STAT 330: 96-3
Final Exam, 12 December 1996Instructor: Richard Lockhart
Instructions: This is an open book test. You may use notes, text, other books and a calculator. Your presentations of statistical analysis will be marked for clarity of explanation. I expect you to explain what assumptions you are making and to comment if those assumptions seem unreasonable. The exam is out of 75.
Solution:
,
, one sided,
,
and use the formula on page 319.
Solution: Paired comparisons. Use C. Difference is not significant.
Solution: From output C:
Solutions: The paired comparisons design is more efficient if there is a strong correlation between the wear on the two feet of the same boy which would be expected.
Solution: You wouldn't be certain that a difference was really due to the different soles rather than due to the fact that the dominant foot (usually right) has a different wear pattern than the other foot.
Solution:
Sum of Mean F Source DF Squares Square FERT 2 5.22792917 2.614 46.93 SEED 3 3.56582292 1.188 21.33 Interaction 6 0.40427083 0.067 1.20 Error 36 1.95137500 0.0557 Corrected Total 47 11.14939792
Solution: The hypothesis of no interactions will be accepted while that of no main effect of SEED and that of no main effect of FERT are rejected at the 0.01 level.
Solution: Fertilizers I and II are indistinguishable from the Tukey intervals but both are better than III.
Sum of Mean F Source DF Squares Square FERT 2 5.22792917 2.614 46.60 SEED 3 3.56582292 1.188 21.18 Error 42 2.35564583 0.0561 Corrected Total 47 11.14939792
where the
are independent, have mean 0 and all have the
same variance
which is unknown. There are n pairs with the
numbers
for
being known values of some covariate.
If this model is fitted by least squares, (that is by minimizing
) then the least squares estimate of
is
However, an alternative estimate is
Solution:
Solution:
Solution: The likelihood is
and the log likelihood is
The derivative with respect to
is
which is 0 if and only if the numerator is 0 or
Solving gives
.
Solution: This is a randomized complete blocks design for which the analysis is in output F. There is a clear difference between batches but no clear difference between operators.
Solution: The P value is 0.0001 so there is very clearly a difference between companies.
Solution: This is a one sample hypothesis testing problem. The output should have given means and SDs for the responses for the three companies so you could do this quickly and easily.
Solution: The interval is based on the ratio of sample standard deviations and uses the F distribution.
Solution:
Solution: The predicted yield at 200 degrees is
The formula for the estimated standard error of
is
The output gives s=0.62177 and
.
You need to compute
and then you can use these numbers to
figure out the standard error and get a confidence interval.
DATA
A B A shoe 13.2 14.0 L 8.2 8.8 L 10.9 11.2 R 14.3 14.2 L 10.7 11.8 R 6.6 6.4 L 9.5 9.8 L 10.8 11.3 L 8.8 9.3 R 13.3 13.6 LCODE
options pagesize=60 linesize=80; data shoes; infile 'shoes.dat'; input A B Ashoe $ ; proc glm data=shoes; model B = A; run;OUTPUT
General Linear Models Procedure
Dependent Variable: B
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 55.74764638 55.74764638 333.73 0.0001
