SELECTIVE-TCP FOR WIRED/WIRELESS NETWORKS
by

Rajashree Paul
Bachelor of Technology, University of Kalyani, 2002

PROJECT SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF COMPUTING SCIENCE
In the
School
of
Computing Science
© Rajashree Paul 2006

SIMON FRASER UNIVERSITY

Summer 2006

All rights reserved. This work may not be
reproduced in whole or in part, by photocopy
or other means, without permission of the author.

APPROVAL

Name:
Degree:

Title of Project:

Examining Committee:

Chair:

Date Defended/Approved:

Rajashree Paul
Master of Computing Science

Selective-TCP for wired/wireless networks

Dr. Petra Berenbrink
Assistant Professor of School of Computing Science

Dr. Funda Ergun
Senior Supervisor
Assistant Professor of School of Computing Science

Dr. Ljiljana Trajkovié¢
Co-Senior Supervisor
Professor of School of Engineering Science

Dr. Quanping Gu
Internal Examiner
Professor of School of Computing Science

il

ABSTRACT

One of the main reasons for TCP's degraded performance in wireless networks is
TCP's interpretation that packet loss is caused by congestion. However, in wireless
networks packet loss occurs mostly due to high bit error rate, packet corruption, or link
failure. TCP performance in wired/wireless networks may be substantially improved if
the cause of packet loss could be detected and appropriate rectifying measures taken
dynamically. This report proposes a new end-to-end TCP protocol named Selective-TCP
that distinguishes between congestion and wireless link errors (high bit error rate, packet
corruption) and invokes appropriate correction mechanisms. This makes the proposed
protocol better suited in a wide range of applications in mixed wired and wireless links.
Selective-TCP gives up to 45% increase in goodput over NewReno in the simulation

scenarios that we analyzed.

Keywords: Selective-TCP; wired/wireless networks; TCP NewReno; loss detection.

il

DEDICATION

To my family in India: my parents Ms. Anjali Paul and Mr. Subhrangshu Paul,
my aunt Ms. Anima Pal, my uncle Mr. Provanshu Sekhar Paul, and my elder brother Mr.
Rajsekhar Paul. All of them have been extremely supportive throughout my graduate

studies. Without them I could not have obtained my degree.

v

ACKNOWLEDGEMENTS

I thank my supervisors, Professor Dr. Ljiljana Trajkovi¢ and Dr. Funda Ergun, for
their guidance, encouragement, and patience. I am very thankful to Dr. Ljiljana Trajkovi¢
that she gave me the chance to be a member of Communication Networks Laboratory and

to continue my graduate studies.

I thank all the members of Communication Networks Laboratory for their

support, especially Renju Narayanan, Nikola Cacov, Modupe Omueti, and Wan Zeng.

TABLE OF CONTENTS

APPIOVAL.caaaeeriiiiirnriicsissnricsssssssesssssssesss ii
ADSEEACE c..uuereeiicisrnnricssssnntecsssnsncsssssssasssasssssssssns iii
DEAICALION couuverririinnricssisnnricsisnniesssssnsessssssssessssssssess iv
Acknowledgements v
Table Of CONLENLS ...cuueeiveeeririienienisricsiinsainseessteessnssssesssessssessssssssssssassssessssssssssssassssessaase vi
List of Figures viii
GlOSSATY couuureericsisnnniecsssnnnncsssnssssssssnssssssssssesssasssssss X
1 INrOUCTION. .. eeeiiciineeiicsinntiecsssnniecsssnsresssssssesssnsns 1
| BV (0] 5 77 1510) s DRSPS 1
1.2 CONIIIDULION ..ottt ettt ettt e st e et eesbeesseesabeessaesnseennnas 3
1.3 Outhline Of REPOTteviiiiiieeiie et 3
P2 & 7 Tl 1< 3 o 1] 14 o 5
2.1 The Transmission Control Protocol...........cccecieriiiiiiiiiiiiiiiieeicee e 5
2.2 Selective Negative Acknowledgementoccveeeiieieiieiiiieeiie e 11
3 Related WOrK .cceeiiiniivniiciissnnicnsssnnscssssssnecssnsss 19
3.1 Survey of Existing Techniques for Improving TCP Performance through
0SS DELECTION ..ottt ettt ettt et ebeessaeeebeeaeeenne 19
301 ENd-t0-€Nd .eviiiiiieeeee e e e 19
3.1.2 Link Layer Levelcocooiiiiiiiiee ettt 21
3.1.3 SPlit CONNECHION ...eveeiiiieeiiieciee ettt ettt e e eve e e aeeeeteeeeaeeenaneeeanes 22
4 SeleCtiVe-TCPuuuueiiiiivnericnisnniinsssnnrncssssssnesssnass 24
A1 OVETVIEW .eoutiiiuiieiiieeiie ettt et e eite et et eeaeeatesabeeteesabeenseesaseenseesseeenseenseesnseenseennne 24
4.2 The Proposed AIOTItRM..........ccciiiiiiiieiieeeeee e 25
4.2.1 Loss Detection MEChaniSmccccueeiieniieniieniieeieeiieeie et 25
4.2.2 Module at the TCP RECEIVETcc.eeeeiiiiiieeiieeeeeee et 26
4.2.3 Module at the TCP Sender.........ccceeviiiriiiiiiiieeieeie et 29
S Implementation of Selective-TCP N NS-2ccoverreersuensencsuensnccsnecssnecssessacsssesnne 31
5.1 INtroduction t0 NS=2......cccuieiiiiieeiieriie et eriee et eeite et eseeeebe et eebeessaesseesaeesnseennnes 31
5.1.1 Class Hierarchy in NS=2........ccevuiieiiieeiiieeiee e eieeeeieeeeveesseveeeseaeesanee e 32
51,2 AGENES TN NS-2 .eiiiiieiiieiieeieecite ettt ettt ste et e saeeteesateenbeessaeenbeesaneenseeees 33
5.2 Implementation of Selective-TCP algorithm...........ccccoeeviiiniiiiniiiiieeee e, 34

vi

6 Performance EVAIUATION....uueeieeeereeeeenneeeeeeeeeeeesesssssssssseseassssssssssssssssssssssssssssssssans 36

6.1 EITOT MOACL.....ooiiiiiiiiiieiee et ettt et 36
6.2 SIMulation RESUILScc.eeiiiiiiiiiiiecie e e 37
6.2.1 NetWork TOPOLOZY ...ccueiiiieiiieiieie ettt 37
6.2.2 Simulation SCENATIOSeeevvieeiiieeiiieeiieeerireeerteeeeeeesreeesaeeesereeeeseesaneesanes 38
6.2.3 Comparison of Selective-TCP and TCP Packet Control Algorithm 46
6.2.4 Comparison of Selective-TCP with Other TCP Variants...........cccccceueeeee. 57

7 Conclusions and FUuture Workciccnniicininniicninsnnicsssssssecsssssssesssssssssssssssses 61
Reference LISt ...ccuueiiiiiisnricsissnnicssssnsecssssssncsssssssessass 63

vii

LIST OF FIGURES

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:

Figure 10:

Figure 11:
Figure 12:
Figure 13:

Figure 14:

Figure 15:

Figure 16:

Figure 17:

Figure 18:
Figure 19:

Figure 20:

Three-way handshake between the TCP sender and receiver.c......... 6
TCP connection termiNatioN.eeeveeruierieerieenieesite et enieeseeesiee e eseeesaeeas 7
TCP connection: slow start, congestion avoidance, and timeout. 9
TCP hEader. .. 11
Example of reCEIVETS qUEUE.ccuieviiieiieiieeiie ettt 17
SNACK options with bit vector for example receivers queue. 17
SNACK option without bit vector for example receivers queue................. 18
Packet inter-arrival gaps between consecutive TCP packets....................... 26
ns-2 class hierarchy (partial)...........cccoevieriiieniiniiniee e 33
Selective-TCP implementation overview: C++ classes shown with

dark shade are modified...........ccooieviriiniiiiiii 35
Two-state Markov model...........ccooiiiiiiiiiiie 37
Simulated network topology.......cccveviiiiiiiriieiiee e 38

Goodput vs. time: goodput is represented as the maximum number
of packets reached their destination............ccceeecveerierieeniienieeiee e 40

Congestion window size for Selective-TCP is significantly larger
than that of TCP NeWRENO.cccoeeiiiiiiiiiieiecieeece e 40

Compared to TCP NewReno, a Selective-TCP sender maintains a
constant value of slow start threshold over a longer period of time.

The initial value of the slow start threshold is equal to 20. 41
The average throughput of Selective-TCP (161.5 kbps) is larger than

the average throughput of TCP NewReno (110.91 kbps).ccccvvvveuveeennenns 41
Goodput of Selective-TCP: maximum goodput is achieved when no
wireless error 18 INtroduced.ooueeiiiiiiiiiieeiee e 42
Selective-TCP shows significant increase in goodput...........ccceeeveerueeennennee. 43

The size of congestion window for Selective-TCP remains larger
than for TCP NeWRENO.cccvviiiiiiiiiiciteeeetee e 44

Slow start threshold of Selective-TCP remains constant over a
longer conNection Period.cceevieeriieeiiieriieiie ettt 44

viii

Figure 21:

Figure 22:

Figure 23:

Figure 24:
Figure 25:
Figure 26:

Figure 27:

Figure 28:

Figure 29:

Figure 30:

Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:

Figure 36:

Figure 37:
Figure 38:

Average throughput of Selective-TCP (169.15 kbps) and of TCP

NeWRENO (115.65 KDPS). .vveeerieiiiieeeiieeeiee ettt 45
Effect of wireless errors: goodput of Selective-TCP in the absence

0f cONEEStEd IINK......oiiiiiieeiiiecieeee e e e 45
TCP packet control algorithm: two filters are introduced at the base

SEALIOM ¢ttt ettt ettt ettt ettt et e nat e e b e neeeneeas 47
Goodput vs. time: 300 s of SIMUlation.........c..ccceeeeiierieeiiienieciee e 50
Goodput vs. time: 600 s of SImulation...........ccceeeeviercieeriieeeie e 51

Congestion window size for Selective-TCP is larger than TCP
packet control algorithm that has larger congestion window size than
TCP NEWRENO.eeiiiiiiiiiicicc e 52

Slow start threshold vs. simulation tIMe.covveeueeeeeeeeeeieeeeeeeee e 52

Average throughputs for Selective-TCP and TCP packet control

algorithm are almost identical (~160 Kbps).cccccuvreviieeniieeieeeieeeieeee 53
Effect of wireless errors on Selective-TCP and TCP packet control

Y Fo00) 0 11 110 DRSS 53
Goodput performance in the absence of congested link: Selective-

TCP performs better than TCP packet control algorithm..............c..cc.e...... 54
Congestion window vs. sSImulation time..........c..eccveeeieenieerieenieenieesie e 55
Slow start threshold vs. tIMe........c.coviiiiiiiiiiiiee e 55
Throughput vs. simulation time.............ccceeeuieriieniiieniecieeee e 56
Effects of wireless error on goodput performance.ccceeeveeerveeeneennne. 56

Size of congestion window vs. simulation time: congestion window
size is the largest for Selective-TCP, compared to other TCP
VATTANES. ¢ttt ettt ettt et ettt et et sb et sh e e s bt et ebte st e enbesb e e bt estesaeenaeeaee e 57

