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SUMMARY
Estimation techniques are given for the three-parameter Weibull distribution, with all

parameters unknown. Tables are given for the empirical distribution function statistics
W2, U? and A2, for testing for the distribution.
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1. INTRODUCTION

In this paper estimation procedures and tests of fit (based on the empirical distribu-
tion function (EDF)) are given for the three-parameter Weibull distribution:

F(x; o, B’ m) =1- exp[— {(x_a)/B}mla x> a, (1)

where 8 and m are positive constants. When « is known, the distribution is called
the two-parameter Weibull distribution, and estimation procedures and goodness-
of-fit tests are then very straightforward; see, for example, sections 4.4 and 4.11
of Stephens (1986). Here we concentrate on tests for use when all three parameters
are unknown and must be estimated from the sample.

It is worthwhile to observe that the three-parameter Weibull distribution is a
member of a wider class, the generalized extreme value (or Jenkinson) distribution.
This distribution is

x—a 1/¢
F*(x;a,b,c)=1- exp[— {1 +c<—b—>] ], x> a. ?)
The parameter b must be positive, whereas @ and ¢ may be any real numbers. The
three-parameter Weibull distribution is the subfamily of F* with ¢ > 0. The special
case ¢=0 is the usual extreme value distribution

F*(x; a, b, 0) =1 —exp[ —exp{(x—a)/b}], -0 < x < ™ 3)

it arises as the limit of the three-parameter Weibull family (1) as m = o0, @ = —
and B — oo.

The goodness-of-fit procedures depend on first estimating the parameters in
distribution (1) by an efficient method, such as maximum likelihood (ML). How-
ever, it is well known that, when « is unknown, there are problems with ML
estimation — for example, for m < 1 or for m unknown (as here), the likelihood
can be made infinite. There are many papers on this problem (for example,
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Smith (1985), Smith and Weissman (1985) and Cheng and Iles (1987)). Smith and
Naylor (1987) compare Bayesian and ML estimators in a case study. It is also
possible, for some data sets, that there is no local maximum for the likelihood. If
one were willing to fit the larger family (2), ML estimates could be found, but ¢
will be negative, and the resulting fitted distribution will not be Weibull. If a Weibull
fit is nevertheless required, albeit a limiting Weibull, then ¢ should be taken as 0
(the nearest non-negative ¢), and the extreme value distribution (3) should be fitted.
We discuss how to recognize this case, called case C below, in Section 2.

2. ESTIMATION PROCEDURES

The estimation procedures will depend on the profile likelihood. For a given
sample x;, X, . . ., X,, the likelihood is

s - 5057 el (5]

i=1

The profile likelihood L*(«,), abbreviated L*, is L(«, 8, m) maximized, for given
oy, with respect to 3 and m. Suppose that Z(c«,), abbreviated Z, is log L*(«,). A
plot of Z against o, can take any of three possible forms, similar to plots given in
Smith and Weissman (1985), related to estimation of « using only k& lower order
statistics. Here we always assume a complete sample of size . In one of these plots,
case A say, there is a local minimum for «, close to x;), which gives a saddlepoint
for the likelihood, and a local maximum for «, further from x;), giving the desired
ML solution. In case B, a local minimum occurs, but no local maximum, and in
case C there are no turning points —the likelihood steadily decreases as o, moves
away from X, towards —oo. These three cases were noted by Rockette ef al.
(1974), who conjectured that they exhaust the possibilities; our own extensive Monte
Carlo studies confirm this conjecture.

The likelihood equations, obtained by setting to O the partial derivatives of the
log-likelihood with respect to «, 3 and m, will give solutions corresponding to the
maxima and minima in the three cases. By eliminating 3, we obtain two equations
in o and m, which can be written

1 2 (—a)™log(x;—a) >, log(xi—a)
— - + =0, 5)
m 2 (xi—a)" n
o m-—1
mT_IZ(xi_a)—l_nZ(x’—a)=o (6)

2 (xi—a)™

When these are solved for & and i, the estimate of 3 is given by
1/m
B = {Z (x,-—&rf’/n] : ™

Again it is useful to fix «, and to plot the solutions m of equation (5) and m*
of equation (6) against «,. As a, = x(;, from below, it is easily shown that m* — 1
and m — 0. The graph of m then rises steeply as o, becomes more negative. If the
graphs of m and m* cross, we have either the minimum or the maximum in case
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A, or the minimum in case B; if they do not cross, we have case C. Fig. 1 illustrates
these three situations; the data for Figs 1(a) and 1(b) are from the examples in
Section 4, and the data for the third, less likely, case have been artificially
constructed.

