DEFLECTION ROUTING IN COMPLEX NETWORKS

Ljiljana Trajković

Communication Networks Laboratory

http://www.ensc.sfu.ca/~ljilja/cnl/ Simon Fraser University Vancouver, British Columbia, Canada

Communication Networks Laboratory

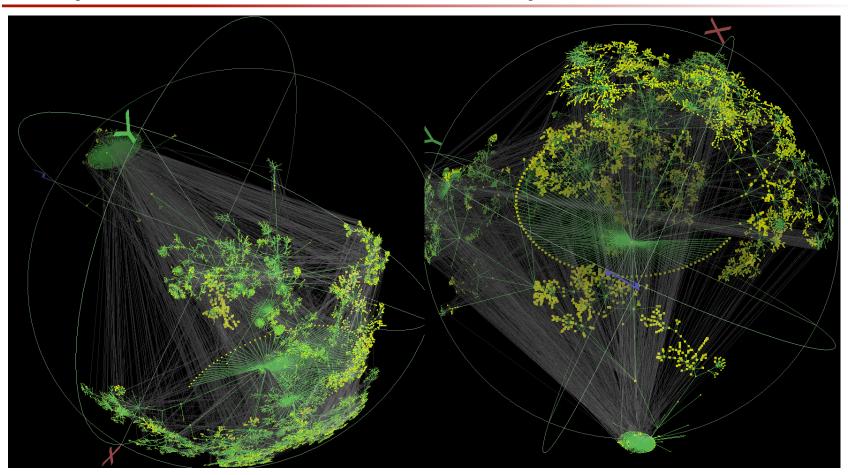
Ph.D. student:

Soroush Haeri

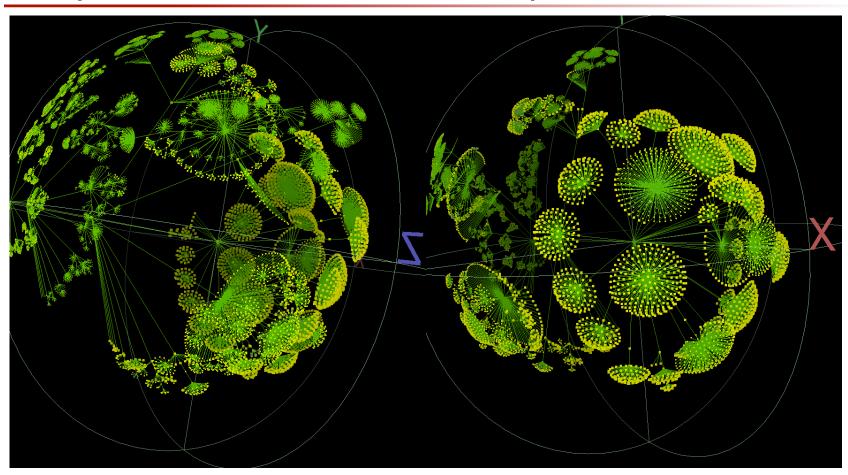
Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

