ (s) has a simple pole s = jωP on the imaginary axis, and

Res(ZQ , jωP) ≜ lim
)⟶jωP

𝑠 − jωP 𝑍+(𝑠)

is either a complex number or a negative real number

3. ZQ (s) has a multiple pole s = jωP on the imaginary axis

4. ℜ{ZQ (jω)} < 0 for at least one real-valued ω = ω0

A current-driven one-port is Locally Active at Q ⇔ any one of 4 conditions applies:

28

(only condition 4. from Local 

Activity Theorem applies)



Edge
of
chaos

local
passivity

local
activity

Edge of Chaos
is the 

“Pearl”
Embedded within

the domain of
Local Activity

29
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32

Chua’s 
Riddle: 

Solution



The voltage-controlled one-port within the 

black box is poised on the Stable Locally-

Active operating regime, also referred to as

Edge of Chaos

-2Ω

-2H

Y(s)

E

i 4Ω

Y’(s)

-E/2

0

Time Constant
τ = -1

i

i0

∞

2 2

2

I(s) 1 -1Admittance, Y'(s)= = =
V(s) (2 - 2s) 2 (s - 1)

-1 -1 (-1 - iω) 1 ωY'(iω)= = = +i
2(-1+ iω) 2(-1+ iω)(-1 - iω) 2 (1+ ω ) 2 (1+ ω )

1Re Y'(iω)= > 0, -  < ω < 
2(1+ ω )

¥ ¥

×0
ω

iω

1

-2Ω

-2H

Y(s)

E

i

-E/2

0
Time Constant

τ = 1

i

i0

2 2

2

I(s) 1 -1Admittance, Y(s)= = =
V(s) (- 2 - 2s) 2 (s + 1)

-1 - (1- iω) -1 ωY(iω)= = = + i
2(1+ iω) 2(1+ iω)(1- iω) 2 (1+ ω ) 2 (1+ ω )

-1Re Y(iω)= < 0, -  < ω < 
2(1+ ω )

¥ ¥

× 0
ω

iω

-1

Including the passive and linear resistor in series with 

the original one-port, the resulting overall voltage-

controlled one-port within the red box is poised on the 

Unstable Locally-Active operating regime
33
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A miniaturized volatile niobium oxide memristor with locally-active behaviour

NbO device stack from NaMLab

𝑉/V

𝐼/A

𝑉$

𝐼$

0
0

Qualitative sketch of the device DC 𝑉 − 𝐼 characteristic
obtained under current sweep. Blue: stable branch

𝑄 = (𝐼$ , 𝑉$)

𝑉/V

𝐼/A

𝑉$

𝐼$
())

0
0

Qualitative sketch of the device DC 𝐼 − 𝑉 characteristic obtained
under voltage sweep. Blue: stable branch. Red: unstable branch

𝑄()) = (𝑉$ , 𝐼$
()))

𝐼$
(&)

𝐼$
(()

𝑄(&) = (𝑉$ , 𝐼$
(&))

𝑄(() = (𝑉$ , 𝐼$
(())

stable
unstable

𝑖 B
(𝑡
)
=
𝐼 C +

-

v

i = 𝐼!

𝑣 B
(𝑡
)
=
𝑉 B +

-

𝑣
=
𝑉 B

i

-

+

stable

i = 𝐼!: load line

𝑣 = 𝑉': load line

Experimental observations

NDR region
(condition 4. from the Local
Activity Theorem holds at DC
at any NDR operating point)

NDR V-range



𝑑𝑥
𝑑𝑡 = 𝑔(𝑥, 𝑣)

𝑖 = 𝐺 𝑥 𝑣

𝐺 𝑥 = 𝑑C + 𝑑D𝑥 + 𝑑E𝑥E + 𝑑F𝑥F + 𝑑G𝑥G

𝑔 𝑥, 𝑣 = 𝑎C + 𝑎D𝑥 + 𝑏E𝑣E + 𝑐ED𝑣E𝑥 + 𝑐EE𝑣E𝑥E + 𝑐EF𝑣E𝑥F + 𝑐EG𝑣E𝑥G + 𝑐EH𝑣E𝑥H

A generic memristor model for the NbO threshold switch from NaMLab

with state evolution and memductance functions respectively expressed by

and

• To explain the experimental measurements, we developed a DAE set-based model for the NaMLab memristor:

𝑎C 𝑎D 𝑏E 𝑐ED 𝑐EE 𝑐EF 𝑐EG

𝑐EH 𝑑C 𝑑D 𝑑E 𝑑F 𝑑G

5.19 , 10, −2.05 , 10- 7.21 , 10, −0.07 , 10, 2.27 , 10. −2.40 , 10) 1.25 , 10/&

−2.69 , 10/. 6.50 , 10/( −6.66 , 10/. 2.14 , 10/- −2.14 , 10/&! 1.19 , 10/&(

Table 1 Parameter setting
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Memristor Dynamic Route Map (DRM) under Current Control
𝑑𝑥
𝑑𝑡 = 𝑔(𝑥, 𝐺ID 𝑥 𝑖)

𝑣 = 𝐺ID 𝑥 𝑖

Rewrite the DAE set as

Memristor DRM under a range of DC current values

• Irrespective of the DC current, there exists one and only 
one globally asymptotically stable operating point [1]

stable

[1] A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015

36



Memristor Dynamic Route Map (DRM) under Voltage Control
37

Memristor DRM under a range of DC voltage values

𝑑𝑥
𝑑𝑡 = 𝑔(𝑥, 𝑣)

𝑖 = 𝐺 𝑥 𝑣

Memristor DAE set:

• If the DC voltage lies within the NDR region, there exists three possible 
operating points, of which the intermediate NDR one is unstable [1]

stable
unstable

[1] A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015



𝑉%
+

−

𝑅%

𝑖
𝑣
+

−

DC biasing circuit [1]

Biasing circuit for stabilizing a NDR operating point on 
the DC locus of the voltage-controlled device

Note:

𝑣 =
𝑉0

1 + 𝐺(𝑥) , 𝑅0

𝑖 =
𝑉0 − 𝑣
𝑅0

load line

memristor voltage

[1] A. Ascoli, S. Slesazeck, H. Mähne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS–I, vol. 62, no. 4, pp. 1165–1175, 2015
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Stabilization of an Operating Point on the NDR Region of the 
DC Characteristic of the Memristor under Voltage Control

Triplet of memristor State Dynamic Routes 
(SDRs)  sharing one NDR operating point

Memristor DC I-V locus and triplet of Load 
Lines corresponding to the SDRs from (a) 

Enlarged view of (b) in the low current regime

• Applying a DC voltage 𝑉0 across the one resistor 𝑅0-one memristor ℳ series one-port in such a way that the load line
intersects the memristor DC characteristic in some NDR operating point 𝑄, the latter is stabilised provided

𝑅0 > − \𝑟
$
≜ −

1

\𝑑𝑖
𝑑𝑣 $

39

stabilization condition of a NDR operating point 𝑄

i.e. if and only if the modulus of the slope of the load line, i.e. 1/𝑅0, is smaller than the modulus of the slope of the device
DC characteristic at 𝑄, i.e. |−1/𝑟 $, which is the modulus of the memristor negative differential conductance at 𝑄



Small-Signal Equivalent Circuit Model of the Threshold Switch

𝑌$ 𝑠 =
ℒ{𝛿𝑖(𝑡)}
ℒ{𝛿𝑣(𝑡)}

= 𝐾 ,
𝑠 − 𝑧1,
𝑠 − 𝑝1,

where

40

• Local admittance of the voltage-controlled memristor about an operating point 𝑄 = 𝑉, 𝐼 :

𝑅&

𝑅) 𝐿

𝛿𝑖

𝛿𝑣
+

−𝑌$

Memristor small-signal equivalent circuit about 𝑄

𝑑𝑥
𝑑𝑡

= 𝑔(𝑥, 𝑣)

𝑖 = 𝑖 𝑥, 𝑣 = 𝐺 𝑥 𝑣

• Memristor DAE set:

7
𝐺 𝑥 = 𝑑# + 𝑑(𝑥 + 𝑑)𝑥) + 𝑑*𝑥* + 𝑑+𝑥+

𝑔 𝑥, 𝑣 = 𝑎# + 𝑎(𝑥 + 𝑏)𝑣) + 𝑐)(𝑣)𝑥 + 𝑐))𝑣)𝑥) + 𝑐)*𝑣)𝑥* + 𝑐)+𝑣)𝑥+ + 𝑐),𝑣)𝑥,
where

𝑅! =
1
𝐾 𝑅" = −

𝑝#!
𝐾 . (𝑝#! − 𝑧#!)

