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abstract: If two successive trait measurements have a less-than-
perfect correlation, individuals or populations will, on average, tend
to be closer to the mean on the second measurement (the so-called
regression effect). Thus, there is a negative correlation between an
individual’s state at time 1 and the change in state from time 1 to
time 2. In addition, whenever groups differ in their initial mean
values, the expected change in the mean value from time 1 to time
2 will differ among the groups. For example, birds feeding nestlings
lose weight, but initially heavier birds lose more weight than lighter
birds, a result expected from the regression effect. In sexual selection,
males who remain unmated in the first year are, on average, less
attractive than mated males. The regression effect predicts that these
males will increase their attractiveness in the second year more than
mated males. In well-designed experiments, changes in the experi-
mental and control groups would be compared. In observational
studies, however, no such comparison is available, and expected dif-
ferential effects must be accounted for before they can be attributed
to external causes. We describe methods to correct for the regression
effect and assess alternative causal explanations.

Keywords: density dependence, mating success, regression, statistical
artifact.

Regression toward the mean occurs in repeated-measures
analyses whenever the correlation between the measure-
ments at different times is less than perfect. At the second
measurement, individuals with values above the mean will,
on average, have lower values, whereas those with values
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below the mean will, on average, have higher ones. This
so-called regression effect was first discovered by Galton
(1886) through observations of human stature and in
sweet pea experiments. Galton noted that if there were no
regression to the mean, random error would cause the
population variation to increase over time and extraor-
dinarily small and large individuals would accumulate in
the population.

Regression to the mean complicates analyses for re-
searchers who study subsets of the population selected on
the basis of their initial measurement. For example, studies
that target individuals with initially large values should
expect these values to decrease based on regression to the
mean. The problem arises when a researcher attributes this
decrease to an intervention or other causal effect. Since
regression to the mean will affect both experimental and
control groups, a well-designed experimental study will
not be subject to this problem. However, statistical cor-
rections must be applied to observational studies that com-
pare groups that differ in their initial mean values. In this
article we describe such tests.

The regression effect predicts that very sick patients
should feel better at the next measurement even without
effective treatment and thus could explain some of the
placebo effect (McDonald et al. 1983). Likewise, regression
to the mean predicts that recall of rare events may be
improved later and could explain some of imagination
inflation, an increased confidence that an imagined child-
hood event has occurred (Pezdek and Eddy 2001). Tversky
and Kahneman (1974) noted the regression effect in train-
ing programs: students who do very well on the first trial
typically do worse on the second, and students who do
poorly at first typically do better later. This has led some
to the erroneous conclusion that rewarding success does
not work but that punishing failure does, and it leads to
“a lifelong schedule in which we are [apparently] most
often rewarded for punishing others and punished for re-
warding” (Kahneman and Tversky 1973, p. 251). Good
(1990) extended this reasoning to international relations,
suggesting that the regression fallacy could be responsible
for war.
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Despite the widespread appreciation of the regression
effect, recognizing its role in applications is difficult, even
for statisticians well aware of the problem (Kahneman and
Tversky 1973; Good 1990; Stigler 1997). For example, the
statistician Secrist noticed that businesses with exceptional
profits in one year tended to have smaller profits in the
next and that businesses with very low profits tended to
do better the next year. He used these data to conclude
that all companies were converging toward mediocrity in
his book The Triumph of Mediocrity in Business (Secrist
1933). Although the error was pointed out by Hotelling
(1933) and later by Friedman (1992), other prominent
economists have repeated it (Sharpe 1985; Fama and
French 2000). Since regression to the mean is not likely
to be recognized by sports gamblers, profitable betting
opportunities may exist (Lee and Smith 2002).

A number of articles have pointed out problems due to
regression effect in several disciplines, including epide-
miology and clinical studies (Davis 1976; Curnow 1987;
Bland and Altman 1994; Yudkin and Stratton 1996; Barnett
et al. 2005), exercise and sports science (Shephard 2003;
Nevill et al. 2004), psychiatry (Streiner 2001), chronobi-
ology (Atkinson et al. 2001), communication (Zhang and
Tomblin 2003), and hierarchical linear modeling (Marsh
and Hau 2002). However, there has been no general survey
in behavior and ecology. Here, we discuss several recent
biological and ecological examples where causal explana-
tions have been proposed for the regression effect. We
describe a method that can be used to correct for the
regression effect and illustrate its use in the examples.