Goodput vs. simulation time: network performance deteriorates for

TCP SACK and TCP WesStWood.c.cocveviirieriiniiiiiienierieeeeeeseee e 58
Congestion window size for 300 s of simulation time.c.cccccveeenreennee. 59
Goodput vs. SIMUlation tME.ceeeieeiieriieiieeie e 60

X

GLOSSARY

ACK
ARQ
AWND
BS
CCSDS
CWND
DARPA
ELN
FIN
MSS
NAM
NAK
NSF

OSI
RTO
RTT
SACK
SCPS-TP
SNACK

SRTT

Acknowledgement

Automatic repeat request

Advertised window

Base station

Consultative Committee for Space Data Systems
Congestion window

Defence Advanced Research Project Agency
Explicit loss notification

Finish

Maximum segment size

Network animator

Negative acknowledgement

National Science Foundation

Open system interconnection

Retransmission timeout

Round trip time

Selective acknowledgement

Space communication protocol standards-transport protocol
Selective negative acknowledgement

Smoothed round trip time

SSTHRESH
SYN
TCP
UDP

WLAN

Slow start threshold
Synchronous

Transport control protocol
User datagram protocol

Wireless local area network

X1

1 INTRODUCTION

1.1 Motivation

The transmission control protocol (TCP) is the most extensively used transport
protocol by Internet applications due to its robustness and reliable connectivity. Wireless
communication technology is making immense progress and has become widely popular
for access networks over past few years. These wireless access networks, such as
Wireless Local Area Networks (WLAN) and cellular networks, are usually connected to
a wired backbone network. Although TCP is very reliable in wired networks, its

performance deteriorates in wireless environment.

Wireless networks have characteristics very different from wired networks. The
host are mobile and for most wireless access networks the mobile hosts communicate
with the fixed host through a base station. It is desired that the quality of service is
consistent for wired and wireless networks. Typical problems for wireless

communication are:

High bit error rate: Wireless links experience random packet losses due to bursty nature
of the wireless traffic. Random packet loss rate ranges from 1% to 10%, which is

significantly higher than wired networks.

Disconnections: There are many reasons for disconnection: such as when a mobile host
moves to the region of a new base station (hand off), a mobile host moves out of the

transmission area of the base station, or due physical obstructions.

Limited and variable bandwidth: In general, wireless links have lower bandwidth (~2
Mbps) than wired links and in most cases the bandwidth is shared between several mobile

hosts.

Limited battery power: Mobile hosts run on battery, thus small transmission time is

desirable.

Dynamic network topology: The network topology changes often due to movement of

hosts.

All these reasons contribute to the random nature of packet loss in wireless
networks. TCP was designed for conventional wired networks and since most of the
Internet traffic is carried by reliable wired links, TCP assumes that all packet loss is due
to congestion. Every packet loss is followed by reduction in transmission rate so that the
congested router buffers gets time to clear the queues. As a result, in wireless networks
too, every random packet loss event results in reduced transmission rate/congestion

window leading to very poor utilization of available bandwidth.

The main reason for TCP’s performance degradation in wireless networks is
TCP’s inability to distinguish congestion losses from other types of losses. In wireless
links, the reasons for packet loss are high bit error rates (BER) due to bursty nature of
wireless traffic, packet corruption, or link outage. However, TCP treats all these errors as
congestion and initiates the congestion control mechanism. This results in low utilization
of available bandwidth, unnecessary retransmissions, and, ultimately, low goodput and

throughput.

To improve TCP performance in mixed wired/wireless networks, we propose an

end-to-end approach, based on loss detection.

1.2 Contribution

In this report, we propose Selective-TCP, an end-to-end design that improves
TCP performance in wired/wireless networks. It distinguishes packet loss due to
congestion from packet loss due to transmission in wireless links. Selective-TCP is an
extension to TCP NewReno [1]. Selective-TCP algorithm could also be applied to TCP
Reno [2]. We used the ns-2 network simulator to implement this algorithm and to

evaluate its performance in the presence of burst errors.

We have also shown a comparative study of performance evaluation for
Selective-TCP, TCP NewReno, and TCP packet control algorithm [8]. TCP packet
control algorithm is a link layer based approach to improve TCP’s performance in mixed
wired/wireless networks. It addresses two problems specific to wireless networks: one is
delay variations (causing spurious fast retransmit) and the other is sudden large delays
(causing spurious fast timeout). TCP packet control algorithm was developed by Wan
Zeng [8]. We have also compared Selective-TCP with TCP Reno, TCP SACK, and TCP

Westwood.

1.3 Outline of Report

We provide the background material on TCP and Selective Negative
Acknowledgement (SNACK) in Chapter 2. A review of previous work on improving
TCP performance in wireless networks through loss detection is presented in Chapter 3.

In Chapter 4, we describe the proposed algorithm, named Selective-TCP. We describe the

design and implementation details of the Selective-TCP algorithm in Chapter 5. In
Chapter 6, we evaluate the performance of Selective-TCP and compare it with TCP
NewReno, TCP packet control algorithm, TCP Reno, TCP SACK, and TCP Westwood,

by using ns-2 network simulator. Conclusions and future work are given in Chapter 7.

2 BACKGROUND

In this Chapter, we present the background materials for the proposed algorithm.
Selective-TCP is an extension to existing TCP NewReno [1]. First, we describe the TCP
algorithms and then discuss the Selective Negative Acknowledgement (SNACK), used in

Selective-TCP.

2.1 The Transmission Control Protocol

Transmission Control Protocol (TCP) is a connection oriented, point-to-point

protocol. It is extensively used in the Internet.
The main characteristics of TCP are:

Reliable data transfer: In TCP, the two processes (client process and server
process) that want to communicate, first handshake with each other. A three-way
handshaking is used. The client first sends a special TCP segment (only the TCP header
and IP header) to the server, server acknowledges and sends another special segment.
Finally, the client acknowledges the special segment from the server. Fig. 1 shows the
three-way handshake. The client process passes data through sockets. TCP directs these
data to the send buffer. TCP takes a block of data from the send buffer. The maximum
amount of the block of data is limited by the Maximum Segment Size (MSS). TCP
encapsulates each block of client data with TCP header and forms a TCP segment. When
TCP receives a segment, the segment’s data is placed in the receive buffer of the

connection. The application reads data from this buffer. A TCP connection consists of

buffers, variables and a socket connection to a process in one host and another set of
buffers, variables and socket connection to a process in another host. No buffers or
variables are allocated to the connection in the network elements (such as routers)
between two hosts. If a certain time, called timeout, has passed without

acknowledgement, a new connection request is sent [3].

Figure 1: = Three-way handshake between the TCP sender and receiver.

Sender's Receiver's
events Network events

messages

Send SYN seq=x
\‘ Receive SYN

seq=x
Send SYN seq =y,
ACK ack x+1

Receive SYN + ACK
seq=y

Send ACK ack = y+1 \‘

TCP views data as ordered stream of bytes. The sequence number of a segment is
the byte-stream number of the first byte of the segment. The acknowledgement number
that one host puts in its segment is the sequence number of the next byte that host is
expecting from another host. TCP only acknowledges bytes up to the first missing byte in
the data stream, this is known as cumulative acknowledgement. If a host receives out of
order segments, TCP either discards out of order bytes or keeps them and waits for the

missing bytes to fill in the gaps.

While TCP uses three segments to initiate the connection, it needs four segments

to terminate the connection. When the client wants to end connection, it sends a FIN

segment to the server. The server has to acknowledge the FIN segment, but can still send
data to the client. This is known as half-close state of TCP connection. When the server
decides to close the connection, it sends a FIN segment. Finally, when the client

acknowledges the FIN segment the connection is completely closed.

Figure 2: TCP connection termination.
Sender's Receiver's
events events
Network
messages

Send FIN seq = x
Receive FIN seq = x
Send ACK ack = x+1
Receive ACK ack = x+1 / Send FIN seq =y,
/”/ ACK ack = x+1
Receive FIN seq = v,
ACK ack = x+1

Send ACK ack = y+1

Receive ACK ack = y+1

Flow control: TCP uses the sliding window mechanism, which sends as many
segments as the receiving end can handle, before having to wait for acknowledgments. In
this mechanism, a window of segments (certain number of segments) is transmitted at
once. Each segment has a sequence number. The receiver can acknowledge more than
one segment at a time by acknowledging the highest one received, meaning that all the
previous segments were successfully transmitted. A field called the advertised window

(AWND) in the TCP header is used to inform the sender of the receiving buffer size. The

sending window is limited by the AWND, so that a fast sender does not overwhelm a

slow receiver.

Connection control: If the sender is only limited by the AWND, many packets
can be dropped because of a full buffer in an intermediate router. Therefore, the sending
window should not be limited only by the receiver buffer, but also by the network
capacity. The window size resulting from congestion control is called the congestion
window (CWND). The sending window is taken as being the minimum of the AWND
and the CWND. If a packet is lost, TCP retransmits it (and all the following packets)
through its Automatic Repeat Request (ARQ) mechanism. This kind of ARQ is called
Go-Back-N [3]. TCP’s connection management has four phases: slow start, congestion

avoidance, fast retransmit and fast recovery [2].

Slow start: The way in which TCP data transmission operates during the start of a
connection is known as slow start. The slow start algorithm avoids the congestion
problem by observing that the rate at which new packets should be transmitted in the
network is the rate at which the acknowledgments are returned by the other end. The
sender starts by transmitting one segment and waiting for its ACK. Afterwards, CWND is
doubled each time an ACK is received. The main drawback to slow start is the large
amount of time that is required during start up. If the data that is being sent is very small,

the bandwidth efficiency will be reduced considerably.

Congestion avoidance: The slow start increases the CWND exponentially. At
some point during the connection, a bottleneck in the network will be congested and will
start discarding packets [3]. Therefore, above a certain threshold, an exponential increase

of CWND seems inappropriate to find the right CWND value. The relation between slow

start and congestion avoidance is done through a variable called slow start threshold
(SSTHRESH). If CWND is smaller than SSTHRESH, the TCP sender is in slow start,
otherwise it is in congestion avoidance, meaning that CWND is increased only by

I/CWND each time an ACK is received. This is an additive increase, shown in Fig. 3.

Figure 3: TCP connection: slow start, congestion avoidance, and timeout.

timeout

congestion avoidance

16 | _______g=¥ ___threshold

threshold

Congestion window size

0 2 4 6 8 10 12 14 16 18 20

Round trip times

TCP assumes that almost all packet losses are due to congestion somewhere in the
network. Therefore, it is necessary to reduce the amount of segments to be sent if a
packet loss is detected. Retransmission timeout (RTO) or the reception of duplicate

ACKSs indicates packet loss. When congestion occurs, SSTHRESH is set to [3]:
SSTHRESH = Max (Min (CWND, AWND), 2).

The TCP behaviour is different if the congestion is detected through an RTO or
three duplicate ACKs. When three duplicate ACKs are received by the TCP sender, the

following TCP mechanisms can take place:

Fast Retransmit: When a RTO occurs, it implies that almost no packets could go
through the network because of congestion. However, if the TCP sender receives
duplicate ACKs, it means that a packet was lost, but other packets reached the receiver.