𝐿 =
1

𝐾 . (𝑝#! − 𝑧#!)

D𝑎 ≜
𝜕𝑔 𝑥, 𝑣
𝜕𝑥 -

D𝑏 ≜
𝜕𝑔 𝑥, 𝑣
𝜕𝑣 -

D𝑐 ≜
𝜕𝑖 𝑥, 𝑣
𝜕𝑥 -

D𝑑 ≜
𝜕𝑖 𝑥, 𝑣
𝜕𝑣 -

,,

𝑝.! = 𝑎

𝑧.! =
𝑎 ' 𝑑 − 𝑏 ' 𝑐

𝑑

𝐾 = 𝑑

7 and

Dependence of the memristor small-signal equivalent circuit parameters upon its DC operating point [2]

[2] A. Ascoli, A.S. Demirkol, R. Tetzlaff, S. Slesazeck, T. Mikolajick, and L.O. Chua, “On Local Activity and Edge of Chaos in a NaMLab Memristor”, Frontiers in Neuroscience, 
2021, DOI: 10.3389/fnins.2021.651452



Classification of all possible operating regimes of the 𝑅--ℳ one-port under both voltage and current control 

Classification of the Possible Operating Regimes of the 𝑅!-ℳ one-port

𝑅0 = − \𝑟
$
≜ −

1

\𝑑𝑖
𝑑𝑣 $

: locus of points along the frontier between LP and LA operating regimes

𝑅0

𝑖
𝑣
+

−

A
𝑅0−ℳ one−port

ℳ
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Memristive Variant of the Pearson-Anson Relaxation Oscillator
and Its Small-Signal Equivalent Circuit Model

𝑍2 𝑠 =
ℒ{𝛿𝑣3(𝑡)}
ℒ{𝛿𝑖3(𝑡)}

= 𝐾 ,
𝑠 − 𝑠4,6.

𝑠 − 𝑠7/,6. , 𝑠 − 𝑠70,6.

𝐾 =
1
𝐶

𝑠3,5/ = −
𝑅$
𝐿

where

𝑑𝑣
𝑑𝑡 =

1
𝐶
𝑉% − 𝑣
𝑅%

− 𝑖

𝑑𝑥
𝑑𝑡

= 𝑔 𝑥, 𝑣

𝑖 = 𝐺 𝑥 , 𝑣

State equations of the second-order cell:

where 𝐾, 𝑠4,6., and 𝑠71,6. for 𝑖 ∈ {1,2} may be expressed in terms of the 
parameters of the memristor small-signal equivalent circuit model as

• Local input impedance of the oscillator at the coupling port 𝐴 − 𝐵

Memristive variant of the Pearson-Anson oscillator

𝑠60,5/ = −
𝑅$
𝐿 +

𝑅# + 𝑅7
𝐶 < 𝑅#< 𝑅7

±
1
2 <

𝑅$
𝐿 +

𝑅# + 𝑅7
𝐶 < 𝑅#< 𝑅7

$
− 4 <

1
𝐿 < 𝐶 1 + 𝑅$ <

𝑅# + 𝑅7
𝑅# < 𝑅7

𝑅&

𝑅) 𝐿

𝑅% 𝐶
𝑍2

𝛿𝑖3

𝛿𝑣3
+

−

Oscillator small-signal equivalent circuit about 𝑄8 = (𝑋, 𝑉) [3] 

, ,

[3] A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos behind Diffusion-Driven Instabilities in a Two-Memristor-Cell Array,” IEEE TCAS–I, 2021, in press
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𝐵

𝑣3𝑉%
+

−

𝑅%

𝑖
𝑣
+

−
𝐶𝑣8

+

−

𝑖92

𝑍2

𝐴

+

−



Scenario 1: Cell dynamics when the memristor ℳ is polarized in one and only one 
positive differential resistance (PDR) operating point 

Cell phase portrait for 𝑉0 = 0.7275 V and 𝑅0 = 330 Ω. Cell phase portrait for 𝑉0 = 2.5392 V and 𝑅0 = 30 Ω. 

