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ABSTRACT 

One of the main reasons for TCP's degraded performance in wireless networks is 

TCP's interpretation that packet loss is caused by congestion. However, in wireless 

networks packet loss occurs mostly due to high bit error rate, packet corruption, or link 

failure. TCP performance in wired/wireless networks may be substantially improved if 

the cause of packet loss could be detected and appropriate rectifying measures taken 

dynamically. This report proposes a new end-to-end TCP protocol named Selective-TCP 

that distinguishes between congestion and wireless link errors (high bit error rate, packet 

corruption) and invokes appropriate correction mechanisms. This makes the proposed 

protocol better suited in a wide range of applications in mixed wired and wireless links. 

Selective-TCP gives up to 45% increase in goodput over NewReno in the simulation 

scenarios that we analyzed. 

 

Keywords: Selective-TCP; wired/wireless networks; TCP NewReno; loss detection.  
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1 INTRODUCTION 

1.1 Motivation 

The transmission control protocol (TCP) is the most extensively used transport 

protocol by Internet applications due to its robustness and reliable connectivity. Wireless 

communication technology is making immense progress and has become widely popular 

for access networks over past few years. These wireless access networks, such as 

Wireless Local Area Networks (WLAN) and cellular networks, are usually connected to 

a wired backbone network.  Although TCP is very reliable in wired networks, its 

performance deteriorates in wireless environment.  

Wireless networks have characteristics very different from wired networks. The 

host are mobile and for most wireless access networks the mobile hosts communicate 

with the fixed host through a base station. It is desired that the quality of service is 

consistent for wired and wireless networks. Typical problems for wireless 

communication are: 

High bit error rate: Wireless links experience random packet losses due to bursty nature 

of the wireless traffic. Random packet loss rate ranges from 1% to 10%, which is 

significantly higher than wired networks. 

Disconnections: There are many reasons for disconnection: such as when a mobile host 

moves to the region of a new base station (hand off), a mobile host moves out of the 

transmission area of the base station, or due physical obstructions.  
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Limited and variable bandwidth: In general, wireless links have lower bandwidth (~2 

Mbps) than wired links and in most cases the bandwidth is shared between several mobile 

hosts. 

Limited battery power: Mobile hosts run on battery, thus small transmission time is 

desirable.  

Dynamic network topology: The network topology changes often due to movement of 

hosts.  

All these reasons contribute to the random nature of packet loss in wireless 

networks. TCP was designed for conventional wired networks and since most of the 

Internet traffic is carried by reliable wired links, TCP assumes that all packet loss is due 

to congestion. Every packet loss is followed by reduction in transmission rate so that the 

congested router buffers gets time to clear the queues. As a result, in wireless networks 

too, every random packet loss event results in reduced transmission rate/congestion 

window leading to very poor utilization of available bandwidth. 

The main reason for TCP’s performance degradation in wireless networks is 

TCP’s inability to distinguish congestion losses from other types of losses. In wireless 

links, the reasons for packet loss are high bit error rates (BER) due to bursty nature of 

wireless traffic, packet corruption, or link outage. However, TCP treats all these errors as 

congestion and initiates the congestion control mechanism. This results in low utilization 

of available bandwidth, unnecessary retransmissions, and, ultimately, low goodput and 

throughput. 
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To improve TCP performance in mixed wired/wireless networks, we propose an 

end-to-end approach, based on loss detection.  

1.2 Contribution 

In this report, we propose Selective-TCP, an end-to-end design that improves 

TCP performance in wired/wireless networks. It distinguishes packet loss due to 

congestion from packet loss due to transmission in wireless links. Selective-TCP is an 

extension to TCP NewReno [1]. Selective-TCP algorithm could also be applied to TCP 

Reno [2]. We used the ns-2 network simulator to implement this algorithm and to 

evaluate its performance in the presence of burst errors. 

We have also shown a comparative study of performance evaluation for 

Selective-TCP, TCP NewReno, and TCP packet control algorithm [8]. TCP packet 

control algorithm is a link layer based approach to improve TCP’s performance in mixed 

wired/wireless networks. It addresses two problems specific to wireless networks: one is 

delay variations (causing spurious fast retransmit) and the other is sudden large delays 

(causing spurious fast timeout). TCP packet control algorithm was developed by Wan 

Zeng [8]. We have also compared Selective-TCP with TCP Reno, TCP SACK, and TCP 

Westwood. 

1.3 Outline of Report 

We provide the background material on TCP and Selective Negative 

Acknowledgement (SNACK) in Chapter 2. A review of previous work on improving 

TCP performance in wireless networks through loss detection is presented in Chapter 3. 

In Chapter 4, we describe the proposed algorithm, named Selective-TCP. We describe the 
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design and implementation details of the Selective-TCP algorithm in Chapter 5. In 

Chapter 6, we evaluate the performance of Selective-TCP and compare it with TCP 

NewReno, TCP packet control algorithm, TCP Reno, TCP SACK, and TCP Westwood, 

by using ns-2 network simulator.  Conclusions and future work are given in Chapter 7. 
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2 BACKGROUND 

In this Chapter, we present the background materials for the proposed algorithm. 

Selective-TCP is an extension to existing TCP NewReno [1]. First, we describe the TCP 

algorithms and then discuss the Selective Negative Acknowledgement (SNACK), used in 

Selective-TCP.  

2.1 The Transmission Control Protocol 

Transmission Control Protocol (TCP) is a connection oriented, point-to-point 

protocol. It is extensively used in the Internet.  

The main characteristics of TCP are: 

Reliable data transfer: In TCP, the two processes (client process and server 

process) that want to communicate, first handshake with each other. A three-way 

handshaking is used. The client first sends a special TCP segment (only the TCP header 

and IP header) to the server, server acknowledges and sends another special segment. 

Finally, the client acknowledges the special segment from the server. Fig. 1 shows the 

three-way handshake. The client process passes data through sockets. TCP directs these 

data to the send buffer. TCP takes a block of data from the send buffer. The maximum 

amount of the block of data is limited by the Maximum Segment Size (MSS).  TCP 

encapsulates each block of client data with TCP header and forms a TCP segment.  When 

TCP receives a segment, the segment’s data is placed in the receive buffer of the 

connection. The application reads data from this buffer. A TCP connection consists of 
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buffers, variables and a socket connection to a process in one host and another set of 

buffers, variables and socket connection to a process in another host. No buffers or 

variables are allocated to the connection in the network elements (such as routers) 

between two hosts. If a certain time, called timeout, has passed without 

acknowledgement, a new connection request is sent [3]. 

 Figure 1: Three-way handshake between the TCP sender and receiver.  

 
 

 TCP views data as ordered stream of bytes. The sequence number of a segment is 

the byte-stream number of the first byte of the segment. The acknowledgement number 

that one host puts in its segment is the sequence number of the next byte that host is 

expecting from another host. TCP only acknowledges bytes up to the first missing byte in 

the data stream, this is known as cumulative acknowledgement. If a host receives out of 

order segments, TCP either discards out of order bytes or keeps them and waits for the 

missing bytes to fill in the gaps.  

 While TCP uses three segments to initiate the connection, it needs four segments 

to terminate the connection. When the client wants to end connection, it sends a FIN 
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segment to the server. The server has to acknowledge the FIN segment, but can still send 

data to the client. This is known as half-close state of TCP connection. When the server 

decides to close the connection, it sends a FIN segment. Finally, when the client 

acknowledges the FIN segment the connection is completely closed.  

Figure 2: TCP connection termination. 

 

 

 

Flow control: TCP uses the sliding window mechanism, which sends as many 

segments as the receiving end can handle, before having to wait for acknowledgments. In 

this mechanism, a window of segments (certain number of segments) is transmitted at 

once. Each segment has a sequence number. The receiver can acknowledge more than 

one segment at a time by acknowledging the highest one received, meaning that all the 

previous segments were successfully transmitted. A field called the advertised window 

(AWND) in the TCP header is used to inform the sender of the receiving buffer size. The 
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sending window is limited by the AWND, so that a fast sender does not overwhelm a 

slow receiver. 

