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The Key Technology to enable IC performance growth beyond the Moore’s Era
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S. Salahuddin, K. Ni, and S. Datta, “The era of hyper-scaling in electronics,” Nature Electronics, vol. 1, no. 8, pp. 442-450, 2018

Z.Sun, G. Pedretti, E. Ambrosi, A. Bricalli, W. Wang, and D. lelmini, “Solving matrix
equations in one step with cross-point resistive arrays,” Proceedings of the National
Academy of Sciences, vol. 116, no. 10, pp. 4123-4128, 2019.

D. lelmini and H. S. P. Wong, “In-memory computing with resistive
switching devices,” Nature Electronics, vol. 1, no. 6, pp. 333-343, 2018.

Shrinking transistor sizes shall no longer be feasible in the years to come

o The disruptive memristor technologies allow to fabricate nanodevices with state-dependent

resistances, capable to sense, store, and compute data in the very same physical medium.

o Memristors enable the hardware implementation of novel bio-inspired data processing paradigms, e.g. in-
memory computing, allowing to boost the performance of purely-CMOS hardware

Nonlinear circuit and system theory assumes a primary role in the development of robust IC designs
with inherently-nonlinear memristor devices



Volatile Memristor Memories with Small-Signal Amplification Capability

The most general definition of a n' order current-controlled memristor Mis a Differential Algebraic Equation (DAE) set of the form

ax _
d_t_f(xll)

v=v(x,i)=R(x,i) -1,

STATE EQUATION OF AN EXTENDED MEMRISTOR

with lim R(x, i) * 00 OHM'’S LAW OF AN EXTENDED MEMRISTOR
i—»0A

where x = [xq, ..., x, |T € R™ is a n-dimensional state, and R(x, 1) is a state- and input-dependent resistance

o 1If, turning the power off, R(x(t),i = 0A) is found to converge toward one state from an analogue continuum or toward one

of a few (at least two) isolated states, depending upon the initial condition x(0), the memristor is said to be non-volatile

Among the class of volatile memristors, those featuring a Negative Differential Resistance (NDR) region in their DC
current-voltage characteristic are of great interest = main application: development of brain-like computing machines
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The Origin for Complexity

* Volatile Memristors with NDR effects induce complex bio-mimetic
phenomena, e.g. the emergence of an All-or-None Spike reminiscent of
neuronal dynamics, in electrical circuits
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Sketch of an Action Potential (a) and of a Spiking Neuron (b)

*  But how does complexity originate? What are the necessary conditions
for a physical system to exhibit emergent phenomena?



Hlustrative scenario — Action Potential Propagation in a Chain of Neurons
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(a) Time course of the capacitor voltage of the isolated cell for I,,; = 0A (b) Time course of the capacitor voltage of each of the Q = 9 identical cells of the

array for I,,; = 0A. All cells except C(1) share the same initial condition as in (a)

A.L. Hodgkin, and A.F. Huxley, “A quantitative description of membrane current and its application to conduction and excitation in nerve,” J. Physiol., vol. 117, pp. 500-544, 1952






Chua S Riddle

Exponential waveform
with time constant 7 =1

z(t)——§+[zo+ 2} et

Exponential waveform
with time constant T > 1




Chua’s Riddle

Exponential waveform

T-E/Z- -------------------------------------------------- with time constant T = 1
(1) = _L£ +[i0 +£} et
2 2

 This is yet another example of Complexity. How may this happen?



What is
inside

the

Black Box [




Chtga s Riddle

Exponential waveform
with time constant T = 1

i(t) = —g + [io + g} et

Hint : the Black Box contains just two basic
linear two-terminal circuit elements
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The Answer
to

Chua’s Riddle

1S the Essence of the

Edge of Chaos




Schrodinger, Prigogine, Eigen,
Gell-Mann, Turing, and Smale

have all been searching for a missing

new Physics Principle

to explain Complexity

in physical systems



Fhhe Lacal Uctivity

and its Pearl,

the Edge of Chass

Is in fact the

Missing New Principle




Local Activity
Principle

Complex and Emergent

phenomena are impossible

without Local Activity




Necessary Conditions for Complexity

Erwin Schrodinger :

* External Supply of energy
Ilya Prigogine :

* Presence of nonlinearity




* FEach cell of the network is made of arbitrary interconnections of electrical
elements endowed with the two aforementioned conditions for Complexity

* The coupling circuit is made up of positive linear resistors

* This would still prove insufficient for Complexity to emerge in the cellular array
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Necessary Conditions for Complexity

Murray Gell-Mann :

* Amplification of fluctuations




Fluctuations
in which physical variable ?