2.1. Case C
Given a data set, it will be advantageous to decide at once whether the situation
is case C without trying to solve the likelihood equations. This decision may be made
straightforwardly. We have shown (Lockhart and Stephens, 1992) that, as o = — o,
the plots of m and m™* have parallel asymptotes. Then suppose that the limiting
difference is A=lim, . _.(m*—m). The value of A is found as follows. Let
X=Xx;/n, and let s=Xx?/n; also define T,=X(x;)" exp( —+vx;); in these expressions

the sums are over i=1, 2, . .., n. The quantity v is the solution of
1 _ T
—_= X - —. 8
Y T, ®

The value of v can easily be found by iteration, starting, for example, with y=1
in the right-hand side quantities 7, and 7;. Define

D = XT, + v(T;-XT}); )
v is the limiting slope of the lines, and A is given by

fTo—’y(STo'— Tz)/z
D .

A negative value of A means that we have case C, in which case the Weibull fit
should be abandoned in favour of the extreme value fit (3).

Another method of discriminating between the various situations is to consider
a plot of L,(c), the profile likelihood of the generalized extreme value distribu-
tion, against the parameter c¢. If there is a local maximum corresponding to a
negative c, the derivative of L,(c) at c=0 must be negative. Cheng and Iles (1990)
give a discriminant based on this derivative, and our A is equivalent to their L.

A=

(10

2.2. Cases A and B: Solutions for Estimates

We now turn to cases A and B, Figs 1(a) and 1(b). To distinguish these cases,
it is recommended to establish whether or not a saddlepoint exists; if so, we have
case A, and an ML estimate. The saddlepoint is usually very close to x;,. Thus it
can be detected by starting with o, =x(;,—€, where ¢ must be sufficiently small
that m™* —m is positive, and then decreasing o, in very small steps until the saddle-
point is passed (m* —m becomes negative). The steps in «, can then be increased
until once again m* —m =0, when the values of «, and m are the ML solutions.
If no saddlepoint exists, m* —m will pass through a minimum positive value and
then start to increase again. We then have case B, and, formally, ML gives x; as
the estimate for «. This estimate is clearly biased, and there are many publications
on improvements to the estimate and also on methods for obtaining estimates and
confidence intervals for a wider class of distributions with a threshold parameter.
See, for example, Smith and Weissman (1985) and Weissman (1982), and their
references.
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m and m*
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Fig. 1. m and m* for (a) data set 1 (from Cox and Oakes (1984)), (b) data set 2 (from Proschan
(1963)) and (c) the generated data set: , m from equation (5); ------ , m* from equation (6)
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(c)
Fig. 1 (continued)

We give an iterative bias reduction procedure, which, although based on previous
ideas, appears itself to be new. The bias in the estimate &=Xx( is approximately
B/n¢, where c=1/m (Smith and Weissman, 1985); since 8 and ¢ are not known,
they must be estimated and then used to reduce the bias in the estimate x,;, of a.
For this we need the likelihood equation d(logL)/dm =0, namely

2] (ime)"log(x—a) {n_ 2 (xi—a)”

n
;n—+210g(x,~—a) - 7 g

Suppose that «,, 8, and m, are estimates (we omit the circumflex symbol) at
iteration r; find estimates o, ., 8,,; and m,,, as follows.

} logB =0. (11)

(@ Let o,y =x(;y)—B,/nk, where k=1/m,.
(b) Then solve equation (11) for m,,, using a=c,,, and B=4,.
(© Use equation (7) to give B,,,, using a=a,,; and m=m,,,.

Iteration of these three steps continues until the required accuracy for /7 is
obtained. Initial estimates m, and 3, may be found by setting o =X and con-
tinuing with steps (b) and (c) above, but using only the n—1 sample values x,),
X@3), - - +» X(n)- The final estimates will be the estimates &, 8 and  for case B.

This procedure has been examined by using extensive Monte Carlo studies. We
have found that it a/ways converges when case B occurs (i.e. when 7 is small) and
gives a better fit, as measured by the goodness-of-fit statistics, to the Weibull
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distribution (1). It will also sometimes converge when case A occurs (usually when
m is small), but since, in this case, there is also an ML estimate, the ML estimate
should be taken.