Regression to the mean will be present whenever in-
dividuals or populations are measured at two different
times. We note four general manifestations of regression
to the mean that may be mistakenly attributed to causal
factors. First, there is a negative correlation between an
individual’s first value and changes in that value between
the first and second measurements (Cichoń et al. 1999).
Second, there will be change in the mean of a single group
whenever the mean of that group differs from the pop-
ulation mean. Third, there will be different changes in two
groups whenever these two groups differ in their mean
values at the first measurement. This applies even if both
groups lie above the population mean or both groups lie
below the population mean. Fourth, the most subtle ar-
tifact occurs when all individuals show an increase but
those below the mean increase more than those above the
mean (or all decrease, but those above the mean show a
greater decrease than those below the mean; Gebhardt-
Henrich et al. 1998; Griffith and Sheldon 2001).

We describe examples of both observational and ex-
perimental studies that illustrate these problems. Our ex-
amples include changes in mass, sexually selected traits,
costs of cooperative breeding, and density dependence in

forests. We have not been provided with data sets for all
these examples and are not able to reanalyze all of them.
We start by describing some of the examples.

Examples

Mass Loss

Our primary example considers the debate on the correct
statistical method to test whether mass loss depends on
initial mass (Cichoń et al. 1999; Gebhardt-Henrich 2000;
Ruf 2000). Contrary to other examples, change is defined
here as the initial state minus the final state (corresponding
to mass loss), and regression to the mean implies a positive
correlation between the initial weight and the mass lost.
Indeed, a positive correlation between incubation mass
and subsequent mass loss in birds has been noted in several
observational studies (Norberg 1981; Nur 1988; Hillström
1995; Merilä and Wiggins 1997; Gebhardt-Henrich et al.
1998). An example is in figure 1 (top). This result has often
been interpreted as “parents in initially better condition
can ‘afford’ to lose more mass than those in poorer con-
dition, and that this energy can be allocated to their off-
spring” (Cichoń et al. 1999, p. 191), but it is expected
from the regression effect (Cichoń et al. 1999). Cichoń et
al. (1999) developed a method to correct for the regression
effect based on resampling. Their method assumed that
the initial and final values were uncorrelated, which is
equivalent to complete regression to the mean. As noted
by Ruf (2000), this is a very unreasonable assumption.
Gebhardt-Henrich (2000) suggested an alternative statis-
tical analysis that also assumes independence of the initial
and final measurements.

Sexual Selection

In a noncontrolled experiment, Witte and Curio (1999)
measured the attractiveness of male Javanese mannikins
(Lonchura leucogastroides) to females. They then attached
red feathers to the males’ crowns and found that previously
unattractive males gained attractiveness, whereas previ-
ously attractive males lost attractiveness. There was a sig-
nificant negative relationship ( , ,r p !0.76 n p 11 P p

) between initial attractiveness and change in attrac-.003
tiveness. Witte and Curio suggested that this is because
attractive males have their phenotype disrupted by addi-
tion of what is otherwise an inherently attractive trait.
However, as a result of regression to the mean, such a
relationship is expected when there is no effect of the
experiment.

In another example from sexual selection, Blows (1998)
examined the mating success of hybrid Drosophila

when male or female hybridsserrata # Drosophila birchii
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Figure 1: Loss of mass of female blue tits during the raising of their
brood. Top, original data (from Gebhardt-Henrich et al. 1998). Bottom,
mass loss adjusted for the regression effect using equation (6).

Figure 2: Hybrid male ( ) matingDrosophila serrata # Drosophila birchii
success measured as the proportion of female D. serrata inseminated in
29 lines, with each line measured at generation 5 and again at generation
24 (Blows 1998). The data here have been arcsine–square root trans-
formed. Note the much larger variance at generation 5 ( ) than2s p 0.0131

at generation 24 ( ).2s p 0.0042

were placed with D. serrata in 29 replicated lines. Blows
compared hybrid mating success five generations after in-
itiating the hybrid lines with hybrid mating success 19
generations later. Among females, he found a tendency for
hybrid lines with high mating success at generation 5 to
have lower success at generation 24 and for those with
low mating success at generation 5 to have higher success
at generation 24. In males, there was a general increase in
mating success between the two generations (fig. 2), but
males with low mating success increased their mating suc-
cess to a greater extent. Blows (1998) concluded that all
lines were evolving toward a single regression line that
describes a linear association between mean male mating
success and mean female mating success. Blows considered
the possibility that the regression effect may have influ-
enced the results. He tested whether each line had signif-

icantly changed its mating success between generation 5
and generation 24 with a two-sample t-test. The results of
these t-tests were combined into a single P value. The
combined P value suggested that the mating success of the
lines had indeed changed during the course of the exper-
iment, but this does not in itself control for the regression
effect, which also predicts a change.