» position ?

» velocity ?

> pressure ?

> temperature ?

» chemical concentration ?
> voltage ?

> current ?




Answer:

None of

the above !



The
asserts that the
correct pnhysicall vanable

Whoese  amplification’ IS
essential for | ie
EMENIE IS




| Definition: Local Activity ||
- Any system
is said to be
locally active

iff

it is capable of
amplifying infinitesimal
fluctuations in energy




Locally Active Memristor

Definition:

i(t) = I, +6i(t) A +

A current-controlled memristor M s locally active at an Operating
Point O = (V,, 1,) if there exists an admissible small-sienal stimulus
< > M v(t) = Vo+8u(?) 0= Wo.lo) ¥ ¢

0i(7) such that

6E(ty, ) = | dv(t) « di(t)dt <0

to

. for some finite time ©
A current-controlled memristor

biased at Q = (Vy, 1) * Impractical for Testing!

* Luckily, there exists a powerful theorem
which simplifies this investigation

Let us first introduce relevant preliminaries




Recipe for the derivation of the DC voltage-current locus of a memristor

: : l
| . . x = f(x,i)
 First-oder current-controlled generic memristor model: , +
v=R(x)-i ] .
S

« Apply a DC current source i; = I across the generic memristor — =1, M

— Solve x = f(x,I;) =0 = State solutions: X; (), ..., X, (Is)

\

VIV Calculate the corresponding voltage values from Ohm's law
AT
Vi) = R(X.U)) I, oy Vo) = R(Xp(Us)) - I
Q3=(Is, V3)
Vs (Is) """"" ; U
! Mark the following points on the current-voltage plane
V() fmmm-m=s L Q=I5 V)
= | U i) s U Vo)
Vills) o= rQ1=(I5, V1) U’
0 ' > /A
ffff 0 I Repeat the above procedure for each value of I, € (—o0, )
Memristor DC IV — I characteristic U

Interpolate the current-voltage pairs derived in all the iterations




Small-signal impedance of a current-driven memristor

l(f) =] 0 +6 i(l‘) A current-controlled memristor
> biased at Q = (Vp,1g)

+ X = f (x’ i) DAE set of a n'h-order extended

= R(x, i)+ i with lim R(x,i) # 0o memristor; x = 1, %0, ., 1, ]T € RP

M v(t) = Vo +8v(?)
Steps:

1. Linearize the DAE set about an operating point Q = (I, V)

2. Transform the linearized system in the

3. The local impedance of the memristor is computed via

LEv(®)} agtaz-s+ay s+t ay-s™
L{5i(t)} bo+by-S+by-s2+--+b,-s"

ZQ(S) =

with m < n.

0

Memristor DC V — I characteristic




Local Activity Theorem

A current-driven one-port is Locally Active at Q < any one of 4 conditions applies:

1. Zy (s) has a pole in Re{s} > 0
2. Zy (s) has a simple pole s = jowp on the imaginary axis, and
Res(Zp,jwp) 2 lim (s — jowp) Zy(s)
s—jWp

is either a complex number or a negative real number
3. Zy (s) has a multiple pole s = jowp on the imaginary axis

4. R{Zy (jw)} < 0 for at least one real-valued o = w

Note: conditions 2. and 3. refer to marginal cases




Definition: Edge of Chaos

A one-port

is said to be on the

Edge of Chaos
if
it is locally active at some
asymptotically-stable
operating point Q

(only condition 4. from Local

Activity Theorem applies)

A one-port is Locally Active at Q < any one of 4 conditions applies:

1. Zy (s) has a pole in Re{s} > 0

2. Zy () has a simple pole s = jowp on the imaginary axis, and

Res(Z,,jwp) £ lim (s —jwp) Zo(s)

s—jp
is either a complex number or a negative real number

3. Zy (s) has a multiple pole s = jwp on the imaginary axis

4. R{Zp (jo)} < 0 for at least one real-valued o = w,




Edge of Chaos
Is the

local local “P ear l »

passivity activity

Edge

Embedded within

Frao the domain of
Local Activity




Edge of Chaos
is an innate
Characteristic of a

dynamical system.
It does not depend on
the external environment
1t interacts with.