• If 𝑉0 and 𝑅0 are such that the load line meets the memristor DC I-V locus at one point 𝑄 = (𝑉, 𝐼), lying either in the lower or in 
the upper PDR branch, the cell features one globally asymptotically stable (GAS) operating point 𝑄2 = (𝑋, 𝑉), irrespective of 𝐶. 

• In both simulation results to follow, 𝐶 was set to 5 nF
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Scenario 2: Cell dynamics when the memristor ℳ may stabilize in either of the 
two positive differential resistance (PDR) regions

• Assume 𝑉0 and 𝑅0 are such that the load line intersects the memristor DC I-V locus at 𝑄: = 𝑉: , 𝐼: , where 𝑖 ∈ {1,2,3}. 𝑄: lies in 
the lower (upper) PDR branch for 𝑖 = 1 (3), while it sits in the NDR branch for 𝑖 = 2. Correspondingly, the ith cell operating 
point 𝑄2,: = (𝑋: , 𝑉:) is found to be locally-stable for each 𝑖-value in {1,3} (unstable for 𝑖 = 2), irrespective of 𝐶.

Cell phase portrait for 𝑉0 = 0.875 V and 𝑅0 = 0.5 Ω. 

• In the simulation result to follow, 𝐶 was set to 100 nF
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The cell is poised on the Edge of Chaos at 𝑄8 The cell is poised on the Unstable Locally Active Domain at 𝑄8

Scenario 3: Cell dynamics when the memristor ℳ is polarized in one and only 
one negative differential resistance (NDR) operating point

Cell phase portrait for 𝑉0 = 1.3 V , 𝑅0 = 100 Ω , and C = 2 nF. Cell phase portrait for 𝑉0 = 1.3 V , 𝑅0 = 100 Ω and C = 6 nF . 

• If 𝑉0 and 𝑅0 are such that the load line intersects the memristor DC I-V locus only in a point 𝑄 = (𝑉, 𝐼), lying on the NDR 
branch, the cell stability in the corresponding operating point 𝑄2 = (𝑋, 𝑉) depends critically upon 𝐶.

45

OSCILLATOR DESIGNSILENT CELL 
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Classification of Cell Operating Regimes for all Possible Cases Studies in Scenario 3

• Case study: if 𝑉0 = 1.3V, we have 𝑋 = 389, 𝑉 = 0.994V

For C < t𝐶 = 4.085nF the cell is poised on the EOC domain

For C > t𝐶 = 4.085nF the cell is poised in the unstable LA domain

• Assume the device needs to be polarised in a specific point 𝑄 = (𝑉, 𝐼) along the NDR branch of its DC V-I locus. 
the bias point stabilization condition for the voltage-controlled memristor applies throughout the NDR branch→• Let 𝑅0 = 100Ω

Classification of all possible operating regimes of the cell in scenario 3
• A supercritical Hopf bifurcation occurs along the locus 𝐶 = t𝐶(𝑋).
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A stable operating point Q of a given one-port
may be destabilized by coupling the one port to a 

passive environment if and only if 
Q is poised on the 

Edge of Chaos 

Fundamental Result
Edge of Chaos Theorem 



Coupled System

where

𝑑𝑣#
𝑑𝑡

=
1
𝐶
𝑉7 − 𝑣#
𝑅7

− 𝑖# +
𝑣$ − 𝑣#
𝑅9

𝑑𝑥#
𝑑𝑡

= 𝑔 𝑥#, 𝑣#

𝑖# = 𝐺 𝑥# < 𝑣#

𝑖$ = 𝐺 𝑥$ < 𝑣$

𝑑𝑣$
𝑑𝑡 =

1
𝐶
𝑉7 − 𝑣$
𝑅7

− 𝑖$ +
𝑣# − 𝑣$
𝑅9

𝑑𝑥$
𝑑𝑡

= 𝑔 𝑥$, 𝑣$
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• State equations:

𝑉0
+

−

𝑅0
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• Two identical cells, poised on the EOC on their own, are diffusively coupled through a passive and linear resistor 𝑅8

• The common expectation is that, irrespective of 𝑅8 , the memristive array would admit the homogeneous solution, 
where each of the two identical cells converges to the GAS operating point it would approach in the uncoupled case.