Badyaev and Duckworth (2003) measured area of red
on the breast of male house finches (Carpodacus mexi-
canus) to investigate how prior mating status affects an
individual’s investment in sexual ornaments. The red area
increased from one year to the next, but it increased more
for unpaired males than for paired males. Badyaev and
Duckworth (2003) concluded that prior mating status had
a strong influence on future development of sexually se-
lected traits. However, red area is an attractive trait to
females (Hill 1994), so paired males presumably initially
had more red area than unpaired males. A greater increase
among the unpaired group is expected from the regression
effect, and this must be accounted for before differences
can be assigned to mating status. Before considering these
and other examples in more depth, we now consider meth-
ods to correct for the regression effect.

Theory

Most methods to adjust for the regression effect deal with
the situation in which study subjects are selected on the
basis of a large (or small) initial measurement (James 1973;
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Senn and Brown 1985; Curnow 1987; Mee and Chua 1991;
Chen and Cox 1992; Chuang-Stein 1993; Chen et al. 1998;
Naranjo and McKean 2001). Here we consider studies in
which there is no initial selection bias but where individ-
uals with different initial values are separated and com-
pared with respect to their subsequent values. The question
of interest in these studies is, are there differential effects
on the groups with initially low and high values beyond
that expected from the regression effect? As pointed out
by Galton (1886) and Hotelling (1933), a differential effect
would change the variance of the population. Thus, if
heavy individuals lose more weight than expected by re-
gression to the mean and/or lighter individuals gain more,
we expect convergence to the mean and a corresponding
reduction in variance. If heavy individuals lose less weight
than expected and/or lighter individuals gain less, we ex-
pect an increased variance in the population. Thus, a suit-
able test for a differential effect is a test of the equality of
variance in the two time groups. We outline the test fol-
lowing Berry et al. (1984) and Chuang-Stein (1993).

Let the measurements at times 1 and 2 be X1 and X2

and the change in these measurements between time in-
tervals be . We assume that the measure-D p X ! X1 2

ments have a bivariate normal distribution with means m1

and m2, variances and , and correlation r. We define2 2j j1 2

an additive effect as one that affects all subjects equally;
that is, it is the mean difference between the two sets of
measurements, . When measuring body massD p m ! m1 2

at two time points, this is the average mass loss. We define
a differential effect as one that affects individuals differ-
ently based on their initial values, X1. If there is a differ-
ential effect that pushes values toward the mean (above
and beyond the regression effect), then the variance at
time 2 will be smaller than that at time 1: . If there2 2j 1 j1 2

is no differential effect, then the variances will be the same:
. When there is only an additive effect and no2 2j p j1 2

differential effect, the expected change from time 1 to time
2 of the individual values, D, is given by the regression
function of D on X1,

E[DFX ] p (1 ! r)(X ! m ) " D, (1)1 1 1

and the expected percentage change is

D m D1E FX p (1 ! r) 1 ! " . (2)1[ ] ( )X X X1 1 1

These equations show that the expected change (and the
expected percentage change) is positive for values above
the mean and negative for values below the mean and that
the magnitude of the expected change increases for mea-

surements X1 farther from the mean. The correlation be-
tween the initial value and the change is

1 ! r! . (3)
2

The magnitude of the differential effect is measured as
the ratio of the standard deviations of the two sets of
observations, . Assuming only that the mea-v p j /j2 1

surements are bivariate normal, we obtain the following
relationship between the initial state and the change in
state:

E[DFX ] p (1 ! rv)(X ! m ) " D. (4)1 1 1

Note that rv is the regression of X2 on X1. If , therev p 1
is no differential treatment effect: individuals above and
below the mean decrease or increase in a manner that is
expected from the regression effect.

Following Berry et al. (1984), we test for a differential
effect by testing the null hypothesis H0 ( ) against2 2j p j1 2

the alternative Ha ( ) with Pitman’s (1939) test for2 2j ( j1 2

the equality of variances in paired samples,

!n ! 2[(s /s ) ! (s /s )]1 2 2 1

T p , (5)
2!2 1 ! r

where T has a Student’s t distribution with degreesn ! 2
of freedom, n is the sample size, and s1, s2, and r are the
usual estimates of j1, j2, and r, respectively.