Chua’s

Riddle:
Solution




>
T

iOQConstant
T

Admittance, Y(s)=

Y(io)=

Y(s)

Iy_ 1 _ -l
V(s) (-2-25) 2(s+1)

Time Constant

A (i) 1. o
Al+iw) 21+io)(l-iv) 2(1+0°) 2(1+0’)

Re Y(in)= 10’

<0, -0o<@w<owo

Y(s)
Admittance, Y'(s)= Iy__1 _ -
Vis) (2-2s) 2(s-1)
d -(l-ie) 1 ®

2(-1+iw)_2(-1+iw)(-1-iw)_2(1+w2)+l 2(1+0°)

Y'(iw)=

Re Y'(iw)= > 0,

2(1+0’)

The voltage-controlled one-port within the

black box is poised on the Stable Locally-

Active operating regime, also referred to as

Edge of Chaos

Including the passive and linear resistor in series with
the original one-port, the resulting overall voltage-
controlled one-port within the red box is poised on the

Unstable Locally-Active operating regime




A miniaturized volatile niobium oxide memristor with locally-active behaviour

TE

Experimental observations

50 nm >
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Q i = Ip:load line ? ) i i : o unstable
3 I I i
--------- 3
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T . . i<— NDR V-range —>i
Qualitative sketch of the device DC VV — I characteristic : :
obtained under current sweep. Blue: stable branch Qualitative sketch of the device DC [ — IV characteristic obtained

under voltage sweep. Blue: stable branch. Red: unstable branch 34



A generic memristor model for the NbO threshold switch from NaMLab

* To explain the experimental measurements, we developed a DAE set-based model for the NaMLab memristor:

(dx

I g(x,v)
=G(x)v

\

with state evolution and memductance functions respectively expressed by

g(x,v) = ag + a;x + byv? 4+ c31V%x + €3o12x2 + 30%%3 + €02 x* + s v2x°

and
G(x) =dy+dyx +dyx? +dyx3 + dyx*

Table 1 Parameter setting

Ao aq b, C21 C22 C23 C24
519 -10° | —2.05-107| 7.21-: 10° —0.07 - 10° 2.27 - 10° —2.40-10% 1.25-1071
€25 d dq d, ds dy

—2.69-107° 6.50 - 1073 —666-10~5 | 214-10"7 |—214-10"'° | 1.19-107%3

35



Mempristor Dynamic Route Map (DRM) under Current Control
Rewrite the DAE set as ( dx

)= g(x, G~ (x)0)

k v=_G6"1(x)i
14 I Y T
1 1
® stable : :
121 ; I=207mA y I =492mAl - 7
' I = 11.80mA '
10 Y ]
‘\
8 I =0.68mA :
‘|
\
\

-+ Irrespective of the DC current, there exists one and only
one globally asymptotically stable operating point [1]

1

\ k \ \ \ \ ‘1\ *

0 200 400 600 800 1000 1200 1400
X

Memristor DRM under a range of DC current values

[1] A. Ascoli, S. Slesazeck, H. Mahne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS—/, vol. 62, no. 4, pp. 1165-1175, 2015
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Memvristor Dynamic Route Map (DRM) under Voltage Control

Memristor DAE set: (
dx B
< dt'_ng(x’v)
I =G(x)v
\
14 \ \ T
® stable

12 O unstable

10

| = Ifthe DC voltage lies within the NDR region, there exists three possible
operating points, of which the intermediate NDR one is unstable [1]

V =0.875V

V =0.625V | | |
0 200 400 600 800 1000 1200 1400
x

|
1600 1800

Memristor DRM under a range of DC voltage values

[1] A. Ascoli, S. Slesazeck, H. Mahne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS—/, vol. 62, no. 4, pp. 1165-1175, 2015



Biasing circuit for stabilizing a NDR operating point on
the DC locus of the voltage-controlled device

Note:

NS

4R

—/
2

S "T14600) Rs

DC biasing circuit [1]

[ =

Vs

Vs—v

S

memristor voltage

load line

38

[1] A. Ascoli, S. Slesazeck, H. Mahne, R. Tetzlaff, and T. Mikolajick, “Nonlinear dynamics of a locally-active memristor,” IEEE TCAS—/, vol. 62, no. 4, pp. 1165-1175, 2015
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Stabilization of an Operating Point on the NDR Region of the
DC Characteristic of the Memristor under Voltage Control