In this case, TCP will retransmit the lost packets without waiting for the RTO [3].

Fast Recovery: TCP performs fast recovery immediately after fast retransmit.
When the third ACK duplicate is received, TCP performs congestion avoidance instead
of slow start, since it does not want to reduce the flow abruptly by going into slow start.
SSTHRESH is set to one-half the current window, but CWND will be set at SSTHRESH
plus three (because of the three duplicate ACKs received) [3]. Each time another
duplicate ACK arrives, CWND is incremented by one. When a new ACK

(acknowledging new data) arrives, TCP enters congestion avoidance phase.

TCP retransmission timeout: When data segments are not received and the RTO
expires, TCP retransmits the segments, goes back to slow start, and recalculates RTO.
Since the time between when a packet is sent and its ACK arrives (known as the Round
Trip Time RTT) may vary depending on the network, RTO cannot have a fixed value.

The RTO is calculated as [3]:
RTO = SRTT + 4 * Deviation
SRTT =7/8 * SRTT + 1/8 * SampleRTT
Deviation = 3/4 * Deviation + 1/4 * |SampleRTT — SRTT],

where SampleRTT is the last calculated RTT value, SRTT (smoothed RTT) is the

moving average of RTT, and Deviation is the mean deviation of RTT. It can be seen that

10

the RTO is dependent on the last RTT sample and on the past RTTs. When a timeout

occurs, the RTO is doubled, with a maximum of 64 seconds [3].

TCP header: The TCP sender and receiver must share some information (such
as, acknowledgments and receiver’s buffer size). This information is sent within a header
appended to each TCP segment. The standard size of this header is 20 bytes, but some
protocols use 20 more bytes for TCP options as shown in Fig. 4. In order to be reliable,
the two hosts using TCP must be aware of the connection and should be synchronized

with each other.

Figure 4: TCP header.

Source port Destination port

Sequence number

Acknowledgement number

TCP UlA|PIR|S|F . .
header rlclsls|yl Window size
length GIK|H|[TIN|N
Checksum Urgent pointer
Options (0 or more 32 bit words)
Data (optional)
- 32 bits -

2.2 Selective Negative Acknowledgement

The Selective Negative Acknowledgement or SNACK [4] option of the space
communication protocol standards — transport protocol (SCPS-TP) [4] improves its

performance in high bit error environment and increases link utilization and throughput.

11

SNACK is usually seen as a combination of SACK [5] and NAK (Negative

Acknowledgement) [6].

The Selective Negative Acknowledgement (SNACK), as its name implies, is the
process of selectively sending negative acknowledgements. The receiver of data informs
the sender of the segments that it did not receive. This option may include information
about multiple segments, which is suitable in presence of packet reordering. The
traditional acknowledgements used could include information about only one missing
segment in a window. If the TCP suffers from multiple missing segments in a window,
then the receiver would have to send multiple acknowledgements to inform the sender
about of all the missing segments at the receiver. This is particularly disadvantageous,
especially in asymmetric channels where the upward channel has much lower bandwidth

than the downward channel.

SNACK Option Operation: The SNACK option is enabled when both clients’
TCPs include the SNACK capability in the TCP SYN (synchronous) segment header. If

either side does not support SNACK, then the regular ACKs or delayed ACKs are used.

The receiving TCP invokes the SNACK option by sending an appropriately
formed SNACK segment whenever an out-of-sequence queue forms at the receiver. The
SNACK information is stored in the options area of the TCP header. SNACK usage
occurs when there is disordering of packets in the network, hence it is beneficial to delay
the sending of SNACK so as to give enough time for the out-of-order packets to arrive at
the receiver. The receiver must not invoke a SNACK option unless it is sure of the
missing packets in the network. An unnecessary SNACK can invoke unnecessary

retransmission, which can degrade the system performance rather than improve it [4].

12

SNACK is usually used in environments prone to significant loss. Hence, it may
be the case that the SNACK segment sent got lost. In order to overcome this problem, the
SCPS-TP allows sending of subsequent SNACKs with the information of previous
missing slots. A single SNACK can carry information about multiple missing slots in the
receiver queue, so the receiver can easily include the information of the previous missing
slots without much effort. A SNACK, like a SACK or NAK, does not alter the meaning
of an acknowledgement; it only provides additional information to the sender about the
receiver’s queue. The sender, on receiving a SNACK, aggressively retransmits all the
segments that are indicate as missing/empty slots (also known as holes) in the receiver
queue. These aggressive retransmissions prevent retransmission timeouts and avoid link

idle time, resulting in higher bandwidth utilization [4].

The SNACK Option Fields: The SNACK option is located in the TCP header

options field [4]. It constitutes the following fields:

Option type: The option type field is mandatory for the usage of SNACK. It
consists of one octet that is the first octet in the options field. It should contain the

decimal value of 21.

Option length: The option length is also a mandatory field and occupies the
second octet of the options field. It is one octet in length. The value contained in this field
is the total number of octets used by the options. Hence, the length may vary depending
on the optional bit-vector. If the SNACK bit-vector is not included, then the standard
length is six octets. If the bit-vector is included, then the length shall be the sum of the

length of the bit-vector and the standard six octets.

13

Holel offset: Holel offset is a mandatory field that occupies two octets (the third
and the fourth octet) in the option field. This value indicates the offset at which the first
hole or empty slot in the receiver queue occurs from the current acknowledgement. It is
specified in terms of Maximum segment size (MSS) units and can be obtained by
subtracting the ACK number from the offset sequence number and dividing the

difference using integer arithmetic by the amount of user data carried in one MSS:
Holel offset = (offset sequence number — ACK number) /1 MSS in bytes.
If the above division results in a remainder, then it is added to the size of the hole.

Holel size: The Holel size is also a mandatory field that occupies two octets in
the options area, the fifth and sixth octet. This field contains the size of the first hole that
is being reported to the sender. This field gives the size of this hole in MSS units. It is
obtained by dividing the size of the hole in octets by the amount of data carried in one

MSS as:
Holel Size = Size of Hole1 (in octets) / 1 MSS in bytes.

If this division produces a non-zero remainder, then the Holel size is rounded up to the

nearest integer.

SNACK bit-vector: The SNACK bit-vector is the only optional field of the
SNACK option. It follows the Holel size and occupies consecutive octets. The number of
octets that it occupies is implementation dependent. It contains information about the
remaining holes that were detected in the receiver queue following the first hole, which is
already indicated by Holel offset. The SNACK bit-vector maps the receiver sequence

space in the form of MSS units starting one octet after the Holel offset. The bit-vector

14

consists of zeros and ones. A zero indicates that an MSS sized block at that particular
location is missing, and a one indicates that the particular MSS was received
successfully. Since the TCP header option has to end in the proper octet boundary, zeros
are added after the last occurrence of one in the bit-vector. These zeros should not be

interpreted as missing data.

The SNACK Option Operation: The SNACK option is enabled when both the
TCP sender and receiver include the SNACK capability in the options area of the TCP
SYN segment. The receiving TCP can invoke the SNACK option by sending an
appropriately formed SNACK to the TCP sender. Inclusion of the SNACK option does
not alter the meaning of an ACK but only adds more information to the ACK. SNACK is

invoked if an out-of-order queue forms at the receiver buffer.

Delaying SNACK: Whether the SNACK should be delayed or not depends on the
kind of underlying network, as a result it is implementation dependent. The main factor
that needs to be considered is the probability of packet disordering in the network. The
SNACK sender has to be certain that the retransmissions that it invokes are necessary
because unnecessary retransmissions may deteriorate the system rather than enhance its
efficiency. It is assumed that a small number of retransmissions do not cause as much
damage as an link that is idle for a long time. The SNACK is usually delayed so that the
receiver can wait for the out-of-order packets to reach the receiver. Consequently, unless
disordering of segments is highly unlikely in the network, it is always beneficial to delay
a SNACK. There is no standard method of determining for how long the SNACK should

be delayed. It is implementation-dependent.

15

Retransmission of SNACK: If the communication environment has a high
probability of losing segments, then it is desirable to send a SNACK option for a hole
that has been already reported in the previous SNACK option. Thus, even if the previous
SNACK gets lost, the SNACK sender can inform the SNACK receiver about all the
missing segments. Again, how long retransmission should be delayed is implementation

dependent. It is advisable to send a SNACK when a FIN (finish) segment is received.

SNACK Receiver: The SNACK receiver is the data sender. Upon receiving a
well formed SNACK, the sender has to immediately retransmit all the segments
mentioned as missing in the SNACK option. The goal is to prevent retransmission
timeouts. The first retransmitted segment is the one mentioned in Holel of SNACK
option, followed by the bit-vectors segments in the ascending order of the sequence
number. The SNACK bit-vector field is left-shifted until the last “1” is found. All the “0”

bits indicating the missing MSS occurring to the left of the last “1” are retransmitted.

An Example of SNACK: An example scenario of the receiver’s out-of-sequence
queue is shown in Fig. 5. We consider the two options of sending SNACK: with and

without the SNACK bit-vector.

According to Fig. 5, there are three holes in the receive buffer queue. The first one
starts immediately after the set of acknowledged segments at offset zero and is three MSS
units in length. The second hole occurs at the offset eight from the already acknowledged
data and comprises of just one MSS. The third hole is found at the offset eleven and is

two MSS units long.

16

Figure 5: Example of receivers queue.

mss = 1024 octets

2
I I O I I Bl
1]
RCV.NXT
1 = old sequence numbers that have been acknowledged
2 = sequence numbers allowed for new reception

segments received without error

- = missing or corrupted segments

Source: CCSDS Secretariat, 1999 [4], reprinted by permission.

First, we consider sending a SNACK for the above scenario where we use a

SNACK bit-vector. The SNACK generated by the receiver is shown in Fig. 6.

Figure 6: SNACK options with bit vector for example receivers queue.

1 8 16 24 32
Type=21 Length=8 Holel Offset =0

Holel Size =3 11110110 01000000

Source: CCSDS Secretariat, 1999 [4], reprinted by permission.

The TCP option “Type” is a constant “21” for SNACK. The length field is the
number of octets occupied by the SNACK option and the bit-vector. For this scenario, we
have the standard six octets of the SNACK option and the two octets of bit-vector which
makes the “Length” eight. The first hole is formed immediately after RCV.NXT so the
“Holel Offset” is set to zero. The “Holel Size” is the size of first hole, which is three

because three segments are missing in the first hole. The bit-vector shows the status of

17

the receiver buffer queue after the first hole: The receiver has received four segments
after the first hole followed by a single hole, then two segments followed by two holes
and then a single segment as shown in Fig. 6. If we denote the received segments by a
one and the missing segments by a zero we have four ones followed by a zero, followed
by two ones, then followed by two zeros, and finally a one at the end. The remaining
zeros after the last one are not counted and are used for padding. Hence, the bit-vector

pattern formed is “11110110 01000000

The other option would be sending a SNACK without using the bit-vector, which
is also allowed by the SCPS-TP specification. The three SNACK options shown in Fig. 7
may occur in the same acknowledgement or in separate acknowledgements. The SNACK
options are applied for each encountered hole. These three segments fully report the state

of the out-of-sequence receiver queue.

