
Detection of Denial of Service Attacks in
Communication Networks

Ana Laura Gonzalez Rios, Zhida Li, Kamila Bekshentayeva, and Ljiljana Trajković
Simon Fraser University

Vancouver, British Columbia, Canada
Email: {anag, zhidal, kdagilov, ljilja}@sfu.ca

Abstract—Detection of evolving cyber attacks is a challenging
task for conventional network intrusion detection techniques.
Various supervised machine learning algorithms have been im-
plemented in network intrusion detection systems. However,
traditional algorithms require long training time and have high
computational complexity. Therefore, we propose detection of
denial of service cyber attacks in communication networks by
employing the broad learning system (BLS) that requires shorter
training time while achieving comparable performance. Because
designing effective detection systems relies on training and test
datasets that contain anomalous network traffic data, in this
paper we evaluate the performance of various BLS models
by using recently generated network intrusion datasets. The
best accuracy and F-Score were often achieved using BLS with
cascades while BLS with incremental learning usually required
shorter training time.

Index Terms—Intrusion detection, network anomalies, denial
of service attacks, machine learning, broad learning system

I. INTRODUCTION

Frequent cases of cybersecurity threats that are difficult to
identify and prevent are greatly affecting the Internet relia-
bility. Primary infrastructure against these threats is based on
intrusion detection systems (IDSs) [11]. Host-based systems
protect the host (endpoint) by monitoring the operating system
files and processes while network-based systems (NIDSs)
monitor network traffic by analyzing flows of packets and
inspecting packet headers [30]. Detecting malicious network
intrusions may be signature-based or anomaly-based. Their
role is to enhance security by identifying suspicious events in
the observed network traffic. Signature-based techniques [33]
rely on known events that follow similar rules and patterns
while anomaly-based intrusion detection techniques [16], [39]
rely on detecting deviations from an expected behavior.

Various NIDSs [8], [25] have been recently proposed to ad-
dress a dynamically changing landscape of cyber threats. They
employ diverse deep learning algorithms [10], [18], [35] such
as convolutional neural networks, recurrent neural networks
(RNNs) [14], [20], deep belief networks, and autoencoders
that offer promising results for anomaly detection [23], [24],
[36]. Training time for deep neural networks may be reduced
by selecting appropriate features and parameters while still
maintaining high accuracy [45]. Combination of supervised

This work was supported by the Natural Sciences and Engineering Research
Council (NSERC) of Canada under grant R31-611284.

learning and feature selection algorithms is employed to de-
vise novel intrusion detection solutions that address the high
false alarm rate by classifying previously unobserved network
traffic patterns [43]. Reported results demonstrate that the
proposed anomaly-based IDS employing a neural network with
a wrapper feature selection outperforms other models. A deep
neural network model with several hidden layers yielding high
accuracy has been also introduced [21]. The proposed systems
have been evaluated using KDD Cup 99 [4], [32], [42] and
NSL-KDD [3], [44] datasets.

Support Vector Machine (SVM), a widely used machine
learning algorithm, was employed to identify Border Gate-
way Protocol (BGP) anomalies [15], [27]. Various types of
supervised RNNs (long short-term memory (LSTM) [20] and
gated recurrent unit (GRU) [14]) as well as the broad learn-
ing system (BLS) [12], [13], [31] have been also evaluated
to compare their performance when detecting anomalies in
network traffic [9], [17], [26], [28], [29], [38]. Performance of
the proposed methods often depends on selected features and
their combinations. Hence, algorithms such as decision tree
were used to extract relevant features for detecting anomalies
using SVM and LSTM. The main disadvantages of conven-
tional machine learning techniques are long training time and
computational complexity. In contrast, BLS employs fewer
hidden layers, relies on calculating pseudo-inverse during the
training process, and requires comparably shorter training time
when used for function approximation, time series forecast,
and image recognition [12], [13], [22].

Performance of an NIDS depends on reliable training and
test datasets. The scarcity of adequate data is a research chal-
lenge because the behavioral patterns of intrusion instances
evolve. A cross-validation comparative study [34] indicated
degraded performance of algorithms trained using KDD Cup
99 when tested with newer datasets. Therefore, we consider
the effectiveness of the employed algorithms based on datasets
from the Canadian Institute for Cybersecurity (CIC) Intrusion
Detection System (CICIDS2017) [1] and the collaborative
project between the Communications Security Establishment
(CSE) and the CIC (CSE-CIC-IDS2018) [2] that contain the
latest denial of service (DoS) attacks. We evaluate performance
of BLS and its extensions as alternative supervised learning
algorithms for detecting network anomalies [28], [29].

The paper is organized as follows: After introducing the
topic and related work, descriptions of experimental testbeds



and datasets are provided in Section II. The BLS algorithm and
its extensions are presented in Section III. The experimental
procedure and performance evaluation are given in Section IV.
We conclude with Section V.