(b) 400 — " (c) 15
—— R, =09, V, =0937V —— DC I-V characteristic ——— DC I-V characteristic
——R,=1059Q,V, =1V 350 — V=V, V,=0937V —— V=V, V,=0937TV
—— R, =330Q,V, =29V Qr —— I=(V;=V)- R}, Ry =10.59Q, V, =1V —  I=(V,—V)-R;, R, =1059Q, V, =1V Qr
300 — I=(V;=V) R}, Ry =330Q, V; =29V 10 —— I=WVi=V)-R;!, Ry=330Q, V, =29V
250
<
g
~ 200
~
150
100
"""""""""""""""""""""""""""""" 50 Q-
A (@
0 o~ 5
200 400 600 800 1000 1200 1400 1600 1800 0 o5 Q@ 1 @ 15 2 25 3 0 025 0.5 0.75 1 1.25
T V/V V/V

Triplet of memristor State Dynamic Routes
(SDRs) sharing one NDR operating point

Memristor DC I-V locus and triplet of Load
Lines corresponding to the SDRs from (a)

Enlarged view of (b) in the low current regime

Applying a DC voltage Vs across the one resistor Rg-one memristor M series one-port in such a way that the load line
intersects the memristor DC characteristic in some NDR operating point (, the latter is stabilised provided

RS > —r|

Q

stabilization condition of a NDR operating point ()

i.e. if and only if the modulus of the slope of the load line, i.e. 1/R, is smaller than the modulus of the slope of the device
DC characteristic at Q, i.e. —1/r|,, which is the modulus of the memristor negative differential conductance at Q
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Small-Signal Equivalent Circuit Model of the Threshold Switch

«  Memristor DAE set: dx
Frin g(x,v) g, v) = ag + ayx + bv? + ¢ 02x + €30%x2 + cp302x3 + 042t + cp5v2% x5
where
. l(x U) G(X)U G(X) = dO + dlx + d2x2 + d3X3 + d4x4
1= , =
* Local admittance of the voltage-controlled memristor about an operating point Q = (V,1):
dg(x,v)
_ K=d L 0g9(x,v) . )
L{6i(t)} S~ Zy, a-d—b-c =05 b= v
Yo() = ——F=K-—— | where { z,= — and Q Q
L{ov(t)} S = Prq 9i(x, v) 9i(x, v)
%
¢ 0 Q
(a) 10* (b) 1010 (c) 10
unstable under voltage control unstable under voltage control unstable under voltage control
Rz L stable under voltage ioxltrol stable under voltaglc control ) stable under voltage iontrol
[YYY\ 10
si [ |
0
Oﬁ—ﬂ Pr—— c 10
4 G ~ .
~ 102 ~ ~ 102
AW & < S
|—> ov R o
— 1 10’
YQ o 1078
1 1 10300 400 600 800 1000 1200 1400 1600 1800 200 400 600 800 1000 1200 1400 1600 1800 -300 400 600 800 1000 1200 1400 1600 1800
Py X X X
R - = R = — Q ’ =
1 K 2 K- (pYQ — ZYQ) K- (pYQ - ZYQ) D . . . . . . . .
ependence of the memristor small-signal equivalent circuit parameters upon its DC operating point [2]

Memristor small-signal equivalent circuit about Q
[2] A. Ascoli, A.S. Demirkol, R. Tetzlaff, S. Slesazeck, T. Mikolajick, and L.O. Chua, “On Local Activity and Edge of Chaos in a NaMLab Memristor”, Frontiers in Neuroscience,
2021, DOI: 10.3389/fnins.2021.651452



‘ Classification of the Possible Operating Regimes of the R;-M one-port

Rs
o N\
_|_
%
) _
A
Rg=M one—port

B LP domain [ Unstable (stable) LA domain under voltage (current) control
50

Rs /0

800 1000 1200 1400 1600
X

Classification of all possible operating regimes of the Rg-M one-port under both voltage and current control

400 600

2 — —— : locus of points along the frontier between LP and LA operating regimes
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Memristive Variant of the Pearson-Anson Relaxation Oscillator
and Its Small-Signal Equivalent Circuit Model

42

ir R 4 * Local input impedance of the oscillator at the coupling port A — B
S S
>—\WW\ . ? o L{6v,(t s—Ss
_I_ + i + + ZO(S) — L{a.O( )}:K- Z,ZO
Vs C) 1% Ve== C vy (—l {010 ()} (S N Sp1»Zo) | (S N SPz:Zo)
— B | . Z where K, s,  , and s, ; fori € {1,2} may be expressed in terms of the
parameters of the memristor small-signal equivalent circuit model as
Memristive variant of the Pearson-Anson oscillator X 1 R,
- = ) SZIZO = -7 )
State equations of the second-order cell: L
f B <R2+R1+Rs)+1 <R2+R1+RS>2 A 1 (1+R R1+Rs)
dx piZo = "\ T C.Ry-RJ) T2 L TC-RR, L-C 2R, R,
E = g(x» U)
\ R, L
v _1 (Vs —v_ l-) . AV A
| dt C\ R ) 5} i i
+ ®
where . | AWV
) 67.70 S C T
i=G(x) v 7 R,
o -