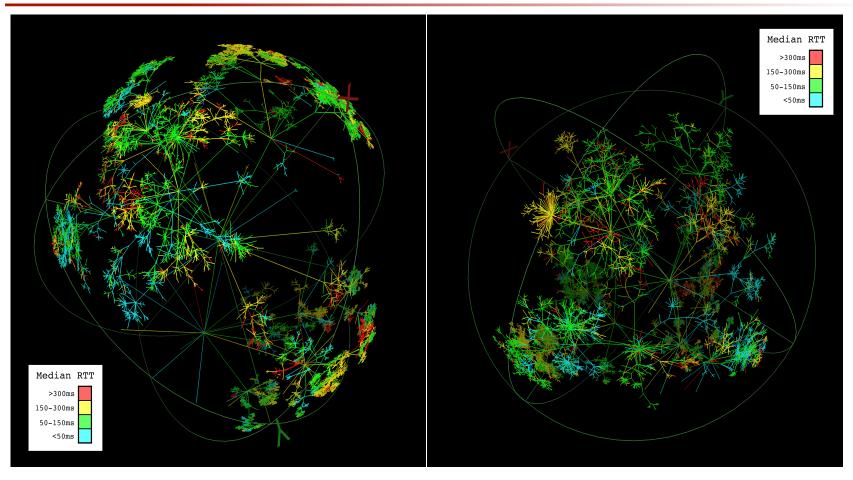
Riesling: 54,893 nodes and 79,409 links



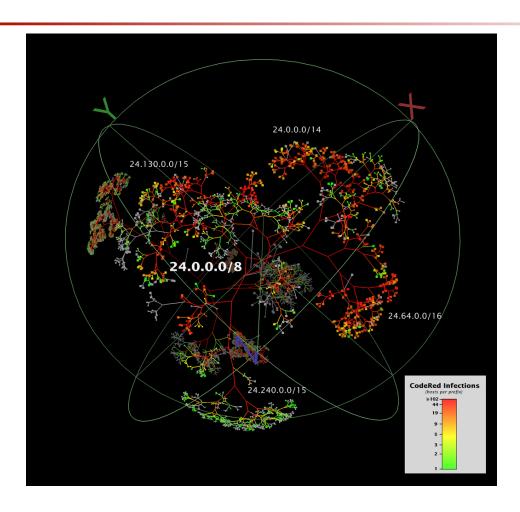
CVS Repository: 18,474 nodes and 18,473 links



Round-Trip Time Measurements: 63,631 nodes and 63,630 links



Code Red Infection



Introduction

- Design of routing protocols is influenced by:
 - discovery of power-law distribution of node degrees
 - scale-free properties of communication networks
- Power laws are present in the Internet's inter-Autonomous System-level topology
- Waxman and Barabási-Albert algorithms have been widely used to generate Internet-like graphs

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Buffer-Less Architecture and Contention

- Buffer-less nodes do not possess first-in-firstout (FIFO) buffers to queue data
- Buffer-less network architectures:
 - optical burst switched networks
 - on-chip networks
- Contention is the main source of packet loss in buffer-less networks

Buffer-Less Architecture and Contention

- Routing protocol selects the optimal path between a source and a destination
- Contention:
 - multiple arriving traffic flows at a node need to be routed through a single outgoing link
- If there is no contention resolution scheme:
 - a flow is routed through the optimal outgoing link defined by the routing table
 - other flows are discarded because a node has no buffer

Deflection Routing

- Deflection routing may be employed as a contention resolution scheme
- A deflection routing algorithm temporarily misroutes packets instead of buffering or discarding
- Deflection routing and the underlying routing protocol co-exist in a network

Deflection routing: Tradeoff

- Tradeoff:
 - quality of deflection routing vs. the number of signaling messages required by the deflection routing algorithm
- The underlying routing protocol generates a significant number of control signals
- Deflection routing protocols should generate few control signals
- Goal:
 - exhibit good performance while transmitting fewer control signals

Complex Networks and Deflection Routing

- High-speed optical links are often used to connect the Internet autonomous systems
- Optical burst switching may be used for inter-Autonomous System communication
- Typical topologies used to test deflection routing algorithms:
 - small-size networks (National Science Foundation network)
 - torus topologies
- These topologies do not resemble structure of the Internet

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Reinforcement Learning

- Formalizes trial-and-error-based learning processes
- Four basic elements:
 - agent or decision maker
 - environment of the agent
 - actions performed by agent
 - feedback signals generated by environment
- Objective:
 - maximize/minimize the rewards/penalties that agent receives from environment

Reinforcement Learning: Agent-Environment Interaction

- Agent observes the state of the environment and selects an appropriate action
- Environment generates a reinforcement signal and transmits it to the agent
- Agent employs the reinforcement signal to improve its subsequent decisions

Reinforcement Learning

- Reinforcement learning agent requires:
 - information about state of environment
 - reinforcement signals from environment
 - rule (algorithm) to update its statistics
- Examples of learning algorithms:
 - Q-learning
 - feed-forward networks

Q-Learning

- Q-learning algorithm has been used to design a learning and decision making module
- Q-learning:
 - is a simple reinforcement learning algorithm
 - maintains a Q-value Q(s,a) in a Q-table for every state-action pair

C. J. C. H. Watkins and P. Dayan, "Technical note, Q-learning," *Machine Learning*, vol. 8, no. 3, pp. 279–292, May 1992.

Q-Learning

Q-learning update rule:

$$Q(s_t, a_t) \leftarrow Q(s_t, a_t) + \alpha \times \left[r_{t+1} + \gamma \max_{a_{t+1}} Q(s_{t+1}, a_{t+1}) - Q(s_t, a_t) \right]$$

- s: state of the system
- a: action
- α : learning rate
- r : reward
- γ : discount factor
- t and t+1: two consecutive decision instances

Reinforcement Learning for Deflection Routing

- Reinforcement learning algorithms are random in nature
- Randomness enables a deflection routing protocol to make viable decisions while transmitting fewer control signals
- Deflection decision or action:
 - select an alternate outgoing link that a node may use to deflect a traffic flow
- Modules required for reinforcement learning:
 - signaling
 - learning and decision making