II. INTRUSION DETECTION TESTBEDS AND DATASETS

Performance of an NIDS may be evaluated using simulation
tools, emulators, or testbeds. Testbeds consist of firewalls,
routers, switches, and operating systems. CIC has developed a
testbed framework [40], [41] to generate CICIDS2017 [1] and
CSE-CIC-IDS2018 [2] traffic data. The CICIDS2017 testbed
includes an attacker-network consisting of one router, one
switch, and four terminals with Kali Linux and Windows
8.1 operating systems. The victim-network consists of three
servers, one firewall, two switches, and ten terminals inter-
connected by a security authentication server. One switch in
the victim-network serves as a mirror port and captures the
incoming and outgoing traffic. The CSE-CIC-IDS2018 [2]
attacker-network includes 50 terminals while the victim-
network is implemented as a Local Area Network (LAN) with
420 terminals and 30 servers distributed over five subnets.
Ubuntu, Windows 8.1, and Windows 10 operating systems are
installed on host machines while servers use Windows 2012
and Windows 2016. Both networks were implemented using
the Amazon Web Services.

Benign (regular) and attack (anomalous) data are systemat-
ically generated using profiles. The benign data are obtained
using the B-Profiles that generate background traffic based
on the analysis of user behavior when executing application
protocols in a non-malicious manner. The simulated protocols
include: HTTP, HTTPS, SMTP, POP3, IMAP, SSH, and FTP.
After creating the B-Profile, a Java agent generates benign
events. The M-Profile captures details of the most common
types of attacks such as brute force, botnet, DoS, DDoS,
heartbleed, infiltration, and web attack. These attack scenarios
may be interpreted either by network operators or autonomous
systems.

The CICIDS2017 dataset includes intrusions that rely on
various network vulnerabilities [40] and are executed using
attack tools: Patator, Slowloris, Heartleech, Damn Vulnerable
Web App, Metasploit, Ares, and Low Orbit Ion Cannon.
Extraction of 84 features including duration, size of packets,
number of packets, and number of bytes was performed using
CICFlowMeter, an application for generating and analyzing
network traffic flows [5]. We use DoS data collected on
Wednesday, July 05, 2017. Data points are labeled GoldenEye,
Hulk, SlowHTTPTest, and Slowloris having 10,293, 230,124,
5,499, and 5,796 intrusions, respectively.

The CSE-CIC-IDS2018 dataset was captured over ten busi-
ness days between Wednesday, February 14, 2018 and Friday,
March 02, 2018 [2]. It includes type, date, and start and
end times of the attacks. Extracted are 83 features including
flow duration, minimum/maximum packet size, and destination
port. We consider GoldenEye and Slowloris DoS attacks
generated on Thursday, February 15, 2018 from 09:26 to 10:09
and from 10:59 to 11:40, respectively.

III. BROAD LEARNING SYSTEM AND ITS EXTENSIONS

BLS [6] offers shorter training time and comparable per-
formance by using a single layer feedforward neural network
and pseudo-inverse to calculate outputs. Several BLS exten-
sions exploit flexible structure of the algorithm and include:
incremental learning [12], radial basis function (RBF) network
(RBF-BLS) [31] as well as cascades of mapped features
(CFBLS), enhancement nodes (CEBLS), and both mapped
features and enhancement nodes (CFEBLS) [13].

BLS improves the random vector functional-link neural
network [37] by mapping the input data X to a set of mapped
features Zn , [Z1; :::;Zn] that generates enhancement nodes
Hm , [H1; :::;Hm] using random weights. Groups of
mapped features and enhancement nodes are defined as:

Zi = �(XWei
+ βei

); i = 1; 2; :::; n (1)

Hj = �(Zn
xWhj

+ βhj
); j = 1; 2; :::;m; (2)

where � (linear) and � (tanh) are the feature and enhance-
ment mappings, respectively. Wei

and Whj
are weights, and

βei
and βhj

are bias parameters. A state matrix Am
n is

constructed by concatenating matrices Zn and Hm associ-
ated with n groups of mapped features and m groups of
enhancement nodes, respectively. The Moore-Penrose pseudo-
inverse of matrix Am

n is computed to calculate the weights
Wm

n for the given output Y . During testing, data labels are
predicted using the calculated weights, mapped features, and
enhancement nodes.