Connection control: If the sender is only limited by the AWND, many packets 

can be dropped because of a full buffer in an intermediate router. Therefore, the sending 

window should not be limited only by the receiver buffer, but also by the network 

capacity. The window size resulting from congestion control is called the congestion 

window (CWND). The sending window is taken as being the minimum of the AWND 

and the CWND. If a packet is lost, TCP retransmits it (and all the following packets) 

through its Automatic Repeat Request (ARQ) mechanism. This kind of ARQ is called 

Go-Back-N [3]. TCP’s connection management has four phases: slow start, congestion 

avoidance, fast retransmit and fast recovery [2]. 

Slow start: The way in which TCP data transmission operates during the start of a 

connection is known as slow start. The slow start algorithm avoids the congestion 

problem by observing that the rate at which new packets should be transmitted in the 

network is the rate at which the acknowledgments are returned by the other end. The 

sender starts by transmitting one segment and waiting for its ACK. Afterwards, CWND is 

doubled each time an ACK is received. The main drawback to slow start is the large 

amount of time that is required during start up. If the data that is being sent is very small, 

the bandwidth efficiency will be reduced considerably. 

Congestion avoidance: The slow start increases the CWND exponentially. At 

some point during the connection, a bottleneck in the network will be congested and will 

start discarding packets [3]. Therefore, above a certain threshold, an exponential increase 

of CWND seems inappropriate to find the right CWND value. The relation between slow 
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start and congestion avoidance is done through a variable called slow start threshold 

(SSTHRESH). If CWND is smaller than SSTHRESH, the TCP sender is in slow start, 

otherwise it is in congestion avoidance, meaning that CWND is increased only by 

1/CWND each time an ACK is received. This is an additive increase, shown in Fig. 3. 

 Figure 3: TCP connection: slow start, congestion avoidance, and timeout.  

 
 

TCP assumes that almost all packet losses are due to congestion somewhere in the 

network. Therefore, it is necessary to reduce the amount of segments to be sent if a 

packet loss is detected. Retransmission timeout (RTO) or the reception of duplicate 

ACKs indicates packet loss. When congestion occurs, SSTHRESH is set to [3]: 

SSTHRESH = Max (Min (CWND, AWND), 2). 

 The TCP behaviour is different if the congestion is detected through an RTO or 

three duplicate ACKs. When three duplicate ACKs are received by the TCP sender, the 

following TCP mechanisms can take place: 
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 Fast Retransmit: When a RTO occurs, it implies that almost no packets could go 

through the network because of congestion. However, if the TCP sender receives 

duplicate ACKs, it means that a packet was lost, but other packets reached the receiver. 

In this case, TCP will retransmit the lost packets without waiting for the RTO [3].  

 Fast Recovery: TCP performs fast recovery immediately after fast retransmit. 

When the third ACK duplicate is received, TCP performs congestion avoidance instead 

of slow start, since it does not want to reduce the flow abruptly by going into slow start. 

SSTHRESH is set to one-half the current window, but CWND will be set at SSTHRESH 

plus three (because of the three duplicate ACKs received) [3]. Each time another 

duplicate ACK arrives, CWND is incremented by one. When a new ACK 

(acknowledging new data) arrives, TCP enters congestion avoidance phase. 

 TCP retransmission timeout: When data segments are not received and the RTO 

expires, TCP retransmits the segments, goes back to slow start, and recalculates RTO. 

Since the time between when a packet is sent and its ACK arrives (known as the Round 

Trip Time RTT) may vary depending on the network, RTO cannot have a fixed value. 

The RTO is calculated as [3]: 

RTO = SRTT + 4 * Deviation 

SRTT = 7/8 * SRTT + 1/8 * SampleRTT 

Deviation = 3/4 * Deviation + 1/4 * |SampleRTT − SRTT|,  

where SampleRTT is the last calculated RTT value, SRTT (smoothed RTT) is the 

moving average of RTT, and Deviation is the mean deviation of RTT. It can be seen that 
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the RTO is dependent on the last RTT sample and on the past RTTs. When a timeout 

occurs, the RTO is doubled, with a maximum of 64 seconds [3]. 

   TCP header: The TCP sender and receiver must share some information (such 

as, acknowledgments and receiver’s buffer size). This information is sent within a header 

appended to each TCP segment. The standard size of this header is 20 bytes, but some 

protocols use 20 more bytes for TCP options as shown in Fig. 4. In order to be reliable, 

the two hosts using TCP must be aware of the connection and should be synchronized 

with each other.  

Figure 4: TCP header.  

 
 

2.2 Selective Negative Acknowledgement 

The Selective Negative Acknowledgement or SNACK [4] option of the space 

communication protocol standards – transport protocol (SCPS-TP) [4] improves its 

performance in high bit error environment and increases link utilization and throughput. 



 

 12

SNACK is usually seen as a combination of SACK [5] and NAK (Negative 

Acknowledgement) [6]. 

The Selective Negative Acknowledgement (SNACK), as its name implies, is the 

process of selectively sending negative acknowledgements. The receiver of data informs 

the sender of the segments that it did not receive. This option may include information 

about multiple segments, which is suitable in presence of packet reordering. The 

traditional acknowledgements used could include information about only one missing 

segment in a window. If the TCP suffers from multiple missing segments in a window, 

then the receiver would have to send multiple acknowledgements to inform the sender 

about of all the missing segments at the receiver. This is particularly disadvantageous, 

especially in asymmetric channels where the upward channel has much lower bandwidth 

than the downward channel. 

SNACK Option Operation: The SNACK option is enabled when both clients’ 

TCPs include the SNACK capability in the TCP SYN (synchronous) segment header. If 

either side does not support SNACK, then the regular ACKs or delayed ACKs are used.  

The receiving TCP invokes the SNACK option by sending an appropriately 

formed SNACK segment whenever an out-of-sequence queue forms at the receiver. The 

SNACK information is stored in the options area of the TCP header. SNACK usage 

occurs when there is disordering of packets in the network, hence it is beneficial to delay 

the sending of SNACK so as to give enough time for the out-of-order packets to arrive at 

the receiver. The receiver must not invoke a SNACK option unless it is sure of the 

missing packets in the network. An unnecessary SNACK can invoke unnecessary 

retransmission, which can degrade the system performance rather than improve it [4].  
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SNACK is usually used in environments prone to significant loss. Hence, it may 

be the case that the SNACK segment sent got lost. In order to overcome this problem, the 

SCPS-TP allows sending of subsequent SNACKs with the information of previous 

missing slots. A single SNACK can carry information about multiple missing slots in the 

receiver queue, so the receiver can easily include the information of the previous missing 

slots without much effort. A SNACK, like a SACK or NAK, does not alter the meaning 

of an acknowledgement; it only provides additional information to the sender about the 

receiver’s queue. The sender, on receiving a SNACK, aggressively retransmits all the 

segments that are indicate as missing/empty slots (also known as holes) in the receiver 

queue. These aggressive retransmissions prevent retransmission timeouts and avoid link 

idle time, resulting in higher bandwidth utilization [4]. 

The SNACK Option Fields: The SNACK option is located in the TCP header 

options field [4]. It constitutes the following fields:  

Option type: The option type field is mandatory for the usage of SNACK. It 

consists of one octet that is the first octet in the options field. It should contain the 

decimal value of 21. 