Reinforcement Learning for Deflection Routing

- Signaling module:
 - is aware of the state of the system
 - implements the algorithm for generating and delivering feedback signals

Reinforcement Learning for Deflection Routing

- Learning and decision making module:
 - In case of contention:
 - receives the state of the system from the signaling module
 - generates a deflection decision
 - After generating a deflection decision:
 - receives feedback from the signaling module
 - employs feedback to enhance its future decisions

Outline

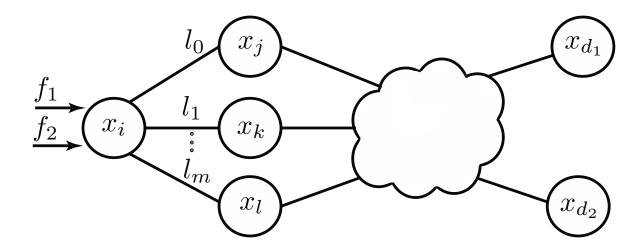
- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Network Model

Consider a network with n buffer-less nodes:

$$\mathcal{N} = \{x_1, x_2, \dots, x_n\}$$

• Node x_i is connected to its m neighbors via outgoing links: $\mathcal{L} = \{l_0, l_1, \dots, l_m\}$



Network Model

- System state:
 - original destination of a traffic flow that needs to be deflected
 - set of states encountered by an arbitrary node x_i:

$$S_{x_i} = \{x_1, x_2, \dots, x_{i-1}, x_{i+1}, \dots, x_n\}$$

Network Model

Action:

- alternate outgoing link used to deflect a traffic flow
- set of actions available to a node x_i with m outgoing links:

$$\mathcal{A}_{x_i} = \{l_0, l_1, \dots, l_m\}$$

Network Topology: Waxman Algorithm

- Commonly used model to generate random network topologies
- Probability of a link connecting nodes u and v in Waxman graph:

$$\Pr\left(\{u,v\}\right) = \eta \exp\left(\frac{-d(u,v)}{L\delta}\right)$$

- Graphs generated with larger η and smaller δ have larger number of short edges:
 - bi-component
 - longer hop diameter
 - shorter length diameter

Network Topology: Waxman Algorithm

- Graphs generated using Waxman algorithm:
 - do not resemble the Internet backbone and hierarchy
- The algorithm does not guarantee generating a connected graph

Network Topology: Barábasi-Albert Algorithm

- Generates scale-free graphs
- Power-law distribution of node degrees:
 - incremental growth
 - preferential connectivity
- Begin with connected network of n nodes
- New node i added to the network connects to existing nodes j with probability:

$$\Pr(i,j) = \frac{d_j}{\sum_{k \in N} d_k}$$

Network Topology: Barábasi-Albert Algorithm

- d_j : degree of node j
- N: set of all nodes
- $\sum_{k \in N} d_k$: sum of degrees of all nodes in the network

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

iDef Framework

- Facilitates development of reinforcement learning-based deflection routing protocols
- Abstracts a reinforcement learning-based deflection routing algorithm in three modules:
 - mapping
 - decision making
 - signaling

iDef Framework

- Minimized dependency among its modules enables:
 - implementation of portable deflection routing protocols
 - design of modules that can be replaced without changing the entire design
- Example of portability:
 - replacing the decision-making algorithm requires no changes in signaling module

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Reinforcement Learning-Based Deflection Routing Algorithms

- Node Degree Dependent Algorithm with Q-Learning (Q-NDD)
 - scales well in larger networks
 - its complexity depends on the node degree
 - feedback signals are received only if the deflected packet is discarded by another node

Reinforcement Learning-Based Deflection Routing Algorithms

- Predictive Q-learning Deflection Routing Algorithm (PQDR)
 - employs the predictive Q-Routing (PQR)
 - addresses the shortcomings of Q-learning
 - its complexity depends on the network size
 - feedback signals are received for every deflected packet

Reinforcement Learning-Based Deflection Routing Algorithms

- Reinforcement Learning Deflection Routing Scheme (RLDRS)
 - employs the Q-learning algorithm for deflection routing
 - its complexity depends on the network size
 - does not generate optimal routing policies in networks with low loads
 - does not learn new optimal policies in cases when network load decreases

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Q-NDD

- Complexity of the Node Degree Dependent (NDD) algorithm depends only on a node degree
- Consider optical burst switched networks network with N nodes:
 - each node maintains a Q-table
 - all nodes are NDD compatible
- NDD defines a state of the system by:
 - states of the optical interfaces
 - output port defined by the routing table