We can also adjust each value by subtracting the change
that is expected as a result of the regression effect,

. From equation (1), we estimate∗D p D ! E[X ! X FX ]1 2 1

D∗ with

∗ˆ ¯ ¯ˆD p r(X ! X ) ! (X ! X ), (6)1 1 2 2

where if the null hypothesis of equal variances isr̂ p r
rejected and

2rs s1 2r̂ p 2 2s " s1 2

when it is not rejected. The adjusted differences, , can∗D̂
be regressed against X1 and graphically viewed in a scatter
plot, or they can be used to test for the influence of a
measured factor that is correlated with the initial mea-
surements. This is illustrated further in the next section.
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Analysis of Examples

In this section, we reanalyze examples for which we have
been able to obtain data from the original article or have
been provided the data by the authors.

Mass Loss

Gebhardt-Henrich et al. (1998) presented data on loss of
mass of female blue tits Parus caeruleus during the feeding
of the brood. Their figure 2, reproduced here as figure 1
(top), shows that all blue tits lost mass but that females
that were initially heavier lost more mass than those that
were initially lighter (correlation between mass and loss
of mass is , ). We analyzed these datar p 0.55 P p .0096
using equation (5) and could find no evidence for a dif-
ferential effect ( , , ). We con-T p 0.74 df p 19 P p .46
structed adjusted values by using equation (6) and added
these values to the change in the mean (fig. 1, bottom).
This shows that there is a lack of association between
change in mass and initial mass after the regression effect
has been accounted for. Note that these adjusted values
could also be used in other tests. For example, some fe-
males may be in poor habitat and initially of less weight
than others in good habitat. If one wished to determine
if habitat influenced weight loss, a simple t-test comparing
females in the two habitats would be confounded with the
regression effect. One approach to deal with this would
be to compare the adjusted values (fig. 1, bottom) between
females in poor and good habitats using a t-test.

Cichoń et al. (1999) presented initial mass and mass
loss from three other studies (on the blue tit, the collared
flycatcher Ficedula albicollis, and the pied flycatcher Fi-
cedula hypoleuca). They concluded that although the cor-
relation between initial mass and mass loss is positive, for
all three species the observed empirical correlations were
significantly weaker than those expected under null ex-
pectations derived by bootstrapping (under the assump-
tion of independent initial and final masses). The result
led them to suggest that lighter birds actually lost more
mass than expected and that heavy birds lost less mass
than expected. Their correction thus led to a conclusion
that was opposite to that reached by the original analysis,
but this conclusion depends on an obviously falsifiable
null model that initial and final weights are uncorrelated
(Ruf 2000). We applied the tests outlined in this article
and found evidence of differential mass loss only in the
collared flycatcher ( , , ). In thisT p 2.22 df p 273 P p .04
species, the correlation between initial and final mass was

. Heavier birds lost more mass than expected (var-r p 0.33
iance of values at the second measurement was 77% that
of values at the first measurement), opposite to the con-
clusions of Cichoń et al. (1999).

Sexual Selection

We found no evidence that male mating success is affected
by addition of a red feather in Witte and Curio’s (1999)
study of Javanese mannikins ( , , two-T p 0.403 df p 9
tailed ). We emphasize that other results in theP p .696
article stand, and the article should be consulted to eval-
uate this result in context.

In the study by Blows (1998), the correlation between
(arcsine–square root transformed) hybrid female mating
success in generation 5 and change in hybrid female mat-
ing success between generation 5 and generation 24 was

( replicate lines). It is not possible tor p !0.78 n p 29
exclude the regression effect as the underlying reason for
this correlation ( , , two-tailedT p 1.081 df p 27 P p

). Indeed, the low correlation between hybrid female0.289
mating success at generation 5 and generation 24 (r p

) results in a large regression effect (see eq. [1]).!0.06
In males, there was a general increase in mating success

between the two generations (fig. 2), but males with low
mating success increased their mating success to a greater
extent. The correlation between (arcsine transformed)
mating success at generation 5 and change in mating suc-
cess is . In this example, the male lines haver p !0.85
converged. The variance decreased by 67% (from 0.013 to
0.004 on the transformed scale; see fig. 2), and this is
significant ( , , ). This impliesT p 3.051 df p 27 P p .005
that males with particularly low values of mating success
at generation 5 are indeed increasing their mating success
more than those with high mating success. Thus, there is
support for Blows’s conclusion that all lines were con-
verging toward a common trajectory, at least through male
mating success.