Option length: The option length is also a mandatory field and occupies the 

second octet of the options field. It is one octet in length. The value contained in this field 

is the total number of octets used by the options. Hence, the length may vary depending 

on the optional bit-vector. If the SNACK bit-vector is not included, then the standard 

length is six octets. If the bit-vector is included, then the length shall be the sum of the 

length of the bit-vector and the standard six octets. 
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Hole1 offset: Hole1 offset is a mandatory field that occupies two octets (the third 

and the fourth octet) in the option field. This value indicates the offset at which the first 

hole or empty slot in the receiver queue occurs from the current acknowledgement. It is 

specified in terms of Maximum segment size (MSS) units and can be obtained by 

subtracting the ACK number from the offset sequence number and dividing the 

difference using integer arithmetic by the amount of user data carried in one MSS: 

Hole1 offset  =  (offset sequence number – ACK number) /1 MSS in bytes. 

If the above division results in a remainder, then it is added to the size of the hole. 

Hole1 size: The Hole1 size is also a mandatory field that occupies two octets in 

the options area, the fifth and sixth octet. This field contains the size of the first hole that 

is being reported to the sender. This field gives the size of this hole in MSS units. It is 

obtained by dividing the size of the hole in octets by the amount of data carried in one 

MSS as:  

Hole1 Size = Size of Hole1 (in octets) / 1 MSS in bytes.   

If this division produces a non-zero remainder, then the Hole1 size is rounded up to the 

nearest integer.                   

SNACK bit-vector: The SNACK bit-vector is the only optional field of the 

SNACK option. It follows the Hole1 size and occupies consecutive octets. The number of 

octets that it occupies is implementation dependent. It contains information about the 

remaining holes that were detected in the receiver queue following the first hole, which is 

already indicated by Hole1 offset. The SNACK bit-vector maps the receiver sequence 

space in the form of MSS units starting one octet after the Hole1 offset. The bit-vector 
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consists of zeros and ones. A zero indicates that an MSS sized block at that particular 

location is missing, and a one indicates that the particular MSS was received 

successfully. Since the TCP header option has to end in the proper octet boundary, zeros 

are added after the last occurrence of one in the bit-vector. These zeros should not be 

interpreted as missing data.  

The SNACK Option Operation: The SNACK option is enabled when both the 

TCP sender and receiver include the SNACK capability in the options area of the TCP 

SYN segment. The receiving TCP can invoke the SNACK option by sending an 

appropriately formed SNACK to the TCP sender. Inclusion of the SNACK option does 

not alter the meaning of an ACK but only adds more information to the ACK. SNACK is 

invoked if an out-of-order queue forms at the receiver buffer.  

Delaying SNACK: Whether the SNACK should be delayed or not depends on the 

kind of underlying network, as a result it is implementation dependent. The main factor 

that needs to be considered is the probability of packet disordering in the network. The 

SNACK sender has to be certain that the retransmissions that it invokes are necessary 

because unnecessary retransmissions may deteriorate the system rather than enhance its 

efficiency. It is assumed that a small number of retransmissions do not cause as much 

damage as an link that is idle for a long time. The SNACK is usually delayed so that the 

receiver can wait for the out-of-order packets to reach the receiver. Consequently, unless 

disordering of segments is highly unlikely in the network, it is always beneficial to delay 

a SNACK. There is no standard method of determining for how long the SNACK should 

be delayed. It is implementation-dependent.  
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Retransmission of SNACK: If the communication environment has a high 

probability of losing segments, then it is desirable to send a SNACK option for a hole 

that has been already reported in the previous SNACK option. Thus, even if the previous 

SNACK gets lost, the SNACK sender can inform the SNACK receiver about all the 

missing segments. Again, how long retransmission should be delayed is implementation 

dependent. It is advisable to send a SNACK when a FIN (finish) segment is received.  

SNACK Receiver: The SNACK receiver is the data sender. Upon receiving a 

well formed SNACK, the sender has to immediately retransmit all the segments 

mentioned as missing in the SNACK option. The goal is to prevent retransmission 

timeouts. The first retransmitted segment is the one mentioned in Hole1 of SNACK 

option, followed by the bit-vectors segments in the ascending order of the sequence 

number. The SNACK bit-vector field is left-shifted until the last “1” is found. All the “0” 

bits indicating the missing MSS occurring to the left of the last “1” are retransmitted. 

An Example of SNACK: An example scenario of the receiver’s out-of-sequence 

queue is shown in Fig. 5. We consider the two options of sending SNACK: with and 

without the SNACK bit-vector. 

According to Fig. 5, there are three holes in the receive buffer queue. The first one 

starts immediately after the set of acknowledged segments at offset zero and is three MSS 

units in length. The second hole occurs at the offset eight from the already acknowledged 

data and comprises of just one MSS. The third hole is found at the offset eleven and is 

two MSS units long.  
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Figure 5: Example of receivers queue.  

 
Source: CCSDS Secretariat, 1999 [4], reprinted by permission. 

First, we consider sending a SNACK for the above scenario where we use a 

SNACK bit-vector. The SNACK generated by the receiver is shown in Fig. 6. 

Figure 6: SNACK options with bit vector for example receivers queue. 

1 8 16 24 32

Type=21 Length=8 Hole1 Offset = 0

11110110 01000000Hole1 Size = 3
 

Source: CCSDS Secretariat, 1999 [4], reprinted by permission. 

The TCP option “Type” is a constant “21” for SNACK. The length field is the 

number of octets occupied by the SNACK option and the bit-vector. For this scenario, we 

have the standard six octets of the SNACK option and the two octets of bit-vector which 

makes the “Length” eight. The first hole is formed immediately after RCV.NXT so the 

“Hole1 Offset” is set to zero. The “Hole1 Size” is the size of first hole, which is three 

because three segments are missing in the first hole. The bit-vector shows the status of 



 

 18

the receiver buffer queue after the first hole: The receiver has received four segments 

after the first hole followed by a single hole, then two segments followed by two holes 

and then a single segment as shown in Fig. 6. If we denote the received segments by a 

one and the missing segments by a zero we have four ones followed by a zero, followed 

by two ones, then followed by two zeros, and finally a one at the end. The remaining 

zeros after the last one are not counted and are used for padding. Hence, the bit-vector 

pattern formed is “11110110 01000000”. 

The other option would be sending a SNACK without using the bit-vector, which 

is also allowed by the SCPS-TP specification. The three SNACK options shown in Fig. 7 

may occur in the same acknowledgement or in separate acknowledgements. The SNACK 

options are applied for each encountered hole. These three segments fully report the state 

of the out-of-sequence receiver queue.  

Figure 7: SNACK option without bit vector for example receivers queue. 

1 8 16 24 32

Hole1 Offset = 0Type=21 Length=6

Hole1 Size = 3

Hole1 Offset = 8Type=21 Length=6

Hole1 Size = 1

Hole1 Offset = 11Type=21 Length=6

Hole1 Size = 2
 

Source: CCSDS Secretariat, 1999 [4], reprinted by permission. 
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3 RELATED WORK 

In this Chapter, we present the previous work on different approaches of 

improving TCP performance in wired/wireless network by detecting types of packet 

losses.  

3.1 Survey of Existing Techniques for Improving TCP Performance 
through Loss Detection 

Several techniques have been proposed to mitigate the effects of non-congestion 

related losses on TCP’s performance. They may be classified as end-to-end (TCP-Reno 

[2], NewReno [1], and SACK [5]), link layer (Snoop-TCP [7] and TCP packet control 

algorithm [8]), and split-connection (M-TCP [9] and I-TCP [10]) approaches. 

Comparative analysis of these approaches [11] indicates that link layer techniques are 

most effective in improving TCP performance in wireless networks, while split-

connection based methods sometimes lead to poor end-to-end throughput due to shielding 

the wireless from the wired section of the network. End-to-end schemes, although less 

effective than link layer based techniques, are the most promising because they achieve 

significant performance gain without requiring expensive changes in the intermediate 

nodes. 

3.1.1 End-to-end 

End-to-end protocols are the most promising since they can achieve significant 

performance gain without any extensive support at the network layer, that is, in the 
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intermediate routers and base stations; however, they are not as efficient as link layer 

based techniques (local recovery) in handling wireless losses. 