Figure 7: SNACK option without bit vector for example receivers queue.
1 8 16 24 32
Type=21 Length=6 Holel Offset =0
Holel Size =3
Type=21 Length=6 Holel Offset = 8
Holel Size =1
Type=21 Length=6 Holel Offset =11
Holel Size =2

Source: CCSDS Secretariat, 1999 [4], reprinted by permission.

18

3 RELATED WORK

In this Chapter, we present the previous work on different approaches of
improving TCP performance in wired/wireless network by detecting types of packet

losses.

3.1 Survey of Existing Techniques for Improving TCP Performance
through Loss Detection

Several techniques have been proposed to mitigate the effects of non-congestion
related losses on TCP’s performance. They may be classified as end-to-end (TCP-Reno
[2], NewReno [1], and SACK [5]), link layer (Snoop-TCP [7] and TCP packet control
algorithm [8]), and split-connection (M-TCP [9] and I-TCP [10]) approaches.
Comparative analysis of these approaches [11] indicates that link layer techniques are
most effective in improving TCP performance in wireless networks, while split-
connection based methods sometimes lead to poor end-to-end throughput due to shielding
the wireless from the wired section of the network. End-to-end schemes, although less
effective than link layer based techniques, are the most promising because they achieve
significant performance gain without requiring expensive changes in the intermediate

nodes.

3.1.1 End-to-end

End-to-end protocols are the most promising since they can achieve significant

performance gain without any extensive support at the network layer, that is, in the

19

intermediate routers and base stations; however, they are not as efficient as link layer

based techniques (local recovery) in handling wireless losses.

End-to-end schemes try to improve TCP performance in wireless networks
through the use of two techniques [8]. First, they use some form of Selective
Acknowledgements (SACK) to allow the sender recover from multiple packet losses in a
window without resorting to a coarse timeout. Second, they attempt the sender to
distinguish between congestion losses and other form of losses using an Explicit Loss

Notification (ELN) mechanism.

TCP Veno [12], a combination of TCP Vegas [13] and TCP Reno [2], employs an
end-to-end congestion control mechanism. If a packet is lost, TCP Veno employs
proactive congestion control of TCP Vegas and, thus, distinguishes between the
congested and non-congested network states. TCP Veno does not address the issue of

burst errors and no corrective action is taken for wireless losses.

The differentiation between congestion and random losses in wireless networks is
achieved by measuring the variation of round trip delay [14], [15]. If the loss is not due to
congestion, TCP congestion control is suppressed and a modified recovery strategy is
implemented. Two additional detection schemes [16], [17] are based on controlling TCP

AIMD algorithm. No scheme imposes corrective actions in the case of wireless losses.

TCP Westwood [18] is another end-to-end variant of TCP that improves network
performance in presence of lossy links such as wireless links and satellite links. Instead
of setting congestion window size and slow start threshold based on packet drop

information as done in conventional TCP, TCP Westwood estimates available bandwidth

20

from the TCP sender and sets congestion window size and slow start threshold

accordingly.

TCP-Real [19] is a receiver-oriented congestion control mechanism. If the
network is congested, the receiver determines data sending rate and communicates that
information to the sender. TCP-Real employs two corrective mechanisms: congestion

avoidance and advanced error detection.

3.1.2 Link Layer Level

There have been several proposals for link layer based protocols. These protocols
are most effective in handling wireless losses but they need expensive changes to be

made in the intermediate routers and base stations.

This approach hides congestion related losses from the TCP sender and therefore
requires no changes to existing sender implementation. The intuitive idea behind this
approach is that since the problem is local, it should be solved locally. Hence, only the
link layer is involved and the transport layer need not be aware of the characteristics of
individual links. All link layer protocols attempt to make lossy link appear as a higher
quality link with a reduced effective bandwidth. As a result, the TCP sender cannot see

most of the losses caused other than congestion.

TCP Snoop [7] implements an agent (snoop agent) in the link layer of the base
station. Segments from the fixed host are received at the base station and queued there
before sending to the mobile host. If a packet is lost in the wireless link, a local
retransmission is performed. This means the lost segment is retransmitted from the buffer

at base station without letting the fixed host know. Thus, the TCP sender at the fixed host

21

is unaware of the packet loss event and congestion control mechanism in not invoked.
The major drawback of TCP Snoop is the memory requirement (per-connection buffer) at

the base station.

SNACK-Snoop [20] combines SNACK with Snoop [7]. It uses SNACK to
provide explicit wireless loss notification between a base station and a mobile host. This
is a link layer based scheme and requires major modification at the intermediate base
station. It also introduces processing and memory overhead of the Snoop protocol at the

base station.

TCP-Jersey [21] incorporates available bandwidth estimation at the sender, as is
the case in TCP Westwood [18]. TCP-Jersey improves network throughput by estimating
bandwidth in the case of congestion losses. It differentiates congestion from non-
congestion losses with the help from intermediate routers and, thus, requires expensive

changes at the routers. It does not address corrections specific to wireless losses.

3.1.3 Split Connection

Split connection approach is in between end-to-end and link layer based
protocols. This scheme completely hides the wireless losses from the sender by
terminating the TCP connection at the base station. They use a separate reliable
connection between the base station and the destination host. To perform well over the
wireless link, the second connection can wuse techniques such as negative

acknowledgement or selective acknowledgement, rather than only regular TCP.

Since, split connection based protocols maintain two separate connections: one

for the wired part and another for the wireless part of the connection path, they result in

22

poor end-to-end performance. No split connection based approach has used loss detection
to improve TCP performance in wired/wireless networks. Examples of split-connection

based approaches are M-TCP [9] and I-TCP [10].

Split-connection based methods lead to poor end-to-end network throughput due
to shielding the wireless link from the wired part of the network. Link layer techniques
are most effective in solving wireless link errors and improving TCP performance in
wired/wireless networks. However, link layer based approaches often require large buffer
space at the base station. End-to-end approaches can achieve significant performance
improvement and does not require any modification in the intermediate routers. This
approach is also simpler to implement, involves less processing and memory overhead
compared to link layer based approach. We propose an end-to-end solution to improve
TCP performance in wired/wireless networks. The proposed algorithm is discussed in

Chapter 4.

23

4 SELECTIVE-TCP

4.1 Overview

We propose an end-to-end solution to improve TCP performance in the
wired/wireless networks and we named this new algorithm as Selective-TCP. Selective-
TCP algorithm is based on detecting the type of losses at the TCP receiver. It is
implemented as an extension to TCP NewReno. If an out-of-sequence packet is received
at the sink, Selective-TCP detects the cause as either loss due to congestion or loss due to
wireless transmission error. The loss detection technique [22] used in Selective-TCP is
based on packet inter-arrival times at the receiver and has shown good detection accuracy
[22], [23]. After detecting the type of packet loss, two corrective measures are taken to

improve TCP performance.

In the case of loss due to congestion, the bandwidth is measured at the receiver
and sent to the sender, unlike estimating available bandwidth at the sender only [21],
[18]. The sender then adjusts its congestion window size accordingly. Thus, Selective-
TCP prevents TCP’s AIMD scheme from setting the sender’s congestion window size
lower than necessary. Selective-TCP helps the TCP NewReno sender to achieve the

optimum bandwidth faster, resulting in higher bandwidth utilization.

In the case of wireless transmission losses, receiver sends SNACK instead of
duplicate acknowledgements. TCP NewReno’s congestion control mechanism is not
invoked. As a result, the slow start threshold and congestion window size are not reset

unnecessarily, resulting in better bandwidth utilization.

24

4.2 The Proposed Algorithm

4.2.1 Loss Detection Mechanism

The loss detection technique used in Selective-TCP is based on the packet inter-
arrival times at receiver. The technique assumes that the wireless link is the only network
bottleneck, that it is the last hop in the connection path, and that sender performs bulk
data transfer. These assumptions are often valid for wired/wireless networks such as
cellular networks [22]. The wireless link is the only bottleneck in the network and, hence,
packets accumulate at the base station. Therefore, most packets will be sent back-to-back
over the wireless link. Fig. 8(a) shows the case of no packet loss. If T is the minimum
packet inter-arrival time at the receiver, the inter-arrival time between two consecutive
packets is ~T (assuming all packets are of same size). If a packet is lost in the wired link,
the packet inter-arrival gap is still ~T because the packets queue at base station before
being transmitted on the wireless link, as shown in Fig. 8(b). However, if a packet is lost
in the wireless link, the inter-arrival gap at receiver is ~2T because the lost packet has
travelled on the wireless link for some time before being lost, as shown in Fig. 8(c).

Using this heuristic, the type of packet loss is detected according to Algorithm 1.

Algorithm 1. Pseudo-code of the algorithm for detecting type of packet loss [22].

n = number of packets lost between two packet arrivals
if (packet loss){
if ((n+1)T < packet inter-arrival time < (n+2)T)
wireless loss
else

congestion loss

25

Figure 8: Packet inter-arrival gaps between consecutive TCP packets.
(a) no packet loss, (b) packet loss in the wired link, and (c) packet loss in the wireless
link. R1 is an intermediate router and BS is the base station for the wireless destination
node R. Solid and dashed lines represent wired and wireless links, respectively.

“T=T=
@ [(7 BB Bs @
\/
(a)
T
@ [&z EBIE Mes) ____ [0
—2T—
@ [/) EE BS ___Ba_m_®

4.2.2 Module at the TCP Receiver

If an out-of-sequence packet arrives at a TCP receiver, Selective-TCP first

distinguishes the type of packet loss.

In the case of congestion loss, Selective-TCP increments a counter
congestion_count. When a threshold value k is reached, the receiver measures the
bandwidth and sends it to the sender for setting the congestion window size, rather than
search for the optimum congestion window size and wait for TCP to initiate congestion
control. The threshold value for congestion count, k is experimentally chosen to be equal
to 10. This value is critical in deciding when the measured bandwidth is sent to the sender
and when congestion window size at the sender is being set. If the congestion window
size is set before TCP sends 3 duplicate acknowledgements and reduces congestion
window size, it will not be helpful in terms of goodput/throughput performance. On the
other hand, setting the congestion window size long after TCP AIMD algorithm has
reduced it, will not be helpful as well. Experiments show any lower/ higher value than 10

deteriorates network performance, so we use k = 10 throughout the simulations.

26

Bandwidth is measured as: (no. of received packets x size of packets in bits)(inter-arrival
time between previous in-sequence packet received and most recent in-sequence packet
received x 1000) in Kbps. To explain this further, bandwidth of a network is defined as
the data rate supported by a network connection. TCP-Westwood [18] estimates the

available bandwidth at the sender side based on the interval of returning ACKs:

- G
(tk =t -1)°

where, di is the amount of acknowledged data at time t, and ty.; is the time when previous

bk

acknowledgement was received. This sample bandwidth is smoothed further by a low-

pass filtering to obtain estimated bandwidth.

TCP-Jersey [21] adopts the same idea. It employs time-sliding window (TSW)

estimator at the sender and estimated available bandwidth as:

Rn:RTT*Rn_1+L+RTT
(th—th-1) ’

where, R, is the estimated bandwidth when the n-th acknowledgement arrives at time t,,.
t,.1 1s the time when previous acknowledgement arrived. L, is the size of data
acknowledged by the n-th acknowledgement and RTT is the TCP’s estimation of the end-
to-end RTT delay at time t,. Since duplicate acknowledgements also account for
available bandwidth, both these bandwidth estimation approaches [21], [18] consider

duplicate ACKs in the cases of packet loss in the network.