Q-NDD

- NDD defines an action as an output port number
- On burst transmission, a node:
 - inspects the routing table for the next hop
 - checks the status of its optical interfaces

Q-NDD

Four cases may occur:

- 1. desired optical interface is available
- desired optical interface is busy and the burst has not been deflected earlier by any other node
- desired optical interface is busy and the burst has been deflected earlier by another node
- 4. all optical interfaces are busy and the burst has been deflected earlier by another node

Case 1 and Case 2

- Case 1: Desired optical interface is available:
 - optical cross-connects are configured according to the path defined by the routing table
- Case 2: Desired optical interface is busy and the burst has not been deflected earlier by another node:
 - node passes the state of the system to the Q-learning module

- Q-learning module then:
 - passes the output port number (action) associated with the maximum Q-value to the NDD module
 - waits for feedback
 - makes no new decisions during the idle interval

- NDD module:
 - adds to the burst header:
 - unique ID number
 - address of the node that initiated the deflection
 - deflection hop counter DHC, which increments each time other nodes deflect the burst

- records the current time as the deflection time (DfT) with the ID that has been added to the burst
- initiates the drop notification (DN) timer
- records the action selected by the Q-learning module
 - records are used if the node needs to deflect a burst:
 - that has been deflected earlier
 - during an idle interval

- waits for a feedback signal for DN_{max} seconds
 - if no feedback is received:
 - assumes that the burst has been successfully delivered
 - returns the maximum reward value to the
 - Q-learning module for an update

- if feedback is received:
 - calculates a reward value based on the feedback signal
 - returns the reward value to the Q-learning module for an update

Case 3

 Case 3: Desired optical interface is busy and the burst has been deflected earlier by another node:

- NDD module:
 - checks the deflection hop counter (DHC) field in the burst header and if:
 - DHC == DHC_{max}: prepares a feedback signal and discards the burst
 - DHC < DHC_{max}: checks the state of the system and performs the latest action that the Q-learning module has generated for the current state

Case 4

- Case 4: All optical interfaces are busy and the burst has been deflected earlier by another node:
 - NDD module prepares a feedback signal and discards the burst

Feedback Signal

- Feedback signal is composed of:
 - burst ID number that was assigned to the burst by the node that initiated the deflection
 - DHC field value:
 - DHC is not equal to DHC_{max} when the burst is discarded because the node if fully congested
 - drop time DrT:
 - time instant when the burst was discarded

Reward

- Reward is generated based on the feedback signal received at the node that has initiated the deflection
 - NDD module:
 - calculates the total travel time:

$$TTT = DrT - DfT$$

 uses a decreasing function with the global maximum at (0,0) to map TTT and DHC to a real valued reward

Reward

example:

$$maxR, \alpha, \beta > 0$$

$$\begin{cases} maxR & DHC = 0 \text{ and } TTT = 0 \\ -\alpha \times DHC - \beta \times TTT & \text{otherwise} \end{cases}$$

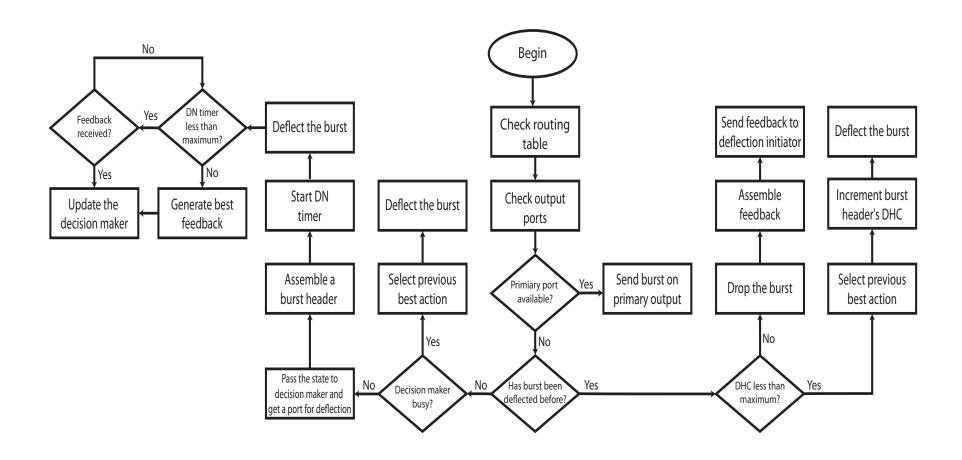
Q-Learning Module Update

 Q-learning module updates the Q-value of the current state and the selected action as:

$$Q(s,a) \leftarrow Q(s,a) + \alpha (r - Q(s,a))$$

- s: state of the system
- a: action
- α : learning rate
- r: reward

NDD: Flow Chart



Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Predictive Q-learning Deflection Routing: PQDR