End-to-end schemes try to improve TCP performance in wireless networks 

through the use of two techniques [8]. First, they use some form of Selective 

Acknowledgements (SACK) to allow the sender recover from multiple packet losses in a 

window without resorting to a coarse timeout. Second, they attempt the sender to 

distinguish between congestion losses and other form of losses using an Explicit Loss 

Notification (ELN) mechanism.  

TCP Veno [12], a combination of TCP Vegas [13] and TCP Reno [2], employs an 

end-to-end congestion control mechanism. If a packet is lost, TCP Veno employs 

proactive congestion control of TCP Vegas and, thus, distinguishes between the 

congested and non-congested network states. TCP Veno does not address the issue of 

burst errors and no corrective action is taken for wireless losses.  

The differentiation between congestion and random losses in wireless networks is 

achieved by measuring the variation of round trip delay [14], [15]. If the loss is not due to 

congestion, TCP congestion control is suppressed and a modified recovery strategy is 

implemented. Two additional detection schemes [16], [17] are based on controlling TCP 

AIMD algorithm. No scheme imposes corrective actions in the case of wireless losses.  

TCP Westwood [18] is another end-to-end variant of TCP that improves network 

performance in presence of lossy links such as wireless links and satellite links. Instead 

of setting congestion window size and slow start threshold based on packet drop 

information as done in conventional TCP, TCP Westwood estimates available bandwidth 
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from the TCP sender and sets congestion window size and slow start threshold 

accordingly. 

TCP-Real [19] is a receiver-oriented congestion control mechanism. If the 

network is congested, the receiver determines data sending rate and communicates that 

information to the sender.  TCP-Real employs two corrective mechanisms: congestion 

avoidance and advanced error detection.  

3.1.2 Link Layer Level 

There have been several proposals for link layer based protocols. These protocols 

are most effective in handling wireless losses but they need expensive changes to be 

made in the intermediate routers and base stations. 

This approach hides congestion related losses from the TCP sender and therefore 

requires no changes to existing sender implementation. The intuitive idea behind this 

approach is that since the problem is local, it should be solved locally. Hence, only the 

link layer is involved and the transport layer need not be aware of the characteristics of 

individual links. All link layer protocols attempt to make lossy link appear as a higher 

quality link with a reduced effective bandwidth. As a result, the TCP sender cannot see 

most of the losses caused other than congestion.  

TCP Snoop [7] implements an agent (snoop agent) in the link layer of the base 

station. Segments from the fixed host are received at the base station and queued there 

before sending to the mobile host. If a packet is lost in the wireless link, a local 

retransmission is performed. This means the lost segment is retransmitted from the buffer 

at base station without letting the fixed host know. Thus, the TCP sender at the fixed host 
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is unaware of the packet loss event and congestion control mechanism in not invoked. 

The major drawback of TCP Snoop is the memory requirement (per-connection buffer) at 

the base station. 

SNACK-Snoop [20] combines SNACK with Snoop [7]. It uses SNACK to 

provide explicit wireless loss notification between a base station and a mobile host. This 

is a link layer based scheme and requires major modification at the intermediate base 

station. It also introduces processing and memory overhead of the Snoop protocol at the 

base station. 

TCP-Jersey [21] incorporates available bandwidth estimation at the sender, as is 

the case in TCP Westwood [18]. TCP-Jersey improves network throughput by estimating 

bandwidth in the case of congestion losses. It differentiates congestion from non-

congestion losses with the help from intermediate routers and, thus, requires expensive 

changes at the routers. It does not address corrections specific to wireless losses. 

3.1.3 Split Connection 

Split connection approach is in between end-to-end and link layer based 

protocols. This scheme completely hides the wireless losses from the sender by 

terminating the TCP connection at the base station. They use a separate reliable 

connection between the base station and the destination host. To perform well over the 

wireless link, the second connection can use techniques such as negative 

acknowledgement or selective acknowledgement, rather than only regular TCP.  

Since, split connection based protocols maintain two separate connections: one 

for the wired part and another for the wireless part of the connection path, they result in 
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poor end-to-end performance. No split connection based approach has used loss detection 

to improve TCP performance in wired/wireless networks. Examples of split-connection 

based approaches are M-TCP [9] and I-TCP [10]. 

Split-connection based methods lead to poor end-to-end network throughput due 

to shielding the wireless link from the wired part of the network. Link layer techniques 

are most effective in solving wireless link errors and improving TCP performance in 

wired/wireless networks. However, link layer based approaches often require large buffer 

space at the base station. End-to-end approaches can achieve significant performance 

improvement and does not require any modification in the intermediate routers. This 

approach is also simpler to implement, involves less processing and memory overhead 

compared to link layer based approach. We propose an end-to-end solution to improve 

TCP performance in wired/wireless networks. The proposed algorithm is discussed in 

Chapter 4. 
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4 SELECTIVE-TCP 

4.1 Overview 

We propose an end-to-end solution to improve TCP performance in the 

wired/wireless networks and we named this new algorithm as Selective-TCP. Selective-

TCP algorithm is based on detecting the type of losses at the TCP receiver. It is 

implemented as an extension to TCP NewReno. If an out-of-sequence packet is received 

at the sink, Selective-TCP detects the cause as either loss due to congestion or loss due to 

wireless transmission error. The loss detection technique [22] used in Selective-TCP is 

based on packet inter-arrival times at the receiver and has shown good detection accuracy 

[22], [23]. After detecting the type of packet loss, two corrective measures are taken to 

improve TCP performance. 

In the case of loss due to congestion, the bandwidth is measured at the receiver 

and sent to the sender, unlike estimating available bandwidth at the sender only [21], 

[18]. The sender then adjusts its congestion window size accordingly. Thus, Selective-

TCP prevents TCP’s AIMD scheme from setting the sender’s congestion window size 

lower than necessary. Selective-TCP helps the TCP NewReno sender to achieve the 

optimum bandwidth faster, resulting in higher bandwidth utilization. 

In the case of wireless transmission losses, receiver sends SNACK instead of 

duplicate acknowledgements. TCP NewReno’s congestion control mechanism is not 

invoked. As a result, the slow start threshold and congestion window size are not reset 

unnecessarily, resulting in better bandwidth utilization. 
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4.2 The Proposed Algorithm 

4.2.1 Loss Detection Mechanism 

The loss detection technique used in Selective-TCP is based on the packet inter-

arrival times at receiver. The technique assumes that the wireless link is the only network 

bottleneck, that it is the last hop in the connection path, and that sender performs bulk 

data transfer. These assumptions are often valid for wired/wireless networks such as 

cellular networks [22]. The wireless link is the only bottleneck in the network and, hence, 

packets accumulate at the base station. Therefore, most packets will be sent back-to-back 

over the wireless link. Fig. 8(a) shows the case of no packet loss. If T is the minimum 

packet inter-arrival time at the receiver, the inter-arrival time between two consecutive 

packets is ~T (assuming all packets are of same size). If a packet is lost in the wired link, 

the packet inter-arrival gap is still ~T because the packets queue at base station before 

being transmitted on the wireless link, as shown in Fig. 8(b). However, if a packet is lost 

in the wireless link, the inter-arrival gap at receiver is ~2T because the lost packet has 

travelled on the wireless link for some time before being lost, as shown in Fig. 8(c). 

Using this heuristic, the type of packet loss is detected according to Algorithm 1. 

Algorithm 1. Pseudo-code of the algorithm for detecting type of packet loss [22]. 

 
n = number of packets lost between two packet arrivals  

if ( packet loss){ 

  if ((n+1)T ≤ packet inter-arrival time < (n+2)T) 

   wireless loss 

  else  

   congestion loss 

 } 
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Figure 8: Packet inter-arrival gaps between consecutive TCP packets.  
(a) no packet loss, (b) packet loss in the wired link, and (c) packet loss in the wireless 
link. R1 is an intermediate router and BS is the base station for the wireless destination 
node R. Solid and dashed lines represent wired and wireless links, respectively. 