Unlike TCP Westwood and TCP-Jersey, Selective-TCP estimates bandwidth at
the receiver and, hence, it measures the available bandwidth as the number of packets

received in a given period of time. In cases of packet loss, the available bandwidth would

27

be smaller since fewer packets will be received than in the case of no packet loss.

Selective-TCP measures available bandwidth as:

Bw = Mrse*8 Kbps
(tn —tn - 1) ¥1,000 ’

where, t, is the time when most recent in-sequence packet is received, t,.; is the time

when previous in-sequence packet was received, n, is the number of packets received

within (t, — t..1), and s;, is the size of packets in bytes.

In the case of wireless loss, the receiver sends ACK with SNACK option to the
sender. As a consequence, the TCP sender retransmits the missing packets indicated by
SNACK. Acknowledgments with SNACK options are sent after a certain delay
(snack_delay). As a result the chance of unnecessarily retransmitting a delayed or
misordered segment is limited [24]. Since the SNACK option triggers a retransmission,
there is no reliance on the Fast Retransmit algorithm to detect the loss. This independence
from the Fast Retransmit algorithm is important because duplicate ACKs may never be
received when operating over a highly lossy link. The pseudo-code is shown in
Algorithm 2. The default value of snack_delay in the implementation is 50 ms. The value
of this delay depends on mission requirements. We also used other values for
snack_delay such as 35 ms and 25 ms. Nevertheless, in these cases network performance
deteriorated compared to delaying SNACK for 50 ms. Hence, in simulations we used 50

ms as the snack_delay.

28

Algorithm 2: Pseudo-code of Selective-TCP at the receiver.

if (out-of-order packet received) {
// check type of loss
if (wireless loss) {
// before sending SNACK, wait for the snack_delay to be over
// initial value of snack_delay = 50 ms
if (snack_delay = 0)
send SNACK
else
do nothing
H
else { // congestion loss
1) set congestion_count = congestion_count + 1

2) set congestion_info = current bandwidth measured at the TCP
receiver

if (congestion_count = k) {

1) send congestion_info to the TCP sender
2) reset congestion_count

}

else

send ACK //as in the case of TCP sink

}

else // in-sequence packet received

send ACK //same as TCP sink

4.2.3 Module at the TCP Sender

When a SNACK is received, the TCP sender aggressively retransmits the
packet(s) indicated as lost packet(s), without waiting for retransmission timeout to occur.
Hence, congestion control mechanism and unnecessary retransmissions are avoided,

leading to higher bandwidth utilization. Congension_info stores the bandwidth measured

29

at the receiver when a packet loss is detected. If the congestion_info field in the TCP
header has a non-zero value, the sender sets its congestion window size equal to
congension_info*base_rtt, where base_rtt is the initial round trip time. This prevents the
TCP AIMD algorithm from setting the congestion window size to be unnecessarily small.
Congestion_info is multiplied by base_rtt to increase the congestion window size. The

pseudo-code is shown in Algorithm 3.

Algorithm 3: Pseudo-code of Selective-TCP at the sender.

if (SNACK received) {
1) retransmit packet(s) indicated as lost
2) reset retransmission timer
}

else if (congestion_info # 0) {

// set size of congestion window equal tothe bandwidth
// measured at receiver

1) set cwnd_ = congestion_info * base_rtt
// cwnd_ denotes congestion window size and base_rtt is
// the base round trip time measured at sender

2) reset congestion_info

¥
else // standard ACK received

do as TCP NewReno sender

Congestion_info is a C++ variable of data type “double”. Hence, the size of the
congestion_info is 64 bits (8 bytes), which is equal to one octet. In actual implementation
of Selective-TCP, an octet of data has to be appended to the optional data area of the TCP

header. The TCP header was shown in Fig. 4.

30

S IMPLEMENTATION OF SELECTIVE-TCP IN NS-2

The simulations are performed using the ns-2 network simulator version 2.27. In
this Chapter, we introduce the ns-2 simulation tool along with the implementation details

of the Selective-TCP algorithm.

5.1 Introduction to ns-2

Ns-2 [25] is a discrete event network simulator developed at the University of
California at Berkeley (UCB). It began as a variant of the Real network simulator
developed in 1989. It is currently supported through Defence Advanced Research Project

Agency (DARPA) and National Science Foundation (NSF).

Ns-2 takes full advantage of the features of object-oriented programming. It is
written in C++ and OTecl. Although it does not guarantee production of a faithful replica
of the real world, it does try to model most of the protocol behaviour accurately and can
be used to study various protocols at different levels of the OSI layers. It is focused on
modelling network protocols including wired, wireless and satellite networks with
transport protocols such as TCP, and UDP with both unicasting and multicasting
capabilities. It models Web, Telnet, and FTP applications. It also includes the
implementation of ad-hoc routing and sensor networks. It provides provisions for
gathering statistics, tracing, and error modelling for the simulations carried out. Apart
from the core code of the ns-2, there have been numerous contributions from other

researchers. We use ns-2 to perform the network simulations. The simulation results were

31

used to evaluate the proposed Selective-TCP algorithm. We chose ns-2 for the
implementation because it is a freely distributed code and supports many interesting

protocols. The architectural design of ns-2 is rather extensible.

C++ and Tcl are the two languages used in ns-2. Two languages are needed to
perform complex programming, coupled with the need for speed when we vary
parameters/configurations to explore a large number of scenarios while studying the
various protocols. C++ is fast to execute, nevertheless it is slow to change, making it
suitable for the complicated protocol implementation. However, it is very slow when
varying parameters and rerunning simulations. Tcl, on the other hand, is much slower but
very convenient for varying simulation parameters. Consequently, C++ is used for
implementing properties of the protocol while Tcl is used to implement code that needs to
be changed often in order to study the protocol behaviour.

There are six most important classes when linking the C++ and OTcl code. They
provide the necessary connection to interact with the code from the other language. These
six classes are Class Tcl, Class TclClass, Class TclObject, Class TclCommand, Class

EmbeddedTcl, and Class Instvar.

5.1.1 Class Hierarchy in ns-2

Fig. 9 shows a glimpse of the ns-2 architecture. The root of the hierarchy is the
class TclObject. It is the superclass of all OTcl libray objects such as scheduler, network
components, timers, and other objects (NAM). The simulator has a class hierarchy in
C++ (compiled hierarchy) and a corresponding class hierarchy in OTcl (interpreted

hierarchy). Both these hierarchies are closely related.

32

Figure 9: ns-2 class hierarchy (partial).

TelObject

NsOhject

Other
Ohjects

Cnnnector| | Classifier |

| EnoopJusye ||Queue || Delay ||Agent | Trace |AddrClassiﬁer ||McastClassiﬁer

| Cat || Drp ||Edrp | | DropTail || RED | | TCP || UDP | |Enq||Deq||Drnp||Recv|

Reno

Source: NS by example [26], reprinted by permission.

5.1.2 Agents in ns-2

Agents, being the end points in a network, are also end points in ns-2. The class
Agent is the base class, which is partly implemented in OTcl and partly in C++. There are
various protocol agents in ns-2, including the basic agents such as TCP and UDP. The
agents are usually created through Tcl during a simulation. In this case, the constructor
for the agent in the compiled code is executed. The binding is then performed in the class.

The main tasks performed by these agents are processing the requests and
responses at the sender and the receiver. They also implement a timer class if necessary.
To create a new agent, we have to first decide on the inheritance structure and create
appropriate class definitions, define recv() and timeout() methods, define any necessary
timer classes, define the OTcl linkage functions, and write the necessary OTcl code to
access the agent. The pre-existing agents of ns-2 provide an excellent base for extending

various other complicated protocols.

33

5.2 Implementation of Selective-TCP algorithm

The implementation of Selective-TCP algorithm is based on the SNACK module
[27] developed for ns-2. The SNACK module provides a SNACK processing module in
the TCP NewReno sender and a SNACK generating module in the TCP sink. The
Selective-TCP algorithm is implemented in the SNACK module. Necessary
modifications are made in the agent named class SnackSink and its recv() function, which
is the main reception path for packets and provides various other necessary methods. Fig.
10 shows the implementation hierarchy and the important C++ classes for Selective-TCP

implementation are shown with darker shade.

At the sender side, the class TCPNewReno is modified so that the congested/non-
congested state of the network can be determined from TCP header option
congestion_info and the congestion window size cwnd is set if required. Necessary
modifications are made in the files tcp.h (for introducing the option field

congestion_info) and newreno.cc.

At the receiver side, the class SnackSink is modified. The recv() function of this
class is extended to introduce packet loss detection mechanism, setting the
congestion_info of TCP header, and invoking sendSnack process if required by the

algorithm. Necessary modifications are made in the files tcp-sink.h and tep-sink.cc.

34

Figure 10: Selective-TCP implementation overview: C++ classes shown with dark shade are

modified.
Connector
y
/ Agent
TepAgent TepSink
v
Reno
v SnackSink
NewReno \ TclClass
Associate
SnackSinkClass
TCP Sender TCP Receiver

35

6 PERFORMANCE EVALUATION

In this Chapter, we present the performance evaluation of Selective-TCP
algorithm using network simulator ns-2. We discuss the error model used to simulate the
burst error in the wireless links. We also discuss the simulation topology and the
simulation parameters. Next, we describe the simulation scenarios followed by the

explanation of simulation results.

6.1 Error Model

We simulate realistic wireless links with burst errors [28] using a two-state
Markov model (known as the Gilbert model), shown in Fig. 11. It has a good (error-free)
and a bad (erroneous) state. In our simulations, good state implies no packet loss while

bad state denotes 1 packet loss.

This model is defined by a transition probability matrix w and a steady state error

rate € ([29]). The transition probability matrix of this two-state Markov model is given by

1 —_
M= { P p}. (1)
I-q q
The average error rate is given by
€= _I-p) (2)
2-p—q

The average lengths of good state (Lgooq) and bad state (Lpaq) are:

36

Lgood = IL and Lbad = L

: 3
= =g)

Figure 11: Two-state Markov model.
p is the probability of successfully transmitting a packet given the previous packet was
successfully transmitted; 1-q is the probability of successfully transmitting a packet
given that the previous packet was dropped.

' Good state Bad state '

The wireless link is assumed to be in one of the two states. We assume that the

wireless link is in the good state at the beginning of simulation. The transitional
probabilities p = 0.9913 and q = 0.8509 model the effect of burst errors [30]. The error
rate € = 5%. These parameters present a close replication of burst errors in real wireless

networks [30].

6.2 Simulation Results

6.2.1 Network Topology

The network (dumbbell) topology is shown in Fig. 12. The TCP sender is a wired
node, while the TCP receiver is a wireless node. TCP source sends file transfer protocol
(FTP) traffic. The user datagram protocol (UDP) source sends constant bit rate (CBR)
traffic. The UDP source is a wired node, while the UDP sink is a wireless node. The FTP

traffic and the CBR traffic share a common wired link from router R1 to base station BS,

37

as shown in Fig. 12. The TCP and UDP sender rates are 2 Mbps and 512 Kbps,

respectively.

Figure 12: Simulated network topology.
R1 is an intermediate router and BS is the base station for the wireless destination
nodes. Solid and dashed lines represent wired and wireless links, respectively.