- PQDR learning and decision making module of a node x_i maintains four tables:
 - Table 1
 - $Q_{x_i}(x,l)$ stores accumulated rewards that x_i receives for deflecting packets to destinations x via outgoing link l
 - Table 2
 - $B_{x_i}(x,l)$ stores the minimum Q-value that x_i has calculated for deflecting packets to destinations x via outgoing link l

PQDR

- PQDR learning and decision making module of a node x_i maintains four tables:
 - Table 3
 - $R_{x_i}(x,l)$ stores deflection decision recovery rates for deflecting packets for destinations x via outgoing link l
 - Table 4
 - $U_{x_i}(x,l)$ stores the time instant when has last updated the (x,l) entry of its Q-table after receiving a reward

Three steps of PQDR

- Generate deflection decision
- Update the tables
- Generate control signals

Generate the Deflection Decision: ζ

• Calculate Δt

$$\Delta t = t_c - U_{x_i}(x_{d_2}, l_i)$$

- t_c : current time
- l_i : original outgoing link
- x_i : source node
- x_{d_2} : destination node
- Compute $Q'_{x_i}(x_{d_2}, l_i) =$

$$\max \left(Q_{x_i}(x_{d_2}, l_i) + \Delta t \times R_{x_i}(x_{d_2}, l_i), B_{x_i}(x_{d_2}, l_i) \right)$$

Generate the Deflection Decision: ζ

• Use Δt and $Q'_{x_i}(x_{d_2},l_i)$ to generate deflection decision ζ (outgoing link)

$$\zeta \leftarrow \arg\min_{l_i \in \mathcal{L}} \{Q'_{x_i}(x_{d_2}, l_i)\}$$

Algorithm for Table Updates

- When x_i receives a reward r from the network for deflecting a packet on the outgoing link ζ , it updates its four tables:
- $\bullet Q_{x_i}$
- B_{x_i}
- R_{x_i}
- U_{x_i}

Algorithm for Table Updates

- Update Q_{x_i} :
 - calculate

$$\phi = r - Q_{x_i}(x_{d_2}, \zeta)$$

update

$$Q_{x_i}(x_{d_2},\zeta) = Q_{x_i}(x_{d_2},\zeta) + \alpha \times \phi$$

- $0 < \alpha \le 1$: learning rate
- Update B_{x_i} :

$$B_{x_i}(x_{d_2},\zeta) = \min(B_{x_i}(x_{d_2},\zeta), Q_{x_i}(x_{d_2},\zeta))$$

Algorithm for Table Updates

• Update R_{x_i} :

$$R_{x_{i}}(x_{d_{2}},\zeta) = \begin{cases} R_{x_{i}}(x_{d_{2}},\zeta) + \beta \frac{\phi}{t_{c} - U_{x_{i}}(x_{d_{2}},\zeta)} & \phi < 0\\ \gamma R_{x_{i}}(x_{d_{2}},\zeta) & \text{otherwise} \end{cases}$$

- $0 < \beta \le 1$: recovery learning rate
- $0 < \gamma \le 1$: decay rate
- Update U_{x_i} : $U_{x_i}(x_{d_2},\zeta)=t_c$

- PQDR signaling module of a node x_i maintains one table:
 - $P_{x_i}(l)$ stores blocking probabilities of outgoing links l attached to node x_i

• $P_{x_i}(l)$ is updated periodically every τ seconds:

$$P_{x_i}(l_i) = \begin{cases} \frac{\omega_{l_i}}{\lambda_{l_i} + \omega_{l_i}} & \lambda_{l_i} + \omega_{l_i} > 0\\ 0 & \text{otherwise} \end{cases}$$

- λ_{l_i} : number of packets that were successfully transmitted on link l_i
- ω_{l_i} : numbers of packets dropped on link l_i

- When a node x_k receives a deflected packet for the destination x_{d_2} from its neighbor x_i :
 - routes the packet through one of its outgoing links l_{kl} by using its routing table or its PQDR module
 - calculates the feedback value:

$$\nu = Q_{x_k}(x_{d_2}, l_{kl}) \times D(x_k, x_l, x_{d_2})$$

• $D(x_k, x_l, x_{d_2})$: number of hops from x_k to destination x_{d_2} through its neighbor x_l

- sends the feedback signal to node x_i that initiated the deflection
- Node x_i receives the feedback ν for its decision ζ from its neighbor x_k and calculates the reward r:

$$r = \frac{\nu(1 - P_{x_i}(\zeta))}{D(x_i, x_k, x_{d_2})}$$

 Reward r is passed to the PQDR's learning and decision making module for table updates