The BLS structure may be dynamically expanded by using
incremental learning to include the additional input data Xa,
mapped features Zn+1, and enhancement nodes Hm+1. It
requires shorter training time because the weights are updated
using only the incremental input data instead of retraining
the entire model. RBF-BLS employs Gaussian function as the
enhancement mapping �. The structure of BLS with cascades
is defined by the connections within and between the mapped
features and enhancement nodes. The CFBLS and CEBLS
architectures are shown in Fig. 1. In the case of CFBLS, the
new group (k) of mapped features is created by using the
previous group (k − 1). The groups of mapped features are
formulated as:

Zk = �(Zk−1Wek
+ βek

)

, �k(X;
{
Wei ;βei

}k

i=1
); for k = 1; :::; n:

(3)

The cascades of these groups Zn , [Z1; :::;Zn] are used to
generate the enhancement nodes

{
Hj

}m

j=1
. The first CEBLS

enhancement node is generated from mapped features while
subsequent nodes are generated from previous nodes creating
a cascade:

Hu = �(Hu−1Weu + βeu)

, �u(Zn;
{
Whi ;βhi

}u

i=1
); for u = 1; :::;m;

(4)

where Whi
and βhi

are randomly generated. The CFEBLS
architecture is a combination of the two cascading approaches.
The structure of incremental CFEBLS is shown in Fig. 2.



Fig. 1. Modules of the CFBLS (top) and CEBLS (bottom) algorithms.
Shown are cascades of mapped features (top) and enhancement nodes (bottom)
without incremental learning.

Fig. 2. Module of the CFEBLS algorithm with increments of mapped features
Zn+1, enhancement nodes Hm+1, and new input data Xa.

IV. EXPERIMENTAL PROCEDURE AND PERFORMANCE
EVALUATION

We implement and evaluate performance of RBF-BLS and
BLS with cascades of mapped features (CFBLS), enhancement
nodes (CEBLS), and both mapped features and enhancement
nodes (CFEBLS) with and without incremental learning. We
perform two-way classification to identify regular (0) and
anomalous (1) data using subsets of CICIDS2017 and CSE-
CIC-IDS2018 datasets that include application-layer DoS at-
tacks. Traffic data collected on Wednesday, July 05, 2017 and

Thursday, February 15, 2018 are used to create the training and
test datasets consisting of 60 % and 40 % of anomalous data,
respectively. Before partitioning, the data points are sorted
based on time stamps. The experimental procedure consists of
the four steps shown in Fig. 3: (1) Extracting the CICIDS2017
and CSE-CIC-IDS2018 subsets for training and testing; (2)
Removing invalid data (“NaN” and “infinity”), converting
categorical to numerical features using dummy coding, and
normalizing training and test datasets to have mean 0 and
standard deviation 1 employing the zscore function; (3) Using
10-fold validation to train and tune parameters; and (4) Testing
and evaluating generated machine learning (ML) models based
on accuracy, F-Score, and training time.

Fig. 3. Experimental procedure for network intrusion detection.

We experiment with 78 features and subsets of top 2n

(n = 3; 4; 5; and 6) features to evaluate their effect on
BLS performance. Features are ranked using the extremely
randomized (extra) trees [19] that introduce splitting the
nodes based on a random value in order to avoid over-
fitting. The features are ranked based on importance using
sklearn.ensemble.ExtraTreesClassifier() [7] function. We use
parameters n estimators = 100, random state = 1, and
default values for the remaining settings. The sixteen most
relevant features and their importance are shown in Table I.

TABLE I
SIXTEEN MOST RELEVANT FEATURES AND THEIR IMPORTANCE

CICIDS2017
1. Dst Port (0.0595) 2. Pkt Size Avg (0.0464)
3. Bwd Pkt Len Mean (0.0462) 4. Flow IAT Max (0.0440)
5. Protocol (0.0437) 6. Pkt Len Std (0.0423)
7. Bwd Seg Size Avg (0.0418) 8. ACK Flag Cnt (0.0416)
9. Fwd IAT Max (0.0403) 10. Fwd IAT Std (0.0345)
11. Fwd Seg Size Min (0.0329) 12. Idle Max (0.0319)
13. Fwd Pkts/s (0.0296) 14. Bwd Pkt Len Max (0.0287)
15. Idle Mean (0.0264) 16. Bwd Pkt Len Std (0.0256)
CSE-CIC-IDS2018
1. Fwd Seg Size Min (0.2904) 2. Init Fwd Win Byts (0.1082)
3. Bwd Pkt Len Std (0.0474) 4. Bwd Pkt Len Max (0.0306)
5. Pkt Len Max (0.0264) 6. Flow IAT Min (0.0254)
7. Flow Duration (0.0248) 8. Fwd IAT Tot (0.0218)
9. Fwd IAT Min (0.0206) 10. Bwd Pkt Len Mean (0.0197)
11. ACK Flag Cnt (0.0190) 12. Init Bwd Win Byts (0.0190)
13. Fwd IAT Max (0.0185) 14. PSH Flag Cnt (0.0167)
15. Dst Port (0.0164) 16. Flow IAT Max (0.0162)

Performance of BLS models based on the number of
selected features is shown in Fig. 4. As expected, shorter
training time is required for models using fewer number of
features and models based on the incremental BLS. Selecting