2 Mbps //1 Mbps
1ms 5ms
BS
1 Mbps
N 5ms
N

UDP sink

UDP source

Wired links have 2 Mbps bandwidth. Bandwidth of the wired link between R1
and BS is: (i) 2 Mbps when examining Selective-TCP’s performance in presence of
congestion (the sum of TCP and UDP data rates is 2.5 Mbps) and (ii) 4 Mbps when
examining the case without congestion. Propagation delay of the wired links is 1 ms.
Wireless links have 1 Mbps bandwidth and 5 ms propagation delay. Hence, wireless links

are the network bottlenecks.

6.2.2 Simulation Scenarios

We compare performance of Selective-TCP and TCP NewReno in the presence

and in the absence of a congested link. In both cases, the 5% burst error in wireless link

38

has been introduced. We also study the goodput performance of Selective-TCP with no
wireless error, 1% random error (random statistical error), and 5% burst error (continuous
lacking of data). There is only CBR/UDP traffic for the first 100 s of simulation time.
After 100 s, TCP connection starts and exists along with UDP connection. All

connections end after 300 s of simulation time.

The performance measures we consider are throughput, goodput, and size of
congestion window. Throughput is defined as the number of bits transmitted by the
source host and it is presented in kbps. Goodput is defined as the number of bits received
by the destination host, less the duplicates. Goodput can also be indicated as the
maximum sequence number of packets reached at the destination. We use the later to

represent goodput in the simulation results.

6.2.2.1 Presence of a Congested Link

We first investigate Selective-TCP’s performance in the presence of congestion in
the network. To simulate congestion, we used a 2 Mbps link as the common wired link

between router R1 and base station BS. The rate of data through this link is 2.5 Mbps.

Goodput (the number of bits received at the destination host, less duplicates) in
the presence of a congested link is shown in Fig. 13. We represent goodput as the
maximum sequence number of packets received at the receiver. Selective-TCP achieves
up to 45% improvement when compared to NewReno. Selective-TCP shows larger
congestion window size than TCP NewReno, indicating better utilization of available
bandwidth, as shown in Fig. 14. The slow start threshold and the average network

throughput for Selective-TCP are shown in Figs. 15 and 16, respectively.

39

Figure 13: Goodput vs. time: goodput is represented as the maximum number of packets reached
their destination.

4000 — T T T T T T T T T

el — — Selective-TCP // |

-------- TGP NewReno S ~
3000 4 d)

2500 | A

.......

2000 | y 1
1500 7 -

1000 / .

500 - [o |

100 120 140 16D 180 200 Z20 240 260 280 300
Simulation time (s)

GZoodput (maximum sequence number)

Figure 14: Congestion window size for Selective-TCP is significantly larger than that of TCP
NewReno.

1] T T T T T T T T
Selacine-TCP
45 TCP MewRano

My AL . A ’l", i Al

Size of congestion window [kbytes)

By |
g .y [R . ; |.|_|!
i 1 1a 60 WBD A0 X0 a0 XD D

Simulation time (5}

40

Figure 15: Compared to TCP NewReno, a Selective-TCP sender maintains a constant value of
slow start threshold over a longer period of time. The initial value of the slow start

threshold is equal to 20.

20 T T T T T T T T T T

Selective-TCP i

e TCP MewRenn .

Slowstart threshold

1 1 1 1 - 1 1 1 1l 1
100 120 140 160 180 200 220 240 260 230 300
Simulation time (s)

Figure 16: The average throughput of Selective-TCP (161.5 kbps) is larger than the average
throughput of TCP NewReno (110.91 kbps).

400 T T T T T T T T T
— — Selective-TCP
= TCP MewHeno h
—4— Average: Selective-TCP
300 —=— Average: TCP MewReno b
o || ll'“"“m""ﬁm,_ '?\\\F.""-\,____I ! ,'I
g o) i\\ J AN |]
é oo | f \, || ! \ ff \l‘l lll[|
g 150F IIj } * f + \\ S — =
S | R Y S VA S B
100}| "~.\ | i ILI"v/‘ If]
50]f (A ; \\ B
L St

0 1 1 1 1 bl LY &
100 120 140 1B 180 200 220 240 260 280 300
Simulation time (s}

41

A comparison of goodput performance of Selective-TCP, without wireless error,
with 1% random error (random statistical error), and with 5% burst error (continuous
lacking of data), is shown in Fig. 17. As expected, the goodput performance is best when
there is no wireless error. It seems the performance of Selective-TCP without wireless
error and TCP NewReno should be exactly same, however, they differ (maximum ~5%).
This is because the loss detection mechanism [22] used in Selective-TCP is not 100%
precise. Its accuracy of detection is ~95%, which is the reason that some congestion

losses are detected as wireless losses and vice versa.

Figure 17: Goodput of Selective-TCP: maximum goodput is achieved when no wireless error is
introduced.

G000 — T T T T T T T T T

no wireless errar
soo0 b — — 1% random errar 4
— - — -5% burst error -

4000 |

3000

2000

1000 -

Zoodput (maximum sequence numkber)

1 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 Ze0 230 300
Simulation time (s)

6.2.2.2 Absence of a Congested Link

Next, we investigate Selective-TCP’s performance without presence of
congestion in the network. To simulate non-congested link, we have used a 4 Mbps link

as the common wired link while the total rate of data through this link is 2.5 Mbps.

42

Goodput vs. simulation time without congestion in the common wired link is
shown in Fig. 18. Goodput improves by 45% than TCP NewReno over 300 s of
simulation. Congestion window size, slow start threshold, and throughput as functions of
time are shown in Figs. 19, 20, and 21, respectively. We compare performance of
Selective-TCP and TCP NewReno in a non-congested network. Similar to the case of
congested network, Selective-TCP performs better than NewReno. If no error is
introduced in wireless link, Selective-TCP achieves ~1.5 times the goodput in the case of

5% burst error, as shown in Fig. 22.

Figure 18: Selective-TCP shows significant increase in goodput.

oo |]
— — Solective-TCP -

3500 | / i

-------- TCP MewReno

3000 | A 1
2500 | A 1
2000 |- / |
1500 - Ao .

1000 F o .

Goodput imaximum seguence number)

500 - f‘————c 1

100 120 140 160 180 200 220 240 260 280 300
Simulation time (s)

43

Figure 19: The size of congestion window for Selective-TCP remains larger than for TCP
NewReno.

Selecive-TCP
451 ===~ TP NewRan

il
L

=]

15F

Size of congastion window (kbyies)
] i

—r
-,

i o b
n _J - : L L L L b - i 'IJ L =
100 130 140 160 180 M0 S0 &0 0 M0 30

Simulation Bmea (s)

Figure 20: Slow start threshold of Selective-TCP remains constant over a longer connection
period.

20— T T T T T T T T T

18l Selective-TCP

"""" TCP MewReno

Slowstart threshold

1 1 1 It 1 1 1 | 1 1
100 120 140 160 180 200 220 240 Ze0 230 300
Simulation time (s)

44

Figure 21: Average throughput of Selective-TCP (169.15 kbps) and of TCP NewReno (115.65

kbps).
400 T T T T T T T T T
— — Selective-TCP
= e TCP MewReno 1
—+— Average: Selective-TCF
300+ —=— Awerage: TGP hewReno :
%250- f\ Jrvﬁm/\/\ -
TR A)
3 o} { il j ; O A e
= F ",‘\ ¢ N RPN\ W S
2o | \ [% [
N [— I, N DN S |
100 Ij \ Ij \ |]
all b, I| \ A
vA AN
|I'r'rr | QP I (Y

] | | | | vyt |
00 120 140 1BD 180 200 220 240 ZB0 280 300
Simulation time (s)

Figure 22: Effect of wireless errors: goodput of Selective-TCP in the absence of congested link.

G000 — T T T T T T T T T
no wireless error .
000+ — — 1% random error]
y e
— - — -5% burst error -

4000 |

3000

2000

1000 -

Zoodput (maximum sequence numkber)

1 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 Ze0 230 300
Simulation time (s)

In general, Selective-TCP shows better goodput and throughput in the presence of

congested link.

45

6.2.3 Comparison of Selective-TCP and TCP Packet Control Algorithm

In this Section, we present a brief description of TCP packet control algorithm [§]
and compare its performance to Selective-TCP. As in the Section 6.2.2, we discuss the
cases of congested link and non-congested link, each with 5% burst error, 1% random

error, and no wireless error in the wireless link.

6.2.3.1 TCP Packet Control Algorithm

TCP packet control algorithm is designed as an option for TCP rather than a
modification of TCP. It is a link layer based approach to improve TCP’s performance in
the wireless networks and, hence, requires modifications only in the base stations. It
addresses two problems specific to wireless networks: delay variations (causing spurious
fast retransmit) and sudden large delays (causing spurious fast timeout). This algorithm
hides wireless losses from the fixed host or the TCP sender. To deal with these two
problems, two filters at the base station called Data filter and ACK filter are introduced.
These two filters improve TCP performance in mixed wireline/wireless networks by
dealing with the wireless links with long sudden delays, delay variations and maintaining
regular TCP functions. These filters keep track of TCP data and ACK packets received
from the fixed host and the mobile host, respectively. They then forward packets to both
client ends based on the information gathered in the base station. They do not depend on

end-user TCP flavours. Packet control filters are shown in Fig. 23.

46

Figure 23: TCP packet control algorithm: two filters are introduced at the base station.

Data filter

Fixed host [« > €------ »| Mobile host
Wired link Wireless link

ACK filter

Base station

1. ACK Filter: Packet control algorithm reacts to ACKs received from the mobile
host using the ACK filter. It drops the old ACKs and duplicate ACKs according to the
duplicate ACK threshold defined by the user. It remembers the last new ACK received
from the wireless receiver, called the last received ACK. When an ACK arrives, its ACK

number is checked against the last received ACK. Three cases are considered:

Old ACK: The ACK is considered old if the ACK number has already been

received and/or is smaller than the last received ACK. It is immediately dropped.

Duplicate ACK: If the newly received ACK number is identical to the largest
ACK currently received, it is considered a duplicate ACK. Packet control algorithm
keeps track of the current number of duplicate ACKs received at the BS. Based on the
number of duplicate ACKs received and the user-defined duplicate ACK threshold,
duplicate ACKs are evenly dropped and are not sent to the sender. The number of ACKs
to be dropped is equal to the difference between the user-defined duplicate ACK
thresholds at the BS and at the mobile host. For example, if the user-defined duplicate
ACK threshold is 6 and TCP has defined the three duplicate ACK threshold, every

second duplicate ACK is dropped.

47

New ACK: If the ACK number has not been received before, the ACK is
considered new. The last wireless ACK is updated, the counter for the current number of

duplicate ACKs is reset, and the ACK is forwarded to the sender.

The design of the ACK filter is based on the observation that a wireless link has a
high number of re-ordered segments, which is the primary cause of spurious fast
retransmit. By filtering some duplicate ACKs at the BS, the spurious fast retransmit may
be reduced. If there is no packet loss in the network, filtering duplicate ACKs results in

better TCP performance. The pseudo-code is shown in Algorithm 4.