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Simulation Scenarios

- Three reinforcement learning based deflection routing algorithms are compared:
 - Q-learning based Node Degree Dependent:
 Q-NDD
 - Predictive Q-learning based deflection routing: PQDR
 - Reinforcement learning based deflection routing scheme (RLDRS)

Simulation Scenarios

- Network topologies:
 - Waxman
 - Barabási-Albert
 - 10, 20, 50, 100, 200, 500, and 1,000 nodes
 - 24, 48, 120, 240, 480, 1,200, and 2,400
 Poisson traffic flows

Simulations: Network Architecture

- Buffer-less optical burst switching architecture:
 - 1 Gbps fiber links
 - single wavelengths
- Traffic flows:
 - network load at 40%
 - Poisson arrivals
 - 0.5 Gbps data rate
 - 50 bursts:
 - each burst carries 12.5 kB payload

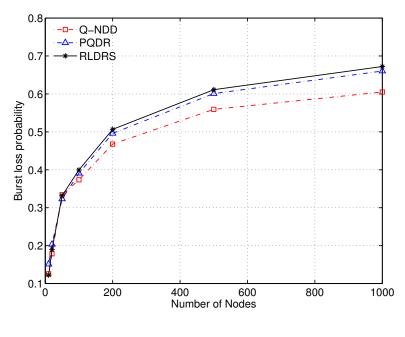
Simulations Parameters

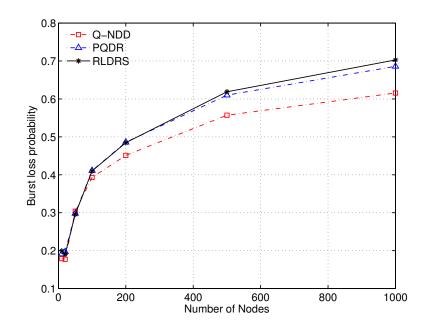
- Deflection routing parameter:
 - Learning rate: $\alpha = 0.1$
 - Learning recovery rate: $\beta = 0.7$
 - Recovery decay rate: $\gamma = 0.9$
 - Burst loss probability calculation window: $\tau = 50 \ ms$
- Waxman topology parameters:
 - $\eta = 0.2$
 - $\delta = 0.15$

Burst Loss Probability

Comparison of Q-NDD, PQDR, and RLDRS:

Waxman and Barabási-Albert topologies





Waxman Barabási-Albert

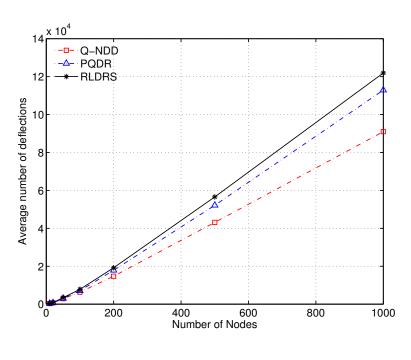
Burst Loss Probability

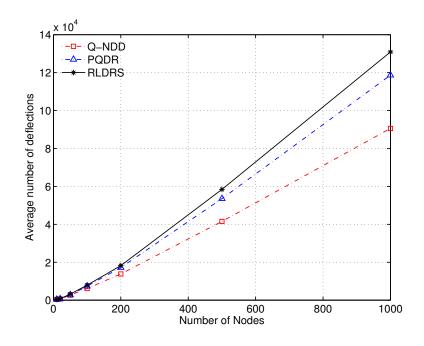
- Burst-loss probability has a logarithmic trend
- Slightly higher in Barabási-Albert networks
- Q-NDD scales better than PQDR and RLDRS as the size of the network grows

Average Number of Deflections

Comparison of Q-NDD, PQDR, and RLDRS:

Waxman and Barabási-Albert topologies





Waxman

Barabási-Albert

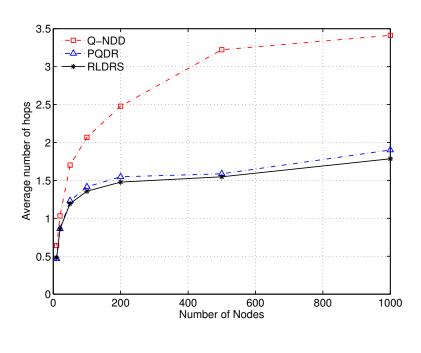
Average Number of Deflections

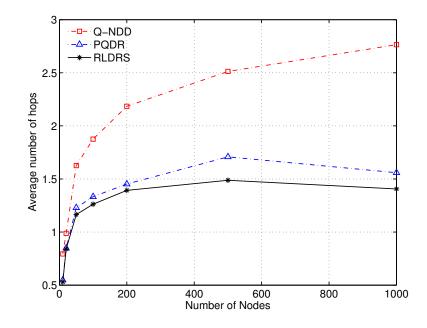
- Burst deflection reduces the burst-loss probability while introducing excess traffic load to the network
- Waxman and Barabási-Albert network topologies do not show a significant variation in terms of the number of deflections
- Q-NDD deflects fewer number of bursts than PQDR and RLDRS