 
 

4.2.2 Module at the TCP Receiver 

If an out-of-sequence packet arrives at a TCP receiver, Selective-TCP first 

distinguishes the type of packet loss. 

In the case of congestion loss, Selective-TCP increments a counter 

congestion_count. When a threshold value k is reached, the receiver measures the 

bandwidth and sends it to the sender for setting the congestion window size, rather than 

search for the optimum congestion window size and wait for TCP to initiate congestion 

control. The threshold value for congestion_count, k is experimentally chosen to be equal 

to 10. This value is critical in deciding when the measured bandwidth is sent to the sender 

and when congestion window size at the sender is being set. If the congestion window 

size is set before TCP sends 3 duplicate acknowledgements and reduces congestion 

window size, it will not be helpful in terms of goodput/throughput performance. On the 

other hand, setting the congestion window size long after TCP AIMD algorithm has 

reduced it, will not be helpful as well.  Experiments show any lower/ higher value than 10 

deteriorates network performance, so we use k = 10 throughout the simulations. 
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Bandwidth is measured as: (no. of received packets × size of packets in bits)⁄(inter-arrival 

time between previous in-sequence packet received and most recent in-sequence packet 

received × 1000) in Kbps. To explain this further, bandwidth of a network is defined as 

the data rate supported by a network connection. TCP-Westwood [18] estimates the 

available bandwidth at the sender side based on the interval of returning ACKs: 
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where, dk is the amount of acknowledged data at time tk and tk-1 is the time when previous 

acknowledgement was received. This sample bandwidth is smoothed further by a low-

pass filtering to obtain estimated bandwidth. 

TCP-Jersey [21] adopts the same idea. It employs time-sliding window (TSW) 

estimator at the sender and estimated available bandwidth as: 
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where, Rn is the estimated bandwidth when the n-th acknowledgement arrives at time tn. 

tn-1 is the time when previous acknowledgement arrived. Ln is the size of data 

acknowledged by the n-th acknowledgement and RTT is the TCP’s estimation of the end-

to-end RTT delay at time tn. Since duplicate acknowledgements also account for 

available bandwidth, both these bandwidth estimation approaches [21], [18] consider 

duplicate ACKs in the cases of packet loss in the network.  

Unlike TCP Westwood and TCP-Jersey, Selective-TCP estimates bandwidth at 

the receiver and, hence, it measures the available bandwidth as the number of packets 

received in a given period of time. In cases of packet loss, the available bandwidth would 



 

 28

be smaller since fewer packets will be received than in the case of no packet loss. 

Selective-TCP measures available bandwidth as: 
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where, tn is the time when most recent in-sequence packet is received, tn-1 is the time 

when previous  in-sequence packet was received, np is the number of packets received 

within (tn – tn-1), and sp is the size of packets in bytes.  

In the case of wireless loss, the receiver sends ACK with SNACK option to the 

sender. As a consequence, the TCP sender retransmits the missing packets indicated by 

SNACK. Acknowledgments with SNACK options are sent after a certain delay 

(snack_delay). As a result the chance of unnecessarily retransmitting a delayed or 

misordered segment is limited [24]. Since the SNACK option triggers a retransmission, 

there is no reliance on the Fast Retransmit algorithm to detect the loss. This independence 

from the Fast Retransmit algorithm is important because duplicate ACKs may never be 

received when operating over a highly lossy link. The pseudo-code is shown in 

Algorithm 2. The default value of snack_delay in the implementation is 50 ms. The value 

of this delay depends on mission requirements. We also used other values for 

snack_delay such as 35 ms and 25 ms. Nevertheless, in these cases network performance 

deteriorated compared to delaying SNACK for 50 ms. Hence, in simulations we used 50 

ms as the snack_delay. 
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Algorithm 2: Pseudo-code of Selective-TCP at the receiver.  
 

if (out-of-order packet received) { 

 // check type of loss  

 if ( wireless loss) { 

  // before sending SNACK, wait for the snack_delay to be over 

  // initial value of snack_delay = 50 ms 

  if (snack_delay = 0) 

   send SNACK 

  else 

   do nothing 

 } 

 else { // congestion loss 

  1) set congestion_count = congestion_count + 1 

2) set congestion_info = current bandwidth  measured at the TCP 
receiver 

   if (congestion_count = k) { 

    1) send congestion_info to the TCP sender        
    2) reset  congestion_count 

   } 

   else 

    send ACK //as in the case of TCP sink 

 } 

 } 

else // in-sequence packet received 

 send ACK //same as TCP sink 

 

4.2.3 Module at the TCP Sender 

When a SNACK is received, the TCP sender aggressively retransmits the 

packet(s) indicated as lost packet(s), without waiting for retransmission timeout to occur. 

Hence, congestion control mechanism and unnecessary retransmissions are avoided, 

leading to higher bandwidth utilization. Congension_info stores the bandwidth measured 
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at the receiver when a packet loss is detected. If the congestion_info field in the TCP 

header has a non-zero value, the sender sets its congestion window size equal to 

congension_info*base_rtt, where base_rtt is the initial round trip time. This prevents the 

TCP AIMD algorithm from setting the congestion window size to be unnecessarily small. 

Congestion_info is multiplied by base_rtt to increase the congestion window size. The 

pseudo-code is shown in Algorithm 3. 

Algorithm 3: Pseudo-code of Selective-TCP at the sender.  
 

if (SNACK received) { 

  1) retransmit packet(s) indicated as lost 

  2) reset retransmission timer 

  } 

else if (congestion_info ≠ 0) { 

  // set size of congestion window equal tothe bandwidth     
 // measured at receiver 

  1) set cwnd_ = congestion_info * base_rtt 

// cwnd_ denotes congestion window size and base_rtt is 

// the base round trip time measured at sender 

  2) reset congestion_info 

  } 

else // standard ACK received 

  do as TCP NewReno sender  

  

 

Congestion_info is a C++ variable of data type “double”. Hence, the size of the 

congestion_info is 64 bits (8 bytes), which is equal to one octet. In actual implementation 

of Selective-TCP, an octet of data has to be appended to the optional data area of the TCP 

header. The TCP header was shown in Fig. 4.  
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5 IMPLEMENTATION OF SELECTIVE-TCP IN NS-2 

The simulations are performed using the ns-2 network simulator version 2.27. In 

this Chapter, we introduce the ns-2 simulation tool along with the implementation details 

of the Selective-TCP algorithm. 

5.1 Introduction to ns-2 

Ns-2 [25] is a discrete event network simulator developed at the University of 

California at Berkeley (UCB). It began as a variant of the Real network simulator 

developed in 1989. It is currently supported through Defence Advanced Research Project 

Agency (DARPA) and National Science Foundation (NSF). 

Ns-2 takes full advantage of the features of object-oriented programming. It is 

written in C++ and OTcl. Although it does not guarantee production of a faithful replica 

of the real world, it does try to model most of the protocol behaviour accurately and can 

be used to study various protocols at different levels of the OSI layers.  It is focused on 

modelling network protocols including wired, wireless and satellite networks with 

transport protocols such as TCP, and UDP with both unicasting and multicasting 

capabilities. It models Web, Telnet, and FTP applications. It also includes the 

implementation of ad-hoc routing and sensor networks. It provides provisions for 

gathering statistics, tracing, and error modelling for the simulations carried out. Apart 

from the core code of the ns-2, there have been numerous contributions from other 

researchers. We use ns-2 to perform the network simulations. The simulation results were 
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used to evaluate the proposed Selective-TCP algorithm. We chose ns-2 for the 

implementation because it is a freely distributed code and supports many interesting 

protocols. The architectural design of ns-2 is rather extensible.  