Algorithm 4: Pseudo-code for the TCP packet control algorithm: data filter

if (new or unacknowledged data segment)
forward to receiver (mobile host)
else // acknowledged data segment

drop the segment

2. Data Filter: When the data filter receives a data segment from the fixed host, it
passes it to the mobile host. The data filter at the base station is designed to prevent the
spurious fast retransmit caused by spurious timeout. In the case of spurious timeout,
retransmissions of the unacknowledged segments unnecessarily consume the scarce
wireless link bandwidth and trigger additional spurious fast retransmits. Therefore, their
prevention is essential in solving spurious timeout. The data filter checks whether data
segments have been acknowledged or not. The sequence number is checked against the

last ACK received from the receiver. Two cases are considered:

48

New data segment or unacknowledged segment: If the segment has not been
acknowledged, it is forwarded to the receiver. The segment is either a new data segment
or an unacknowledged segment. In the latter case, the system cannot distinguish whether
the last transmission of the same segment has been received by the receiver or its ACK

was lost. In both cases, even if the received segment is a retransmission, it is forwarded.

Acknowledged segment: This segment is a retransmission due to spurious timeout.
This occurs because the ACK from the base station is lost or has not arrived at the mobile
host. In both cases, the segment is dropped. We consider that a loss of ACKs could occur
even though the BER and the possibility of congestion for ACKs are small in wireline
networks. For every two identical retransmitted segments received, an ACK is sent from
the base station to the sender. Hence, unnecessary retransmissions are eliminated and the

problem of lost ACKs is resolved. The pseudo-code is shown in Algorithm 5.

Algorithm 5: Pseudo-code for the TCP packet control algorithm: ACK filter

if (old ACK received)
drop the ACK
else if (new ACK received) {
1) update last received ACK
21) reset number of DUP_ACKs to 0
3) forward the ACK to fixed host
}
else {// duplicate ACK received
1) update number of DUP_ACKs
2) drop or forward the duplicate ACKs depending
on user-defined DUPACK threshold

49

6.2.3.2 Comparison in the Presence of a Congested Link

We compare the performance of Selective-TCP and TCP packet control algorithm
with the network topology as described in Section 5.3.1. The simulation scenarios are
described in Section 5.3.2. We first investigate both the algorithms in presence of
congestion in the network. We again use a 2 Mbps wired link as the link between

intermediate router R1 and base station BS, as shown in Fig. 12.

Figs. 24 and 25 show plots of goodput in terms of maximum number of packets
received at the receiver over 300 s of simulation and 600 s of simulation time,
respectively. These graphs show that the performance of Selective-TCP and the TCP
packet control algorithm are comparable, Selective-TCP being better for long
connections. In both cases, both algorithms perform (~ 40% — 50%) better than TCP

NewReno.

Figure 24: Goodput vs. time: 300 s of simulation.

4000

300 Selective-TCP i
— —TCP MewReno !

oo b T TCP packet cantral rf'r d

2500

2000

1800 -

1000 -

Zoodput {maximum sequence numkber)

500

D 1
100 120 140 1BD 180 200 220 240 260 280 300
Simulation time (s)

50

Figure 25: Goodput vs. time: 600 s of simulation.

3000 g |
Selective-TCP
aoon b — — TCP MewReno ’ /"LL
———————— TCP packet contral rd

7000

5000

5000 |

4000 |

3000

2000

Zoodput (maximum sequence number)

-y

=

=

=
T

D 1 1 1 1 1 1 1 1 1
00 150 200 250 300 350 400 450 500 550 BOO
Simulation time (s)

Figs. 26 and 27 show the variation of congestion window size and slow start
threshold, respectively. Again, both Selective-TCP and TCP packet control algorithm
perform much better than TCP NewReno, Selective-TCP being slightly better than TCP
packet control algorithm. The throughput values are compared in Fig. 28. Effect of

introducing various wireless errors is shown in Fig. 29.

51

Figure 26: Congestion window size for Selective-TCP is larger than TCP packet control algorithm
that has larger congestion window size than TCP NewReno.

&0 : :
Saleclive- TCF
= 45 TGP MuvwRens 7
E“m TCP packet contral i
i i il
<. My TR LATETE Jli W - A
J
g '
5= 1
%m ﬂﬁ IR 1 1L f i
2 45 il SR IR AR L o U |I.-
s T L E TR |l
gup Pl } A5 B - | 14
st | b | g
| LA L
s (F] 1] - 1] Al JAl 240 F

m L

.- i i i
Simulation time {s)
Figure 27: Slow start threshold vs. simulation time.
20— T T T T T T T T T
= Selective-TCF
— — TCP MNewReno
w - ! T TCP packet contral
=l
S 4r .
i
>
£ 121 .
5
2 e N Inl N
E ol [l L |
o A ' i
4+ | R
A |

1 Loy 1 1 [1
100 120 140 18D 180 200 220 240 260 280 300
Simulation time (s)

52

Figure 28: Average throughputs for Selective-TCP and TCP packet control algorithm are almost
identical (~160 kbps).

| Selective-TCF E
— —TCF MewReno
-------- TCP packet control

30 4
—+— Ayerage: Selective-TCP
S —L— Ayerage: TCP NewReno |
’g Average: TCP packet control
£ h\’Y"\ T ey
= 20} =
= ;
a
5 200r
=
2
Ly
l_

—_ —_
= [
= [

T T

a0

D 1 T = IJ 1 1 1
100 1200 140 16O 18 200 220 240 260 280 300
Simulation time (s)

Figure 29: Effect of wireless errors on Selective-TCP and TCP packet control algorithm.

?DDD T T T T T T T T T
Selective-TCP: no wireless error

E gonon b —— — Selective-TCP: 1% random error
= | e Selective-TCP: 5% burst error
=
c — TCP packet contral: no wireless error
@ 5000 - :
2 — — TCP packet contral: 1% random error -~
o TCP packet contral: 5% burst errar
2 4000 - 8
5} o
= et
> - T ST eeieeve=- -
£ 3000 - .
5
[
=
= 2000 F B
=
o
o
g 1000 .
0

0 o 1 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 260 280 300
Simulation time (s)

53

6.2.3.3 Comparison in the Absence of a Congested Link

We now compare Selective-TCP and TCP packet control algorithm without
presence of congested link in the connection path between TCP sender and receiver. We
again use a 4 Mbps wired link between intermediate router R1 and base station BS, as

shown in Fig. 12.

In the absence of a congested link, Selective-TCP performs significantly better
than TCP packet control algorithm, as shown in Fig. 30. Variation of congestion window
size and slow start threshold are shown in Figs. 31 and 32, respectively. Throughput is
compared in Fig. 33. In this case, average throughput for Selective-TCP is ~30% better
than for TCP packet control algorithm. In contrast, in the case of congestion, both

algorithms had almost identical average throughput.

Figure 30: Goodput performance in the absence of congested link: Selective-TCP performs better
than TCP packet control algorithm.

4000

Selective-TCP

300 — — TCP MewReno .
-------- TCP packet control I

3000

2500 |

2000

1800 -

1000 |

Zoodput (maximum sequence number)

500

D 1 1 1 1 1 1 1 1 1
100 120 140 160 180 200 220 240 Ze0 230 300
Simulation time (s)

54

Figure 31: Congestion window vs. simulation time.

&0 : :
Selacime-TCP
B | TEP NewRano
E 40+ TCF packel comiml |
i s} M W
% m -
_EE L
5
=
N '
| I
5 uf (A e
a 10 ”1 _ il FEleLl
iﬁ |] THIE
sl | ; EEE T
i P 1 3 i 1 : i.
0 120 14 B0 W0 A0 FX 24 = ID

Simulation time {s)

Figure 32: Slow start threshold vs. time.

20— T T T T T T T T T
18+ Selective-TCP E
— — TCP NewReno
L TCP packet contral]
=
S 4r .
i
>
é 12 .
5
S0
b=
=
&

o
.
—_—— e — —]
-
.
|
I__|
]

.l | it b
E 1 E
2 1 1 |I-|I | I: 1 1 II M I‘: : E

1 ! 1 L
100 120 140 1BD 180 200 220 240 260 280 300
Simulation time (s)

55

Figure 33:

The effect of varying wireless errors on goodput performance is shown in Fig. 34.

Figure 34:

Throughput vs. simulation time.

440

400

380+

300 -

280

200+

Selective-TCP

— — TCP NewReno

-------- TCP packet control

—+— Ayerage: Selective-TCP

—— Ayerage: TCP MewReno
Avarage: TCP packet control

Throughput (kbps)

100 -

a0

]
100

1 1 1 ll. |
180 200 220 260

Simulation time (s)

1
120 140 160 240

Effects of wireless error on goodput performance.

1
230

300

7000

= m o

= [} =

= [=

= [=
T T

maximum seguence number)
(W)
=
=
=

Selective-TCP: no wireless error

— — Selective-TCP: 1% random errar
-------- Selective-TCP: 5% burst error
—TCF packet control: no wireless errar
— — TCF packet control: 1% random error
TCP packet contral: 5% burst error

1 1 1 1 1
160 180 200 220 240 260

Simulation time (s)

1 1
120 140

56

1
280 300

6.2.4 Comparison of Selective-TCP with Other TCP Variants

We compare Selective-TCP with TCP Reno [1], TCP SACK [5], and TCP

Westwood [18] along with TCP NewReno [2] and TCP packet control algorithm [8].

6.2.4.1 Comparison in the Presence of a Congested Link

In the presence of congestion in the network, Selective-TCP achieves larger
congestion window compared to other TCP variants, as shown in Fig. 35. TCP SACK
and TCP Westwood show smaller bandwidth utilization. This indicates that in the
presence of congested link in the network, SACK and Westwood fail to efficiently use

the available bandwidth.

Figure 35: Size of congestion window vs. simulation time: congestion window size is the largest for
Selective-TCP, compared to other TCP variants.

60
—— TCP Reno
« -~ TCP NewReno
o 50 ——- TCP Sack
Fy — -~ TCP Westwood
X — - SelectiveTCP
% 40 A — — TCP packet control
i }'ﬂ‘,.f [\,hvllj\/i/'ff.f'/ilu[bkl." “ lJWL\n " - l\nfll
530- Il J |||| |||||||| || I ||| | |
5 | ik ||||=I¥|||| |||| |
0]
¢ | AN]
g’ 20 |)1 | ' ! I II I L l | || I 1]
8 ‘) }II /1|/ f‘l f'/-"l N F Ibfl 3 1 I ‘ [: } /| JII
“6 1 5 ‘u i1 "f}l |]
il U g I A0 ETEEDE B gt) B
N oo [H % l".] b, #l ! l'-] ’ l! u “J | i B
@ I - r"} FI r] l D0 A i
| II_ i f —J—P]‘ ‘ Ii _|||I u Ifl] |
0 e e e A A B 15 S
100 150 200 250 300

Simulation time (s)

TCP packet control algorithm achieves the highest goodput followed by
Selective-TCP, TCP Reno, and NewReno, as shown in Fig 36. However, performance of

TCP Westwood and TCP SACK deteriorates significantly, which is in agreement with

57

the poor bandwidth utilization of TCP SACK and Westwood, shown in Fig. 35. Among
the considered TCP variants, TCP packet control is the only link layer based algorithm.
All other algorithms are end-to-end approaches. This explains the reason that TCP packet
control algorithm achieves highest goodput in a mixed wired/wireless network with 5%

burst error in the wireless links.