Average Number of Hops

Comparison of Q-NDD, PQDR, and RLDRS:

Waxman and Barabási-Albert topologies





Waxman

Barabási-Albert

Average Number of Hops

- The underlying topology and nodes connectivity impact the number of hops traveled by bursts
- Bursts travel fewer hops in case of Barabási-Albert networks
- In case of Q-NDD, bursts travel through more hops than PQDR and RLDRS

Memory and CPU Usage

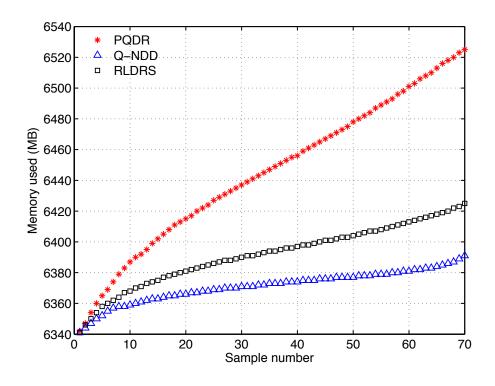
- Memory and CPU usage depends mostly on size of routing and deflection tables of the nodes
- They are functions of number of nodes
- Comparisons are made only for Waxman topologies with 500, 1,000, and 2,000 nodes

Waxman Topologies: Memory and CPU Usage

Algorithm	Number of nodes	Number of links	Number of flows	Min. memory usage (MB)	Max. memory usage (MB)	Total CPU time used (mm:ss)	Total simulation time (s)
PQDR	500	1,500	3,000	566	609	4:00.65	2,857.5
	1,000	3,000	6,000	1,727	1,817	19:09.44	6,613.1
	2,000	6,000	12,000	6,342	6,526	107:33.2	17,770.8
Q-NDD	500	1,500	3,000	561	578	1:25.61	1832.8
	1,000	3,000	6,000	1,727	1,754	16:44.46	4,872.8
	2,000	6,000	12,000	6,341	6,391	94:38.74	13,680.4
RLDRS	500	1,500	3,000	566	588	4:04.57	2,919.5
	1,000	3,000	6,000	1,727	1,769	18:36.04	6,633.7
	2,000	6,000	12,000	6,341	6,424	110:56.7	18,069.7

Waxman Topology: Memory Usage

- 2,000 nodes
- 70 sample points



Memory and CPU Usage

- The three algorithms initially have the same memory requirements
- The memory usage of PQDR grows faster compared to RLDRS and Q-NDD
 - PQDR stores five tables while RLDRS stores two and Q-NDD stores one table
 - Q-NDD requires the least memory space and CPU time
 - Q-NDD space complexity depends on the node degree rather than network size

Outline

- Introduction
- Deflection routing in buffer-less networks
- Reinforcement learning
- Network model and topology
- iDef framework
- Reinforcement learning for deflection routing
- Node degree dependent algorithm with Q-learning
- Predictive Q-learning deflection routing
- Simulation results
- Conclusions and references

Conclusions

- Network topology does not significantly affect number of deflections
- Barabási-Albert topologies:
 - bursts travel through fewer hops
- Q-NDD performs significantly better than PQDR and RLDRS in terms of burst-loss probability and memory usage
- Bursts travel through additional hops in the case of Q-NDD
- Q-NDD scales better with network size