3. GOODNESS-OF-FIT TESTS

In this section, the EDF tests are described. The null hypothesis is H,: the
random sample x;, X, . . ., X, comes from distribution (1). Let x1), X2, - + -» X(n)
be the order statistics of the sample.

(a) First, estimates of the unknown parameters must be found, as described
above. Then, for i=1, 2, . . ., n, make the transformation z;, =F(x; &,
B, m).

(b) The EDF statistics are calculated as follows:

2i—1\2 1
2 o R
w ‘Z<z"’ 2n ) t o
U? = W2 - n(Z-0.5)2,
1 )
A= —n-— EZ (2i—1) {logz +1log (1 =Z(n_is1))}

where the sums are over i=1, 2, . . ., n, log means natural logarithm and
=Xz (i)/ n.

(c) Let c=1/m. Enter Table 1, using the subtable for the appropriate statistic.
When 771 > 2, we have 0 < ¢ < 0.5 and Table 1 is entered at the line cor-
responding to c¢; when 1 < 2, so that ¢ > 0.5, the last line, labelled ¢=0.5,
should be used. The null hypothesis is rejected at significance level p if the
statistic used is greater than the value given for level p. Table 1 has been
given using c rather than 7 because linear interpolation for ¢ will give good
accuracy. The points given are for the asymptotic distributions of the
statistics; however, Monte Carlo studies show that they can be used with
good accuracy for smaller values of n, say n > 10; for » < 10 a goodness-of-
fit test would in any case have very little power.

4. EXAMPLES

We illustrate the tests with two examples.

4.1. Example 1
Data set 1 is taken from Table 3 of Cox and Oakes (1984) and consists of 10
values of the number of cycles to failure when springs are subjected to various stress
levels. For these data, the stress level is 950 N mm 2, and the values, given in units
of 1000 cycles, are

225, 171, 198, 189, 189, 135, 162, 135, 117, 162.

Fig. 1(a) comes from this data set. The ML estimates are &=99.02, 3="78.23 and
m=2.38, so that c=0.420. The value of A% is 0.260 and this is not significant,
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TABLE 1
Critical points for W2, U? and A?

c Critical points for the following values of a:
0.500 0.750 0.850 0.900 0.950 0.975 0.990 0.995

Critical points for W2

0.0 0.044 0.062 0.075 0.085 0.103 0.120 0.144 0.162
0.05 0.044 0.063 0.076 0.086 0.104 0.122 0.145 0.163
0.10 0.044 0.063 0.077 0.087 0.105 0.123 0.147 0.165
0.15 0.045 0.064 0.077 0.088 0.106 0.125 0.149 0.168
0.20 0.045 0.065 0.079 0.089 0.108 0.127 0.152 0.170
0.25 0.046 0.066 0.080 0.091 0.110 0.129 0.154 0.174
0.30 0.047 0.067 0.081 0.093 0.112 0.132 0.157 0.177
0.35 0.047 0.068 0.083 0.094 0.114 0.134 0.161 0.181
0.40 0.048 0.069 0.085 0.097 0.117 0.138 0.165 0.186
0.45 0.049 0.071 0.087 0.099 0.120 0.141 0.170 0.191
0.50 0.050 0.073 0.089 0.102 0.124 0.146 0.175 0.197
Critical points for U?

0.0 0.043 0.061 0.074 0.084 0.102 0.119 0.143 0.160
0.05 0.043 0.062 0.075 0.085 0.103 0.121 0.144 0.162
0.10 0.044 0.062 0.076 0.086 0.104 0.122 0.146 0.164
0.15 0.044 0.063 0.077 0.087 0.105 0.123 0.148 0.166
0.20 0.045 0.064 0.077 0.088 0.107 0.125 0.150 0.168
0.25 0.045 0.065 0.078 0.089 0.108 0.127 0.152 0.171
0.30 0.046 0.065 0.080 0.091 0.110 0.129 0.154 0.173
0.35 0.046 0.066 0.081 0.092 0.111 0.131 0.157 0.176
0.40 0.047 0.067 0.082 0.094 0.113 0.133 0.159 0.180
0.45 0.048 0.068 0.083 0.095 0.115 0.136 0.162 0.183
0.50 0.048 0.070 0.085 0.097 0.118 0.138 0.166 0.187
Critical points for A?