Other Examples

Griffith and Sheldon (2001) found a negative correlation
between the size of an unpigmented plumage patch in male
collared flycatchers and change in the size of the patch
across a season ( , ). Although they didr p !0.4 n p 80
not attach much significance to this finding, they have
kindly provided us with the data, and we find that the
result can be explained by the regression effect (T p

, , ).0.51 df p 78 P p .61

Discussion

Regression to the mean results whenever there is a less-
than-perfect correlation between successive measure-
ments. In fact, the magnitude of the regression to the mean
is proportional to ( ). Because measurement error1 ! r
lowers the correlation, regression to the mean can be re-
duced by using more accurate measurement methods or
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the mean of replicate measurements (Gardner and Heady
1973; Blomqvist 1987; Griffith and Sheldon 2001). How-
ever, even when this is done, the regression effect will be
present because the correlation will be less than perfect,
and the best approach to avoiding the regression fallacy
is to use an appropriate control and compare changes in
the experimental and control groups. Thus, in the study
by Witte and Curio (1999), it would have been possible
to examine changes in a group of nonmanipulated males
and see if they differed from those in the manipulated
males. Russell et al. (2003) found that in cooperative meer-
kats Suricata suricatta, individuals investing heavily in one
breeding event significantly reduce their contribution in
the following event, whereas those previously investing
little significantly increase their contribution. They rec-
ognized that this could be due to the regression effect and
used a supplemental feeding experiment (as well as other
correlative evidence) to infer causality.

In observational studies, a measured causal factor can
be investigated by examining its relationship with values
adjusted for the regression effect. This would be possible
in the house finch study by Badyaev and Duckworth
(2003), for example. In this study, unpaired males in-
creased the area of red in their plumage 85% more than
the paired males did. Assuming that they initially had less
red in their plumage, a differential increase is expected.
The causal factor (mating status) is known, so the adjusted
values could be calculated according to equation (6) and
then compared using a t-test. Unfortunately, we have not
been provided with the original data for this study, and
the information needed to correct for the regression effect
is not extractable from the article. In other studies (e.g.,
those of mass loss, where larger individuals are postulated
to be in better “condition”), the causal factor is not mea-
sured, and only the change-in-variance test can be used.

Wills et al. (1997) and Wills and Condit (1999) sug-
gested that strong density-dependent effects were occur-
ring in tropical trees. They found that quadrats in exper-
imental plots with few individuals of one species tended
to recruit more individuals than quadrats with many in-
dividuals. They interpreted this as a result of density de-
pendence, perhaps acting through parasites and pathogens;
again the causal factor is postulated but not measured.
There have been many other studies purportedly dem-
onstrating a role of density dependence in enabling co-
existence of tree species (Lambers et al. 2002). Indeed,
Lambers et al. (2002) suggested several reasons why density
dependence may be underestimated. In general, the sup-
porting evidence relies on the finding of a negative cor-
relation between recruitment and prior density of trees in
a quadrat, which would be predicted based on the re-
gression effect. The possibility of regression effects can be
quite subtle. Lambers et al. (2002) measured the propor-

tion of seeds germinated in -m plots and showed1 # 1
that this was negatively correlated with density of seeds in
the plot. However, if high density of seed is partly a result
of high germination at a previous time period, then a
negative correlation is expected from the regression effect.

We have not been able to analyze results on trees. How-
ever, in this case it is worth noting that at equilibrium,
the variance in tree distributions across quadrats remains
the same from one generation to the next (at least when
measured at the same life-history stage). This means that
it is impossible to refute the regression effect as a cause
of a negative association between change and initial value
and hence impossible to detect density dependence by
these methods. Variance decreases due to high-density
quadrats decreasing in number and low-density quadrats
increasing in number must be compensated for by inter-
mediate quadrats both increasing and decreasing. Unless
one is inclined to invoke special factors causing all these
changes, it is more parsimonious to assign all increases
and decreases to random factors. More sophisticated meth-
ods using time series data that explicitly incorporate an
error term to account for regression toward the mean are
required if density dependence is to be detected (Lande et
al. 2002).

Whenever two sets of measurements are not perfectly
correlated, there will be regression toward the mean. Thus,
ascribing biological significance to regression to the mean
is equivalent to ascribing significance to a correlation of
less than unity. Many traits are influenced by multiple
factors, so correlations are rarely unity, and regression to-
ward the mean is inevitable.
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