Oscillator small-signal equivalent circuit about Q, = (X, V) [3]

[3] A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos behind Diffusion-Driven Instabilities in a Two-Memristor-Cell Array,” IEEE TCAS—I, 2021, in press



Scenario 1: Cell dynamics when the memristor M is polarized in one and only one
positive differential resistance (PDR) operating point

If Vs and Rs are such that the load line meets the memristor DC I-V locus at one point Q = (V, I), lying either in the lower or in
the upper PDR branch, the cell features one globally asymptotically stable (GAS) operating point Q, = (X, V), irrespective of C.

In both simulation results to follow, C was set to 5 nF
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Cell phase portrait for Vg = 2.5392 V and Rg = 30 ().
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Cell phase portrait for Vg = 0.7275 V and Rg¢ = 330 Q.
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Scenario 2: Cell dynamics when the memristor Ml may stabilize in either of the
two positive differential resistance (PDR) regions

« Assume Vs and R are such that the load line intersects the memristor DC I-V locus at Q; = (V;, I;), where i € {1,2,3}. Q; lies in
the lower (upper) PDR branch for i = 1 (3), while it sits in the NDR branch for i = 2. Correspondingly, the ith cell operating

point Q,; = (X;, V;) 1s found to be locally-stable for each i-value in {1,3} (unstable for i = 2), irrespective of C.

e In the simulation result to follow, C was set to 100 nF
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Scenario 3: Cell dynamics when the memristor M is polarized in one and only
one negative differential resistance (NDR) operating point

If Vs and Rs are such that the load line intersects the memristor DC I-V locus only in a point Q@ = (V, I), lying on the NDR

branch, the cell stability in the corresponding operating point Q, = (X, V) depends critically upon C.

The cell is poised on the Edge of Chaos at @, The cell is poised on the Unstable Locally Active Domain at Q,

(a) 14 ‘ ‘ (b) 14 ‘ ‘ ‘ ‘ ‘ ‘ ‘
SILENT CELL OSCILLATOR DESIGN
1.2 = v '; 1.2 [
/
Qo 4
1 A 1F
~-l z-nullcline | | .- sl S
=08t [\ N\ ¥ T - P08
\ ; . \
S ; v,-nullcline =
06 |i . = 0.6
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Cell phase portrait for Vg = 1.3V, Rg =100, and C = 2 nF. Cell phase portrait for V¢ = 1.3V, Rg = 100 and C = 6 nF .



‘ Classification of Cell Operating Regimes for all Possible Cases Studies in Scenario 3

* Assume the device needs to be polarised in a specific point Q = (V,I) along the NDR branch of its DC V-I locus.

* Let R¢ =100 — the bias point stabilization condition for the voltage-controlled memristor applies throughout the NDR branch

[ stsable LA domain, Rg = 1002 [ unstable LA domain, Rg = 1002
107

107

1077

r, 10
~—

O 107°

10710

107"

-12
10 400 500 600 700 800 900 1000

X

Classification of all possible operating regimes of the cell in scenario 3
* A supercritical Hopf bifurcation occurs along the locus C = C(X).

e Case study: if Vs = 1.3V, we have X = 389, IV = 0.994V
For C < C = 4.085nF the cell is poised on the EOC domain

For C > C = 4.085nF the cell is poised in the unstable LA domain
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Fundamental Result
Edge of Chaos Theorem

A stable operating point O of a given one-port
may be destabilized by coupling the one port to a
passive environment if and only if

O is poised on the
Edge of Chaos
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‘ Coupled System ‘
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e Two identical cells, poised on the EOC on their own, are diffusively coupled through a passive and linear resistor R

e State equations:

dx1

?—9(9@»”1)

dvq 1(Vs_vl . V2—171>

- =_ — i+ 1 =G(xq) v
dc ¢\ Ry ' R where () - 71
dx, ( ) i = G(x) - vy
dt—gxz;vz

dv, 1(Vs—v, . v1—1,

b

dt  C\ R, R,

* The common expectation is that, irrespective of R, the memristive array would admit the homogeneous solution,
where each of the two identical cells converges to the GAS operating point it would approach in the uncoupled case.