C++ and Tcl are the two languages used in ns-2. Two languages are needed to 

perform complex programming, coupled with the need for speed when we vary 

parameters/configurations to explore a large number of scenarios while studying the 

various protocols. C++ is fast to execute, nevertheless it is slow to change, making it 

suitable for the complicated protocol implementation. However, it is very slow when 

varying parameters and rerunning simulations. Tcl, on the other hand, is much slower but 

very convenient for varying simulation parameters. Consequently, C++ is used for 

implementing properties of the protocol while Tcl is used to implement code that needs to 

be changed often in order to study the protocol behaviour.  

There are six most important classes when linking the C++ and OTcl code. They 

provide the necessary connection to interact with the code from the other language. These 

six classes are Class Tcl, Class TclClass, Class TclObject, Class TclCommand, Class 

EmbeddedTcl, and Class Instvar. 

5.1.1 Class Hierarchy in ns-2 

Fig. 9 shows a glimpse of the ns-2 architecture. The root of the hierarchy is the 

class TclObject. It is the superclass of all OTcl libray objects such as scheduler, network 

components, timers, and other objects (NAM). The simulator has a class hierarchy in 

C++ (compiled hierarchy) and a corresponding class hierarchy in OTcl (interpreted 

hierarchy). Both these hierarchies are closely related. 
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Figure 9: ns-2 class hierarchy (partial). 

 
Source: NS by example [26], reprinted by permission. 

5.1.2 Agents in ns-2 

Agents, being the end points in a network, are also end points in ns-2. The class 

Agent is the base class, which is partly implemented in OTcl and partly in C++. There are 

various protocol agents in ns-2, including the basic agents such as TCP and UDP. The 

agents are usually created through Tcl during a simulation. In this case, the constructor 

for the agent in the compiled code is executed. The binding is then performed in the class.  

The main tasks performed by these agents are processing the requests and 

responses at the sender and the receiver. They also implement a timer class if necessary. 

To create a new agent, we have to first decide on the inheritance structure and create 

appropriate class definitions, define recv() and timeout() methods, define any necessary 

timer classes, define the OTcl linkage functions, and write the necessary OTcl code  to 

access the agent. The pre-existing agents of ns-2 provide an excellent base for extending 

various other complicated protocols.  
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5.2 Implementation of Selective-TCP algorithm 

The implementation of Selective-TCP algorithm is based on the SNACK module 

[27] developed for ns-2. The SNACK module provides a SNACK processing module in 

the TCP NewReno sender and a SNACK generating module in the TCP sink. The 

Selective-TCP algorithm is implemented in the SNACK module. Necessary 

modifications are made in the agent named class SnackSink and its recv() function, which 

is the main reception path for packets and provides various other necessary methods. Fig. 

10 shows the implementation hierarchy and the important C++ classes for Selective-TCP 

implementation are shown with darker shade.  

At the sender side, the class TCPNewReno is modified so that the congested/non-

congested state of the network can be determined from TCP header option 

congestion_info and the congestion window size cwnd is set if required. Necessary 

modifications are made in the files tcp.h (for introducing the option field 

congestion_info) and newreno.cc.  

At the receiver side, the class SnackSink is modified. The recv() function of this 

class is extended to introduce packet loss detection mechanism, setting the 

congestion_info of TCP header, and invoking sendSnack process if required by the 

algorithm. Necessary  modifications are made in the files tcp-sink.h and tcp-sink.cc. 
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Figure 10: Selective-TCP implementation overview: C++ classes shown with dark shade are 
modified. 
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6 PERFORMANCE EVALUATION 

In this Chapter, we present the performance evaluation of Selective-TCP 

algorithm using network simulator ns-2. We discuss the error model used to simulate the 

burst error in the wireless links. We also discuss the simulation topology and the 

simulation parameters. Next, we describe the simulation scenarios followed by the 

explanation of simulation results.  

6.1 Error Model 

We simulate realistic wireless links with burst errors [28] using a two-state 

Markov model (known as the Gilbert model), shown in Fig. 11. It has a good (error-free) 

and a bad (erroneous) state. In our simulations, good state implies no packet loss while 

bad state denotes 1 packet loss. 

This model is defined by a transition probability matrix π and a steady state error 

rate ε ([29]). The transition probability matrix of this two-state Markov model is given by 
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The average error rate is given by 
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The average lengths of good state (Lgood) and bad state (Lbad) are:  
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Lgood = 
p1
1
−

 and  Lbad =  
q1
1
−

.  (3) 

Figure 11: Two-state Markov model.  
p is the probability of successfully transmitting a packet given the previous packet was 
successfully transmitted; 1-q is the probability of successfully transmitting a packet 
given that the previous packet was dropped.  

 
 

The wireless link is assumed to be in one of the two states. We assume that the 

wireless link is in the good state at the beginning of simulation. The transitional 

probabilities p = 0.9913 and q = 0.8509 model the effect of burst errors [30]. The error 

rate ε = 5%. These parameters present a close replication of burst errors in real wireless 

networks [30].  

6.2 Simulation Results 

6.2.1 Network Topology 

The network (dumbbell) topology is shown in Fig. 12. The TCP sender is a wired 

node, while the TCP receiver is a wireless node. TCP source sends file transfer protocol 

(FTP) traffic. The user datagram protocol (UDP) source sends constant bit rate (CBR) 

traffic. The UDP source is a wired node, while the UDP sink is a wireless node. The FTP 

traffic and the CBR traffic share a common wired link from router R1 to base station BS, 
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as shown in Fig. 12. The TCP and UDP sender rates are 2 Mbps and 512 Kbps, 

respectively.  

Figure 12: Simulated network topology.  
R1 is an intermediate router and BS is the base station for the wireless destination 
nodes. Solid and dashed lines represent wired and wireless links, respectively.  

 
 

Wired links have 2 Mbps bandwidth. Bandwidth of the wired link between R1 

and BS is: (i) 2 Mbps when examining Selective-TCP’s performance in presence of 

congestion (the sum of TCP and UDP data rates is 2.5 Mbps) and (ii) 4 Mbps when 

examining the case without congestion. Propagation delay of the wired links is 1 ms. 

Wireless links have 1 Mbps bandwidth and 5 ms propagation delay. Hence, wireless links 

are the network bottlenecks. 

6.2.2 Simulation Scenarios 

We compare performance of Selective-TCP and TCP NewReno in the presence 

and in the absence of a congested link. In both cases, the 5% burst error in wireless link 
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has been introduced. We also study the goodput performance of Selective-TCP with no 

wireless error, 1% random error (random statistical error), and 5% burst error (continuous 

lacking of data).  There is only CBR/UDP traffic for the first 100 s of simulation time. 

After 100 s, TCP connection starts and exists along with UDP connection. All 

connections end after 300 s of simulation time. 

The performance measures we consider are throughput, goodput, and size of 

congestion window. Throughput is defined as the number of bits transmitted by the 

source host and it is presented in kbps. Goodput is defined as the number of bits received 

by the destination host, less the duplicates. Goodput can also be indicated as the 

maximum sequence number of packets reached at the destination. We use the later to 

represent goodput in the simulation results. 

6.2.2.1 Presence of a Congested Link 

We first investigate Selective-TCP’s performance in the presence of congestion in 

the network. To simulate congestion, we used a 2 Mbps link as the common wired link 

between router R1 and base station BS. The rate of data through this link is 2.5 Mbps.  

Goodput (the number of bits received at the destination host, less duplicates) in 

the presence of a congested link is shown in Fig. 13. We represent goodput as the 

maximum sequence number of packets received at the receiver. Selective-TCP achieves 

up to 45% improvement when compared to NewReno. Selective-TCP shows larger 

congestion window size than TCP NewReno, indicating better utilization of available 

bandwidth, as shown in Fig. 14. The slow start threshold and the average network 

throughput for Selective-TCP are shown in Figs. 15 and 16, respectively.  
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Figure 13: Goodput vs. time: goodput is represented as the maximum number of packets reached 
their destination. 