0.0 0.292 0.395 0.467 0.522 0.617 0.711 0.836 0.931
0.05 0.295 0.399 0.471 0.527 0.623 0.719 0.845 0.941
0.10 0.298 0.403 0.476 0.534 0.631 0.728 0.856 0.954
0.15 0.301 0.408 0.483 0.541 0.640 0.738 0.869 0.969
0.20 0.305 0.414 0.490 0.549 0.650 0.751 0.885 0.986
0.25 0.309 0.421 0.498 0.559 0.662 0.765 0.902 1.007
0.30 0.314 0.429 0.508 0.570 0.676 0.782 0.923 1.030
0.35 0.320 0.438 0.519 0.583 0.692 0.802 0.947 1.057
0.40 0.327 0.448 0.532 0.598 0.711 0.824 0.974 1.089
0.45 0.334 0.469 0.547 0.615 0.732 0.850 1.006 1.125
0.50 0.342 0.472 0.563 0.636 0.757 0.879 1.043 1.167

using Table 1, at the 50% level. The other two statistics give values W?2=0.041
and U?=0. 040 all three statistics indicate a very good Weibull fit.

4.2. Example 2
Data set 2 consists of 15 times to failure of air-conditioning equipment in aircraft,
measured in hours; the data are taken from Table 1 of Proschan (1963) and are
the data for aircraft 7910. The values are as follows:

74, 57, 48, 29, 502, 12, 70, 21, 29, 386, 59, 27, 153, 26, 326.

Fig. 1(b) comes from this data set. The ML estlmates are @&=9.313 (using the
bias reduction procedure in Section 2), 8=93.50 and r72=0.763. The value of A2
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is 0.54; since c=1/m=1.31 is greater than 0.5, Table 1 is entered at the last line
(c=0.5), giving a 51gn1f1cance level of approximately 0.17. Statistic W?=0.099 and
U?=0.093; both give approximate significance level 0.12.

5. ASYMPTOTIC THEORY OF EMPIRICAL DISTRIBUTION FUNCTION TESTS

In this section the asymptotic theory of EDF tests is summarized. The calculation
of asymptotic distributions of EDF statistics follows a well-known procedure (see,
for example, Durbin (1973) or Stephens (1976)) The procedure rests on the fact
that y,(x) = {F,(2) —z} n, where F,(z) is the EDF of the set of z(;, tends to a
Gaussian process y(z) as n = oo, and the statistics are functionals of this process.
The mean of y(z) is 0: we need the covariance function p(s,#) = E{y(s) y(¢)}.
When all parameters are known (case 0), this covariance is po(s,?) = min(s, ) —
st. When the parameters are estimated, the covariance will not depend on the true
values of location or scale parameters o or 3, provided that these parameters are
estimated efficiently, but it will depend on the true shape parameter m.

Suppose that the parameters are components of a vector 6, with 6,=«, 6,=0
and 6;=m. Let F(x;0) now denote the distribution F(x; a, 8, m) and let f(x; )
be the corresponding density. Suppose that a vector g(s), with components g;(s),
is constructed as follows:

_ 0F(x;0)
gi(s) = 3—0,-’
where the right-hand side is written as a function of s using the transformation

s=F(x;0). Let {g(s)}’ denote the transpose of g(s). Let D be the symmetric matrix
with entries

i=1, 2,3, (12)

B a%{log f(x;0)} .
5U—E[——W ’ ih,j=1,2,3,
where E denotes expectation, and let L be the inverse of D. Then
p(s,t) = po(s,t) — {g(s)}' E{g(s)}. (13)

From equation (12), the components of g(s) become, after some algebra, and using
F for F(x; 0)

gi1(s) = 0F/dac = —m(1-5)/B — {—log(1—s)}im-D/m
8 (s) = dF/dB = {m(1-5)/B}log(1-s), (14)
& (s) = 0F/0m = {— (1—-s)/m}log(1-s)log{—log(1-s)}.
Also, for m > 2, D has the upper right-hand terms

(m—1)21,<1_3) m(m—l)r<l_l) T(m—1)-T(2—1/m)=T"(2=1/m)
B? m B2 m B
- m Iy +1
b= & B
T7(1) +2I"(1)
m2

(15)
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When X is calculated, and g(s) and X are inserted into equation (13), o(s, ¢) will
be independent of o and B. The Cramér-von Mises statistic W? is based directly
on the process y(z), and U? is based on

1
u(z) = y(z) - Soym dz;

A? is based on the process a(z) =y(z)/ {z(1 —z)}"%; asymptotically, the values of
the statistics are given by

1 1 1
W2 = Soy"(z) dz, U? = SOuZ(z) dz, A? = Soaz(z) dz.