• Surprisingly, this is the case only for appropriately large 𝑅8 values.



• For C = 4nF < t𝐶 = 4.085nF the uncoupled cell is poised on the EOC domain

Uncoupled cell under silence, and Homogeneous Solution of the Two-Cell Array 

• Uncoupled cell, memristor bias parameters: 𝑅0 = 100Ω, and 𝑉0 = 1.3V.

Uncoupled cell, approaching toward a globally asymptotically
stable operating point (silent state) as times goes to infinity

Homogeneous solution of the two-cell array. Here 𝑅; = 50Ω

• Coupling two identical copies of this cell via a resistor of large resistance, the resulting array displays the homogeneous solution
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Static Turing patterns

Development of an inhomogeneous static solution, i.e. a Turing pattern, in the two-cell array for 𝑅9 = 40Ω

• The destabilisation of the homogeneous solution first gives way to a Turing pattern for 𝑅8 = 49.7Ω
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Dynamic Patterns

Development of an oscillatory solution, i.e. a dynamic pattern, in the two-cell array for 𝑅9 = 25Ω

• Decreasing the coupling resistance further, oscillatory waveforms first develop in the cellular medium at the expenses of the
inhomogeneous static solution for 𝑅8 = 28.1 Ω
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Hints for Explaining the Origin for the Diffusion-driven 
Instabilities in the Two-Cell Array via Edge of Chaos Theory
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−
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= +𝑍82 !/2
𝑠 || ( 𝑅9+ +𝑍83 !/3

𝑠 )

[3] A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos behind Diffusion-Driven Instabilities in a Two-Memristor-Cell Array,” TCAS-I, in press

• As 𝑅8 is decreased, a 1st bifurcation occurs, when 1 of the 4 poles of |𝑍= $6 for 𝑄3/ ≡ 𝑄30 = (𝑋, 𝑉) moves to the RHP, i.e. for [3] 

where 𝑄; = 𝑄<! , 𝑄<" ,

• As 𝑅8 is decreased further, a 2nd bifurcation occurs when a complex conjugate pole pair of |𝑍= $6 for 𝑄3/ ≠ 𝑄30 move to the RHP  

𝑅7 =
−2 < 𝑟" (𝑋)

1 + 𝑟"(𝑋)
𝑟! 𝑋 || 𝑅

• The closed-form expressioon for the small-signal impedance of the memristor array is

Numerically, it matches the value of 49.7 Ω, computed numerically earlier, at which a Turing pattern is born in the array.

Using a numerical method to track the evolution of the poles of |𝑍= $6 on complex plane, the theory predicts the value 28.1 Ω, at 
which the cells were first found to pulse together, forming a dynamic pattern, in numerical simulations [3].

with 𝑄<! = (𝑋#, 𝑉#) ≠ 𝑄<" = (𝑋$, 𝑉$)
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Static Turing Patterns in a Ring of Memristor Oscillators

An 8-cell ring topology
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Cell circuit

Emergence of an inhomogeneous static solution (Turing pattern) in a 50-cell ring array. 
In pink the uncoupled cell convergence to a locally-active and stable operating point.
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Conclusions

• The theory of Local Activity [2] shall enable the development of a systematic and rigorous approach to design
bio-inspired circuits with small-signal memristive amplifiers [3]-[4]

• Applications include the development of high-performance brain-like machines and biologically-plausible
neuromorphic systems [5]-[6]

• Edge of Chaos may be interpreted as a new Physics Principle which extends the Second Law of
Thermodynamics to Open Systems

• I presented the simplest ever reaction-diffusion system supporting the Smale Paradox phenomenon and
explained once and for all the mechanisms behind diffusion-driven static and dynamic pattern formation [1]
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• This Principle explains the hidden mechanisms underlying the Emergence of Heterogeneous Patterns in
Homogeneous Media, what Prigogine defined as the Instability of the Homogeneous
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