* Surprisingly, this is the case only for appropriately large R values.
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Uncoupled cell under silence, and Homogeneous Solution of the Two-Cell Array

Uncoupled cell, memristor bias parameters: R¢ = 100(), and V5 = 1.3V.

e For C = 4nF < C = 4.085nF the uncoupled cell is poised on the EOC domain

Coupling two identical copies of this cell via a resistor of large resistance, the resulting array displays the homogeneous solution

(CL) 900

850 | n

800

7501 =

700 .

650 | | | | |
0 1 2 3 4 5 6 7 8 9 10
t/ us

Uncoupled cell, approaching toward a globally asymptotically
stable operating point (silent state) as times goes to infinity

(b) 500
——— ‘CE2
450 n
400 n
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250 | 1 1 | | L L
0 20 40 60 80 100 120 140 160 180 200
t/us

Homogeneous solution of the two-cell array. Here R, = 50()
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Static Turing patterns

The destabilisation of the homogeneous solution first gives way to a Turing pattern for R, = 49.7()
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—_ !éll
& g
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300 N

250 | \ \ | \ \ | \ \
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t/us
Development of an inhomogeneous static solution, i.e. a Turing pattern, in the two-cell array for R, = 40()
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Diffusion-driven Instabilities in the Two-Cell Array:
Formation of Dynamic Patterns

Decreasing the coupling resistance further, oscillatory waveforms first develop in the cellular medium at the expenses of the
inhomogeneous static solution for R, = 28.1 Q)
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Development of an oscillatory solution, i.e. a dynamic pattern, in the two-cell array for R, = 25() 51



Hints for Explaining the Origin for the Diffusion-driven
Instabilities in the Two-Cell Array via Edge of Chaos Theory

a) . . b) .
( ) lRS:l RS Al RC iRC Az RS l‘RS,Z ( ) lRC RC 51’61
.>|_ A . —NW\—>—o * MW -If >—A\WW\
i [
+ 1 + A é + + 2 + 201 + el
C) Vs %1 C= Vca . V4 Ve C U, VSC [ Qolz SV, , |
(o]
— - M1 — | ‘M2 | — - 290 — “Aloa
Bl BZ
* The closed-form expressioon for the small-signal impedance of the memristor array is
L{v,(t ,
Z| @=2 g | N (Re+Zy| ()  whereQu=(Q0,00,) withQo, = (X1, V1) % Q, = (X, V)
Qq L{6i,(t)} Qo, Qo4
* As R is decreased, a 1 bifurcation occurs, when 1 of the 4 poles of Z, |, for Qp, = Qp, = (X, V) moves to the RHP, i.e. for [3]
R, = —2 -1, (X)
1 + T'z(X)
rnX) |l R

Numerically, it matches the value of 49.7 (), computed numerically earlier, at which a Turing pattern is born in the array.
* As R is decreased further, a 2"9 bifurcation occurs when a complex conjugate pole pair of ZAIQA for Qp, # Qp, move to the RHP

Using a numerical method to track the evolution of the poles of ZAIQA on complex plane, the theory predicts the value 28.1 (), a
which the cells were first found to pulse together, forming a dynamic pattern, in numerical simulations [3].
[3] A. Ascoli, A.S. Demirkol, R. Tetzlaff, and L.O.Chua, “Edge of Chaos behind Diffusion-Driven Instabilities in a Two-Memristor-Cell Array,” TCAS-I, in press
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‘ Static Turing Patterns in a Ring of Memristor Oscillators

1.1 1.4
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B _ Emergence of an inhomogeneous static solution (Turing pattern) in a 50-cell ring array.

In pink the uncoupled cell convergence to a locally-active and stable operating point.
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Conclusions

« | presented the simplest ever reaction-diffusion system supporting the Smale Paradox phenomenon and
explained once and for all the mechanisms behind diffusion-driven static and dynamic pattern formation [1]

e Edge of Chaos may be interpreted as a new Physics Principle which extends the Second Law of
Thermodynamics to Open Systems

* This Principle explains the hidden mechanisms underlying the Emergence of Heterogeneous Patterns in
Homogeneous Media, what Prigogine defined as the Instability of the Homogeneous

The theory of Local Activity [2] shall enable the development of a systematic and rigorous approach to design
bio-inspired circuits with small-signal memristive amplifiers [3]-[4]

Applications include the development of high-performance brain-like machines and biologically-plausible
neuromorphic systems [5]-[6]

Thank You
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