Figure 36: Goodput vs. simulation time: network performance deteriorates for TCP SACK and
TCP Westwood.

—_ —— TCP Reno
E SIS TCP NewReno e
= ——- TCP SACK ya 4
= — - TCP Westwood Vs 4
9 — - Selective-TCP P P
3000 - — — TCP packet control —_
: : i
3
o
@
]
£
g 2000 -
=
T
E
3 1000
e}
o
o
(U]
0]

100 150 200 250 300

Simulation time (s)

6.2.4.2 Comparison in the Absence of a Congested Link

In the absence of congested link, the congestion window sizes for all six TCP
variants are shown in Fig. 37. Similar to the case of congested link, Selective-TCP
achieves the highest congestion window when compared to other TCP variants.
Selective-TCP measures the available bandwidth at the time of packet loss and sets

congestion window size accordingly. This is the reason for the high congestion window

58

size for Selective-TCP. TCP Westwood uses bandwidth estimation to set congestion
window size. It should have also achieved larger congestion window size compared to
TCP Reno, NewReno, SACK, and TCP packet control algorithm because none employs
bandwidth measurement/estimation. However, in our simulations, somewhat
unexpectedly, congestion window for TCP Westwood is similar to the other TCP

variants.

Figure 37: Congestion window size for 300 s of simulation time.

80
TCP Reno
. s TCP NewReno
e s4d ———=—= TCP SACK
=, ——-— TCP Westwood
o~ — — — Selective-TCP
E’ 4 === — TCP packet control
o
% | ||||q l/ullmvml L:l “]llffllllfjlmffmf l_i Iijll(lluim
5§ %1 | ||| || ||| I || | | | l|
1 I R R |Ml'
= . | | |
i f" /Ju" ”' A ”l' .f/l | l | J l/’“ i
o ol (b I 1"]] f“_l_._,-, i) ,,'lfl"m!]'lul
) il _ i us A Wiyt e
h ot i I ”|J t
L p— 'L 4| '1|, f'_hl-ll i L I
p i) Py ey
0 T T
100 150 200 250 300

Simulation time (s)

Fig. 38 shows the goodput of TCP Reno, NewReno, SACK, Westwood,
Selective-TCP, and TCP packet control algorithm for 300 s of simulation time. Selective-
TCP performs best, followed by TCP Westwood. The reason is that both algorithms use
bandwidth measurement/estimation. TCP Reno, NewReno, and SACK perform
comparably. TCP packet control algorithm, unlike in the case of congestion, achieves

lower goodput. This indicates that TCP packet control algorithm performs better in the

59

presence of congestion. Selective-TCP, on the other hand, performs well in cases of both

congestion and non-congestion.

Figure 38: Goodput vs. simulation time.

4000 — TCP Reno /‘/
—————— TCP SACK e —_——
—— — TCP Westwood S ay
3000 { — — — SelectiveTCP A ./ /
— — —-— TCP packet control Vs foT T T ;’_.—/—. T

2000 -

1000 -

Goodput {(maximum sequence number)

100 150 200 250 300

Simulation time (s)

60

7 CONCLUSIONS AND FUTURE WORK

In this report, we proposed a new end-to-end protocol called Selective-TCP to
improve TCP performance in mixed wired-wireless networks, where wireless link is the
network bottleneck. Selective-TCP distinguishes between congestion and wireless errors
and accordingly takes corrective measures for those errors. In case of wireless errors, the
receiver sends selective negative acknowledgement to the sender without sending
duplicate acknowledgements and, thus, prevents congestion control that is otherwise
preformed by TCP. On detection of congestion error in the network, receiver informs the
sender of the measured bandwidth at receiver. The sender then sets the congestion
window size accordingly, thus stopping the AIMD algorithm to set congestion window
lower than necessary. Both measures taken by the Selective-TCP improve the bandwidth

utilization and increase goodput up to 45% compared to TCP NewReno.

We have evaluated Selective-TCP’s performance in presence of burst errors in the
wireless link. To make the results relevant to deployed wired/wireless networks, we have
used realistic parameters for the error model. TCP connections are simulated using the
ns-2 network simulator. Selective-TCP is an extension of NewReno sender and receiver.
It requires no modification on intermediate routers, making it purely an end-to-end

approach.

Along with performance evaluation of Selective-TCP, we have compared its
performance with the TCP packet control algorithm. TCP packet control algorithm is a

link-layer based approach to improve TCP performance over wireless link. We have also

61

compared Selective-TCP’s performance to TCP Reno, NewReno, SACK, and TCP

Westwood.

As future work, the Selective-TCP algorithm may be improved by employing
feedback from intermediate routers, while maintaining the end-to-end semantics of the
connection. The performance of Selective-TCP could be evaluated in the presence of
frequent hand-offs. Furthermore, performance of Selective-TCP with protocols other than
TCP NewReno could be investigated. In this report, we have studied performance of the
proposed algorithm in mixed wired/wireless networks only. Evaluation of its
performance in mixed satellite and wired networks would be an interesting subject to

investigate.

62

REFERENCE LIST

[1]

[2]

[3]

[4]

[3]

[6]
[7]

[8]

[9]

[10]

[11]

[12]

[13]

S. Floyd and T. Henderson, “The NewReno modification to TCP’s fast recovery
algorithm,” IETF RFC 2582, Apr. 1999.

M. Allman, V. Paxson, and W. Stevens, “TCP congestion control” IETF RFC
2581, Apr. 1999.

W. R. Stevens, TCP/IP Illustrated, Volume 1: The protocols. New York:
Addison-Wesley, 1994.

Consultative Committee for Space Data Systems, Space Communications
Protocol Specification—Transport Protocol (SCPS-TP), Blue Book, issue 1, May
1999.

M. Mathis, J. Mahdavi, S. Floyd, and A. Romanow, “TCP selective
acknowledgement options,” IETF RFC 2018, Apr. 1996.

R. Fox, “TCP big window and NAK options,” IETF RFC1106, Jun. 1989.

H. Balakrishnan, S. Seshan, E. Amir, and R. H. Katz, “Improving TCP/IP
performance over wireless networks,” in Proc. ACM Int. Conf. on Mobile
Computing and Networking, Berkeley, CA, Nov. 1995, pp. 2—11.

W. G. Zeng and L. Trajkovic, “TCP packet control for wireless networks,” in
Proc. IEEE Int. Conf. on Wireless and Mobile Computing, Networking and
Communications (WiMob 2005), Montreal, Canada, Aug. 2005, pp. 196-203.

K. Brown and S. Singh, “M-TCP: TCP for mobile cellular networks,” Computer
Communication Review, vol. 27, no. 5, pp. 1943, Oct. 1997.

A. Bakre and B. R. Badrinath, “I-TCP: indirect TCP for mobile hosts,” in Proc.
15th Int. Conf. on Distributed Computing Systems, Vancouver, Canada, May
1995, pp. 136-143.

H. Balakrishnan, V. N. Padmanabhan, S. Seshan, and R. H. Katz, “A comparison
of mechanisms for improving TCP performance over wireless links,” Computer
Communication Review, vol. 26, no. 4, pp. 256269, Aug. 1996.

C. P. Fu and S. C. Liew, “TCP Veno: TCP enhancement for transmission over
wireless access networks,” IEEE J. on Select. Areas Commun., vol. 21, no. 2, pp.
216228, Feb. 2003.

L. S. Brakmo, S. W. O’Malley, and L. L. Peterson, “TCP Vegas: new techniques
for congestion detection and avoidance,” in Proc. SIGCOMM, London, U.K., Oct.
1994, pp. 24-35.

63

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]
[26]

[27]

N. K. G. Samaraweera, “Non-congestion packet loss detection for TCP error
recovery using wireless links,” IEE Proc. Communications, vol. 146, no. 4, pp.
222-230, Aug. 1999.

D. Barman and 1. Matta, “Effectiveness of loss labeling in improving TCP
performance in wired/wireless networks,” in Proc. 10th IEEE Int. Conf. on
Network Protocols, Boston, MA, Nov. 2002, pp. 2—11.

C. Parsa and J. J. Garcia-Luna-Aceves, “Differentiating congestion vs. random
loss: a method for improving TCP performance over wireless links,” in Proc.
IEEE Conf. on Wireless Communications and Networking, Chicago, IL, Sept.
2000, vol. 1, pp. 90-93.

T. Kim, S. Lu, and V. Bharghavan, “Improving congestion control performance
through loss differentiation,” in Proc. Eighth International Conference on
Computer Communications and Networks, Boston, MA, Oct. 1999, pp. 412-418.

C. Casetti, M. Gerla, S. Mascolo, M. Y. Sanadidi, and R. Wang, “TCP Westwood:
end-to-end congestion control for wired/wireless networks,” Wireless Networks,
vol. 8, no. 5, pp. 467—479, Sept. 2002.

V. Tsaoussidis and C. Zhang, “TCP-Real: receiver-oriented congestion control,”
Computer Networks, vol. 40, no. 4, pp. 477-497, Nov. 2002.

F. Sun, V. O. K. Li, and S. C. Liew, “Design of SNACK mechanism for wireless
TCP with new snoop,” in Proc. IEEE Wireless Communications and Networking
Conference, Atlanta, GA, Mar. 2004, vol. 2, pp. 1051-1056.

K. Xu, Y. Tian, and N. Ansari, “TCP-Jersey for wireless IP communications,”
IEEE J. Select. Areas Commun., vol. 22, no. 4, pp. 747-756, May 2004.

S. Biaz and N. H. Vaidya, “Discriminating congestion losses from wireless losses
using inter-arrival times at the receiver,” in Proc. IEEE Symposium on
Application-Specific Systems and Software Engineering and Technology,
Richardson, TX, Mar. 1999, pp. 10-17.

S. Cen, P. C. Cosman, and G. M. Voelker, “End-to-end differentiation of
congestion and wireless losses,” IEEE/ACM Trans. Networking, vol. 11, no. 5, pp.
703-717, Oct. 2003.

R. C. Durst, G. J. Miller, and E. J. Travis, “TCP extensions for space
communications,” in Proc. MOBICOM, Rye, NY, Nov. 1996, pp. 15-26.

ns-2 [Online]. Available: http://www.isi.edu/nsnam/ns.

J. Chung and M. Claypool, NS by example, Technical report, CS Department,
Worcester Polytechnic Institute, Sep. 1999. Online at: http://perform.wpi.edu/NS.

D. Anantharaman, “Performance analysis of snack in satellite networks through
simulation,” M.S. Thesis, Lamar University, Lamar, TX, 2004.

64

[28]

[29]

[30]

A. Gurtov and S. Floyd, “Modeling wireless links for transport protocols,”
Computer Communication Review, vol. 34, no. 2, pp. 85-96, Apr. 2004.

J. McDougall and S. Miller, “Sensitivity of wireless network simulations to a
two-state Markov model channel approximation,” in Proc. GLOBECOM, San
Francisco, CA, Dec. 2003, pp. 697-701.

A. Konrad, B. Y. Zhao, A. D. Joseph, and R. Ludwig, “A Markov-based channel
model algorithm for wireless networks,” Wireless Networks, vol. 9, no. 3, pp.
189-199, May 2003.

65