The asymptotic distributions of these statistics are sums of weighted independent
x?-variables; the weights must be found from the eigenvalues of an integral equa-
tion with, for W?, p(s, t) as kernel. For U? and A2, one must find the p (s, ¢) of
the u(z) and a(z) processes. Once the weights are known, the percentage points
of the distributions can be calculated by Imhof’s method. The techniques are
straightforward once the p(s, ¢) are known, and we omit the details; they are given
in Lockhart and Stephens (1989). When m < 2, the ML estimate & of « is supereffi-
cient in the sense of Darling (1955), and then the asymptotic percentage points are
the same as for when « is known. These are the points in the last lines of the
subtables in Table 1.

EDF statistics are known to provide powerful tests for many distributions; the
powers naturally depend on the alternatives considered, and a study is being made
on power properties for the various alternatives to the Weibull distribution usually
encountered. On the whole, with the limited power results currently available, the
statistic 42 is suggested as the preferred statistic for overall Weibull testing. The
other statistics have been included for completeness. Tables for tests where one or
both of 8 or m are known are given by Lockhart and Stephens (1989).

ACKNOWLEDGEMENTS

This work was supported in part by the Natural Sciences and Engineering
Research Council of Canada and by the US Office of Naval Research; it was
finished while the second author was partly supported by the Science and Engineer-
ing Research Council of Great Britain. All these agencies are thanked for their
assistance.

REFERENCES

Cheng, R. C. H. and Iles, T. C. (1987) Corrected maximum likelihood in non-regular problems. J. R.
Statist. Soc. B, 49, 95-101.

(1990) Embedded models in three-parameter distributions and their estimation. J. R. Statist.
Soc. B, 52, 135-149.

Cox, D. R. and Oakes, D. (1984) Analysis of Survival Data. London: Chapman and Hall.

Darling, D. A. (1955) The Cramér-Smirnov test in the parametric case. Ann. Math. Statist., 26, 1-20.

Durbin, J. (1973) Distribution Theory for Tests Based on the Sample Distribution Function.
Philadelphia: Society for Industrial and Applied Mathematics.

Lockhart, R. A. and Stephens, M. A. (1989) Tests of fit for the three-parameter Weibull distribution.
Research Report 89-08. Department of Mathematics and Statistics, Simon Fraser University,
Burnaby.




500 LOCKHART AND STEPHENS [No. 3,

(1992) Estimation and tests of fit for the three-parameter Weibull distribution. Research
Report 92-10. Department of Mathematics and Statistics, Simon Fraser University, Burnaby.
Proschan, F. (1963) Theoretical explanation of observed decreasing failure rate. Technometrics, 5,
375-383.

Rockette, H., Antle, C. and Klimko, L. A. (1974) Maximum likelihood estimation with the Weibull
model. J. Am. Statist. Ass., 69, 246-249.

Smith, R. L. (1985) Maximum Likelihood estimation in a class of non-regular cases. Biometrika, 72,
67-90.

Smith, R. L. and Naylor, J. C. (1987) A comparison of Maximum likelihood and Bayesian estimators
for the three-parameter Weibull distribution. Appl. Statist., 36, 358-369.

Smith, R. L. and Weissman, I. (1985) Maximum likelihood estimation of the lower tail of a probability
distribution. J. R. Statist. Soc. B, 47, 285-298.

Stephens, M. A. (1976) Asymptotic results for goodness-of-fit statistics with unknown parameters.
Ann. Statist., 4, 357-369.

(1986) Tests based on EDF statistics. In Goodness-of-fit Techniques (eds R. B. D’Agostino
and M. A. Stephens), ch. 4. New York: Dekker.

Weissman, 1. (1982) Confidence intervals for the threshold parameter: II, Unknown shape parameter.
Communs Statist. Theory Meth., 11, 2451-2474.