References: Internet Topology

- M. Faloutsos, P. Faloutsos, and C. Faloutsos, "On power-law relationships of the Internet topology," SIGCOMM Comput. Commun. Rev., vol. 29, no. 4, pp. 251–262, Aug. 1999.
- A.-L. Barabási and R. Albert, "Emergence of scaling in random networks," Science, vol. 286, no. 5439, pp. 509-512, Oct. 1999.
- R. Albert and A.-L. Barabási, "Statistical mechanics of complex networks," Rev. Mod. Phys., vol. 74, pp. 47-97, Jan. 2002.
- Lj. Trajković, "Analysis of Internet topologies," *IEEE Circuits and Systems Mag.*, vol. 10, no. 3, pp. 48–54, Third Quarter 2010.
- L. Subedi and Lj. Trajković, "Spectral analysis of Internet topology graphs," in *Proc. IEEE Int. Symp. Circuits and Systems*, Paris, France, June 2010, pp. 1803–1806.
- M. Najiminaini, L. Subedi, and Lj. Trajković, "Analysis of Internet topologies: a historical view," in *Proc. IEEE Int. Symp. Circuits and Systems*, Taipei, Taiwan, May 2009, pp. 1697–1700.
- B. M. Waxman, "Routing of multipoint connections," *IEEE J. Sel. Areas Commun.*, vol. 6, no. 9, pp. 1617–1622, Dec. 1988.
- (2012, Sept.) BRITE topology generator. [Online]. Available: http://www.cs.bu.edu/brite.

References: Reinforcement Learning

- L. P. Kaelbling, M. L. Littman, and A. W. Moore, "Reinforcement learning: a survey," *J. of Artificial Intell. Research*, vol. 4, pp. 237–285, 1996.
- R. S. Sutton and A. G. Barto, *Introduction to Reinforcement Learning*. Cambridge, MA, USA: MIT Press, 1998.
- C. J. C. H. Watkins and P. Dayan, "Technical note Q-learning,"
 Machine Learning, vol. 8, no. 3, pp. 279–292, May 1992.

References: Reinforcement Learning for Routing

- L. Peshkin and V. Savova, "Reinforcement learning for adaptive routing," in *Proc. Int. Joint Conf. Neural Netw.*, Honolulu, HI, USA, May 2002, vol. 2, pp. 1825–1830.
- A. Nowe, K. Steenhaut, M. Fakir, and K. Verbeeck, "Q-learning for adaptive load based routing," in *Proc. IEEE Int. Conf. Syst., Man,* and Cybern., San Diego, CA, USA, Oct. 1998, vol. 4, pp. 3965– 3970.
- J. A. Boyan and M. L. Littman, "Packet routing in dynamically changing networks: a reinforcement learning approach," in *Advances in Neural Inform. Process. Syst.*, vol. 6, pp. 671–678, 1994.
- S. P. M. Choi and D. Yeung, "Predictive Q-routing: a memory-based reinforcement learning approach to adaptive traffic control," in Advances in Neural Inform. Process. Syst., vol. 8, pp. 945–951, 1998.
- W. W.-K. Thong, G. Chen, and Lj. Trajković, "RED-f routing protocol for complex networks," in *Proc. IEEE Int. Symp. Circuits and Systems*, Seoul, Korea, May 2012, pp. 1644–1647.

References: Reinforcement Learning for Deflection Routing

- Y. Kiran, T. Venkatesh, and C. Murthy, "A reinforcement learning framework for path selection and wavelength selection in optical burst switched networks," *IEEE J. Sel. Areas Commun.*, vol. 25, no. 9, pp. 18–26, Dec. 2007.
- A. Belbekkouche, A. Hafid, and M. Gendreau, "Novel reinforcement learning-based approaches to reduce loss probability in buffer-less OBS networks," Comput. Netw., vol. 53, no. 12, pp. 2091–2105, Aug. 2009.
- S. Haeri, W. W-K. Thong, G. Chen, and Lj. Trajković, "A reinforcement learning-based algorithm for deflection routing in optical burst-switched networks," in *Proc. IEEE Int. Conf. Inf. Reuse and Integration*, San Francisco, USA, Aug. 2013, pp. 474–481.
- S. Haeri, M. Arianezhad, and Lj. Trajković, "A predictive Q-learning based algorithm for deflection routing in buffer-less networks," in Proc. IEEE Int. Conf. Systems, Man, and Cybernetics (SMC 2013), Manchester, UK, Oct. 2013, pp. 764–769.

References: Optical Burst Switching

- C. Qiao and M. Yoo, "Optical burst switching (OBS)—a new paradigm for an optical Internet," J. of High Speed Netw., vol. 8, no. 1, pp. 69–84, Mar. 1999.
- A. Zalesky, H. Vu, Z. Rosberg, E. W. M. Wong, and M. Zukerman, "Modelling and performance evaluation of optical burst switched networks with deflection routing and wavelength reservation," in *Proc. INFOCOM*, Hong Kong SAR, China, Mar. 2004, vol. 3, pp. 1864–1871.
- X. Yu, J. Li, X. Cao, Y. Chen, and C. Qiao, "Traffic statistics and performance evaluation in optical burst switched networks," *J. Lightw. Technol.*, vol. 22, no. 12, pp. 2722–2738, Dec. 2004.