 
 

 

Figure 14: Congestion window size for Selective-TCP is significantly larger than that of TCP 
NewReno. 
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Figure 15: Compared to TCP NewReno, a Selective-TCP sender maintains a constant value of 
slow start threshold over a longer period of time. The initial value of the slow start 
threshold is equal to 20.  

 
 

Figure 16: The average throughput of Selective-TCP (161.5 kbps) is larger than the average 
throughput of TCP NewReno (110.91 kbps).  
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A comparison of goodput performance of Selective-TCP, without wireless error, 

with 1% random error (random statistical error), and with 5% burst error (continuous 

lacking of data), is shown in Fig. 17. As expected, the goodput performance is best when 

there is no wireless error. It seems the performance of Selective-TCP without wireless 

error and TCP NewReno should be exactly same, however, they differ (maximum ~5%). 

This is because the loss detection mechanism [22] used in Selective-TCP is not 100% 

precise. Its accuracy of detection is ~95%, which is the reason that some congestion 

losses are detected as wireless losses and vice versa.  

Figure 17: Goodput of Selective-TCP: maximum goodput is achieved when no wireless error is 
introduced. 

 
 

6.2.2.2 Absence of a Congested Link 

Next, we investigate Selective-TCP’s performance without presence of 

congestion in the network. To simulate non-congested link, we have used a 4 Mbps link 

as the common wired link while the total rate of data through this link is 2.5 Mbps. 
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Goodput vs. simulation time without congestion in the common wired link is 

shown in Fig. 18. Goodput improves by 45% than TCP NewReno over 300 s of 

simulation. Congestion window size, slow start threshold, and throughput as functions of 

time are shown in Figs. 19, 20, and 21, respectively. We compare performance of 

Selective-TCP and TCP NewReno in a non-congested network. Similar to the case of 

congested network, Selective-TCP performs better than NewReno. If no error is 

introduced in wireless link, Selective-TCP achieves ~1.5 times the goodput in the case of 

5% burst error, as shown in Fig. 22.  

Figure 18: Selective-TCP shows significant increase in goodput. 
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Figure 19: The size of congestion window for Selective-TCP remains larger than for TCP 
NewReno. 

 
 

Figure 20: Slow start threshold of Selective-TCP remains constant over a longer connection 
period. 
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Figure 21: Average throughput of Selective-TCP (169.15 kbps) and of TCP NewReno (115.65 
kbps). 

 
 

Figure 22: Effect of wireless errors: goodput of Selective-TCP in the absence of congested link. 

 
 

In general, Selective-TCP shows better goodput and throughput in the presence of 

congested link. 
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6.2.3 Comparison of Selective-TCP and TCP Packet Control Algorithm 

In this Section, we present a brief description of TCP packet control algorithm [8] 

and compare its performance to Selective-TCP. As in the Section 6.2.2, we discuss the 

cases of congested link and non-congested link, each with 5% burst error, 1% random 

error, and no wireless error in the wireless link.    

6.2.3.1 TCP Packet Control Algorithm 

TCP packet control algorithm is designed as an option for TCP rather than a 

modification of TCP. It is a link layer based approach to improve TCP’s performance in 

the wireless networks and, hence, requires modifications only in the base stations. It 

addresses two problems specific to wireless networks: delay variations (causing spurious 

fast retransmit) and sudden large delays (causing spurious fast timeout). This algorithm 

hides wireless losses from the fixed host or the TCP sender. To deal with these two 

problems, two filters at the base station called Data filter and ACK filter are introduced. 

These two filters improve TCP performance in mixed wireline/wireless networks by 

dealing with the wireless links with long sudden delays, delay variations and maintaining 

regular TCP functions. These filters keep track of TCP data and ACK packets received 

from the fixed host and the mobile host, respectively. They then forward packets to both 

client ends based on the information gathered in the base station. They do not depend on 

end-user TCP flavours. Packet control filters are shown in Fig. 23.  
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Figure 23: TCP packet control algorithm: two filters are introduced at the base station. 

 
 

1. ACK Filter: Packet control algorithm reacts to ACKs received from the mobile 

host using the ACK filter. It drops the old ACKs and duplicate ACKs according to the 

duplicate ACK threshold defined by the user. It remembers the last new ACK received 

from the wireless receiver, called the last received ACK. When an ACK arrives, its ACK 

number is checked against the last received ACK. Three cases are considered: 

Old ACK: The ACK is considered old if the ACK number has already been 

received and/or is smaller than the last received ACK. It is immediately dropped. 

Duplicate ACK: If the newly received ACK number is identical to the largest 

ACK currently received, it is considered a duplicate ACK. Packet control algorithm 

keeps track of the current number of duplicate ACKs received at the BS. Based on the 

number of duplicate ACKs received and the user-defined duplicate ACK threshold, 

duplicate ACKs are evenly dropped and are not sent to the sender. The number of ACKs 

to be dropped is equal to the difference between the user-defined duplicate ACK 

thresholds at the BS and at the mobile host. For example, if the user-defined duplicate 

ACK threshold is 6 and TCP has defined the three duplicate ACK threshold, every 

second duplicate ACK is dropped. 

ACK filter

Data filter
 Mobile host  Fixed host 

Base station

 Wired link  Wireless link 
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New ACK: If the ACK number has not been received before, the ACK is 

considered new. The last wireless ACK is updated, the counter for the current number of 

duplicate ACKs is reset, and the ACK is forwarded to the sender. 

The design of the ACK filter is based on the observation that a wireless link has a 

high number of re-ordered segments, which is the primary cause of spurious fast 

retransmit. By filtering some duplicate ACKs at the BS, the spurious fast retransmit may 

be reduced. If there is no packet loss in the network, filtering duplicate ACKs results in 

better TCP performance. The pseudo-code is shown in Algorithm 4. 

Algorithm 4: Pseudo-code for the TCP packet control algorithm: data filter 

 

if (new or unacknowledged data segment) 

 forward to receiver (mobile host) 

else // acknowledged data segment 

 drop the segment 

 

2. Data Filter: When the data filter receives a data segment from the fixed host, it 

passes it to the mobile host. The data filter at the base station is designed to prevent the 

spurious fast retransmit caused by spurious timeout. In the case of spurious timeout, 

retransmissions of the unacknowledged segments unnecessarily consume the scarce 

wireless link bandwidth and trigger additional spurious fast retransmits. Therefore, their 

prevention is essential in solving spurious timeout. The data filter checks whether data 

segments have been acknowledged or not. The sequence number is checked against the 

last ACK received from the receiver. Two cases are considered: 
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New data segment or unacknowledged segment: If the segment has not been 

acknowledged, it is forwarded to the receiver. The segment is either a new data segment 

or an unacknowledged segment. In the latter case, the system cannot distinguish whether 

the last transmission of the same segment has been received by the receiver or its ACK 

was lost. In both cases, even if the received segment is a retransmission, it is forwarded. 

Acknowledged segment: This segment is a retransmission due to spurious timeout. 

This occurs because the ACK from the base station is lost or has not arrived at the mobile 

host. In both cases, the segment is dropped. We consider that a loss of ACKs could occur 

even though the BER and the possibility of congestion for ACKs are small in wireline 

networks. For every two identical retransmitted segments received, an ACK is sent from 

the base station to the sender. Hence, unnecessary retransmissions are eliminated and the 

problem of lost ACKs is resolved. The pseudo-code is shown in Algorithm 5. 

Algorithm 5: Pseudo-code for the TCP packet control algorithm: ACK filter 

 

if (old ACK received) 

 drop the ACK 

else if  (new ACK received) { 

 1) update last_received_ACK 

 2i) reset number of DUP_ACKs to 0 

 3) forward the ACK to fixed host   

} 

else   { // duplicate ACK received 

 1) update number of DUP_ACKs 

 2) drop or forward the duplicate ACKs depending  

 on user-defined DUPACK_threshold  

} 
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6.2.3.2 Comparison in the Presence of a Congested Link 

We compare the performance of Selective-TCP and TCP packet control algorithm 

with the network topology as described in Section 5.3.1. The simulation scenarios are 

described in Section 5.3.2. We first investigate both the algorithms in presence of 

congestion in the network. We again use a 2 Mbps wired link as the link between 

intermediate router R1 and base station BS, as shown in Fig. 12. 

Figs. 24 and 25 show plots of goodput in terms of maximum number of packets 

received at the receiver over 300 s of simulation and 600 s of simulation time, 

respectively. These graphs show that the performance of Selective-TCP and the TCP 

packet control algorithm are comparable, Selective-TCP being better for long 

connections. In both cases, both algorithms perform (~ 40% – 50%) better than TCP 

NewReno. 

Figure 24: Goodput vs. time: 300 s of simulation. 
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Figure 25: Goodput vs. time: 600 s of simulation. 

 
 

Figs. 26 and 27 show the variation of congestion window size and slow start 

threshold, respectively. Again, both Selective-TCP and TCP packet control algorithm 

perform much better than TCP NewReno, Selective-TCP being slightly better than TCP 

packet control algorithm.  The throughput values are compared in Fig. 28. Effect of 

introducing various wireless errors is shown in Fig. 29. 
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Figure 26: Congestion window size for Selective-TCP is larger than TCP packet control algorithm 
that has larger congestion window size than TCP NewReno. 

 
 

Figure 27: Slow start threshold vs. simulation time. 
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Figure 28: Average throughputs for Selective-TCP and TCP packet control algorithm are almost 
identical (~160 kbps). 

 
 

Figure 29: Effect of wireless errors on Selective-TCP and TCP packet control algorithm. 
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6.2.3.3 Comparison in the Absence of a Congested Link 

We now compare Selective-TCP and TCP packet control algorithm without 

presence of congested link in the connection path between TCP sender and receiver. We 

again use a 4 Mbps wired link between intermediate router R1 and base station BS, as 

shown in Fig. 12. 

In the absence of a congested link, Selective-TCP performs significantly better 

than TCP packet control algorithm, as shown in Fig. 30. Variation of congestion window 

size and slow start threshold are shown in Figs. 31 and 32, respectively. Throughput is 

compared in Fig. 33.  In this case, average throughput for Selective-TCP is ~30% better 

than for TCP packet control algorithm. In contrast, in the case of congestion, both 

algorithms had almost identical average throughput.  

Figure 30: Goodput performance in the absence of congested link: Selective-TCP performs better 
than TCP packet control algorithm. 
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Figure 31: Congestion window vs. simulation time. 

 
 

Figure 32: Slow start threshold vs. time. 
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Figure 33: Throughput vs. simulation time. 

 
 

The effect of varying wireless errors on goodput performance is shown in Fig. 34. 

Figure 34: Effects of wireless error on goodput performance. 
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6.2.4 Comparison of Selective-TCP with Other TCP Variants 

We compare Selective-TCP with TCP Reno [1], TCP SACK [5], and TCP 

Westwood [18] along with TCP NewReno [2] and TCP packet control algorithm [8].  

6.2.4.1 Comparison in the Presence of a Congested Link 

In the presence of congestion in the network, Selective-TCP achieves larger 

congestion window compared to other TCP variants, as shown in Fig. 35. TCP SACK 

and TCP Westwood show smaller bandwidth utilization. This indicates that in the 

presence of congested link in the network, SACK and Westwood fail to efficiently use 

the available bandwidth. 

Figure 35: Size of congestion window vs. simulation time: congestion window size is the largest for 
Selective-TCP, compared to other TCP variants. 

 

TCP packet control algorithm achieves the highest goodput followed by 

Selective-TCP, TCP Reno, and NewReno, as shown in Fig 36. However, performance of 

TCP Westwood and TCP SACK deteriorates significantly, which is in agreement with 
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the poor bandwidth utilization of TCP SACK and Westwood, shown in Fig. 35. Among 

the considered TCP variants, TCP packet control is the only link layer based algorithm. 

All other algorithms are end-to-end approaches. This explains the reason that TCP packet 

control algorithm achieves highest goodput in a mixed wired/wireless network with 5% 

burst error in the wireless links. 

Figure 36: Goodput vs. simulation time: network performance deteriorates for TCP SACK and 
TCP Westwood. 

 

 

6.2.4.2 Comparison in the Absence of a Congested Link 

In the absence of congested link, the congestion window sizes for all six TCP 

variants are shown in Fig. 37. Similar to the case of congested link, Selective-TCP 

achieves the highest congestion window when compared to other TCP variants. 

Selective-TCP measures the available bandwidth at the time of packet loss and sets 

congestion window size accordingly. This is the reason for the high congestion window 
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size for Selective-TCP. TCP Westwood uses bandwidth estimation to set congestion 

window size. It should have also achieved larger congestion window size compared to 

TCP Reno, NewReno, SACK, and TCP packet control algorithm because none employs 

bandwidth measurement/estimation. However, in our simulations, somewhat 

unexpectedly, congestion window for TCP Westwood is similar to the other TCP 

variants. 

Figure 37: Congestion window size for 300 s of simulation time. 

 

 

Fig. 38 shows the goodput of TCP Reno, NewReno, SACK, Westwood, 

Selective-TCP, and TCP packet control algorithm for 300 s of simulation time. Selective-

TCP performs best, followed by TCP Westwood. The reason is that both algorithms use 

bandwidth measurement/estimation. TCP Reno, NewReno, and SACK perform 

comparably. TCP packet control algorithm, unlike in the case of congestion, achieves 

lower goodput. This indicates that TCP packet control algorithm performs better in the 
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presence of congestion. Selective-TCP, on the other hand, performs well in cases of both 

congestion and non-congestion. 

Figure 38: Goodput vs. simulation time. 
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7 CONCLUSIONS AND FUTURE WORK 

In this report, we proposed a new end-to-end protocol called Selective-TCP to 

improve TCP performance in mixed wired-wireless networks, where wireless link is the 

network bottleneck. Selective-TCP distinguishes between congestion and wireless errors 

and accordingly takes corrective measures for those errors. In case of wireless errors, the 

receiver sends selective negative acknowledgement to the sender without sending 

duplicate acknowledgements and, thus, prevents congestion control that is otherwise 

preformed by TCP. On detection of congestion error in the network, receiver informs the 

sender of the measured bandwidth at receiver. The sender then sets the congestion 

window size accordingly, thus stopping the AIMD algorithm to set congestion window 

lower than necessary. Both measures taken by the Selective-TCP improve the bandwidth 

utilization and increase goodput up to 45% compared to TCP NewReno.  

We have evaluated Selective-TCP’s performance in presence of burst errors in the 

wireless link. To make the results relevant to deployed wired/wireless networks, we have 

used realistic parameters for the error model.  TCP connections are simulated using the 

ns-2 network simulator. Selective-TCP is an extension of NewReno sender and receiver. 

It requires no modification on intermediate routers, making it purely an end-to-end 

approach. 

Along with performance evaluation of Selective-TCP, we have compared its 

performance with the TCP packet control algorithm. TCP packet control algorithm is a 

link-layer based approach to improve TCP performance over wireless link. We have also 
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compared Selective-TCP’s performance to TCP Reno, NewReno, SACK, and TCP 

Westwood. 

As future work, the Selective-TCP algorithm may be improved by employing 

feedback from intermediate routers, while maintaining the end-to-end semantics of the 

connection. The performance of Selective-TCP could be evaluated in the presence of 

frequent hand-offs. Furthermore, performance of Selective-TCP with protocols other than 

TCP NewReno could be investigated.  In this report, we have studied performance of the 

proposed algorithm in mixed wired/wireless networks only. Evaluation of its 

performance in mixed satellite and wired networks would be an interesting subject to 

investigate.  
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