Error 8 1.33635362 0.16704420
Corrected Total 9 57.08400000
R-Square C.V. Root MSE B Mean
0.976590 3.702087 0.4087104 11.040000
Source DF Type III SS Mean Square F Value Pr > F
A 1 55.74764638 55.74764638 333.73 0.0001
T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 0.247447347 0.41 0.6931 0.60475347
A 1.015291877 18.27 0.0001 0.05557678
DATA
13.2 A 14.0 B 8.2 A 8.8 B 10.9 A 11.2 B 14.3 A 14.2 B 10.7 A 11.8 B 6.6 A 6.4 B 9.5 A 9.8 B 10.8 A 11.3 B 8.8 A 9.3 B 13.3 A 13.6 BCODE
data shoes; infile 'shoes1.dat'; input wear material ; proc sort data=shoes; by material; proc ttest cochran; class material; run;OUTPUT
TTEST PROCEDURE
Variable: WEAR
MATERIAL N Mean Std Dev Std Error
A 10 10.63000000 2.45132617 0.77517740
B 10 11.04000000 2.51846514 0.79640861
Variances T Method DF Prob>|T|
Unequal -0.3689 Satterthwaite 18.0 0.7165
Cochran 9.0 0.7207
Equal -0.3689 18.0 0.7165
For H0: Variances are equal, F' = 1.06 DF = (9,9) Prob>F' = 0.9372
DATA
As in ACODE
data shoes; infile 'shoes.dat'; input A B Ashoe $; diff=A-B; proc means mean std stderr t prt maxdec=2; run;OUTPUT
TTEST PROCEDURE
Variable: WEAR
MATERIAL N Mean Std Dev Std Error
A 10 10.63000000 2.45132617 0.77517740
B 10 11.04000000 2.51846514 0.79640861
Variances T Method DF Prob>|T|
Unequal -0.3689 Satterthwaite 18.0 0.7165
Cochran 9.0 0.7207
Equal -0.3689 18.0 0.7165
For H0: Variances are equal, F' = 1.06 DF = (9,9) Prob>F' = 0.9372
Variable Mean Std Dev Std Error T Prob>|T|
A 10.63 2.45 0.78 13.71 0.0001
B 11.04 2.52 0.80 13.86 0.0001
DIFF -0.41 0.39 0.12 -3.35 0.0085
DATA
8.83 I A 9.20 I A 9.22 I A 9.16 I A 9.80 I B 10.10 I B 9.87 I B 9.67 I B 9.16 I C 9.20 I C 9.54 I C 9.73 I C 9.20 I D 9.66 I D 9.58 I D 9.52 I D 8.98 II A 8.76 II A 9.08 II A 8.53 II A 9.92 II B 9.51 II B 9.29 II B 10.22 II B 9.18 II C 8.95 II C 8.83 II C 9.08 II C 9.42 II D 10.02 II D 9.66 II D 9.03 II D 8.49 III A 8.44 III A 8.29 III A 8.53 III A 8.80 III B 9.01 III B 9.03 III B 8.76 III B 8.53 III C 8.61 III C 8.57 III C 8.49 III C 8.80 III D 8.98 III D 8.83 III D 8.89 III DCODE
data yield; infile 'seedfert.dat'; input yield fert $ seed $ ; proc glm data=yield; class fert seed; model yield = fert|seed; means fert / tukey cldiff alpha=0.05; means seed / tukey ; run;OUTPUT
General Linear Models Procedure
Dependent Variable: YIELD
Sum of Mean
Source DF Squares Square
FERT 5.22792917
SEED 3.56582292
0.40427083
Error 1.95137500
Corrected Total 11.14939792
Tukey's Studentized Range (HSD) Test for variable: YIELD
Alpha= 0.05 Confidence= 0.95 df= 36 MSE= 0.054205
Critical Value of Studentized Range= 3.457
Minimum Significant Difference= 0.2012
Comparisons significant at the 0.05 level are indicated by '***'.
Simultaneous Simultaneous
Lower Difference Upper
FERT Confidence Between Confidence
Comparison Limit Means Limit
I - II -0.01495 0.18625 0.38745
I - III 0.57317 0.77438 0.97558 ***
II - I -0.38745 -0.18625 0.01495
II - III 0.38692 0.58812 0.78933 ***
III - I -0.97558 -0.77438 -0.57317 ***
III - II -0.78933 -0.58812 -0.38692 ***
Tukey's Studentized Range (HSD) Test for variable: YIELD
Alpha= 0.05 df= 36 MSE= 0.054205
Critical Value of Studentized Range= 3.809
Minimum Significant Difference= 0.256
Means with the same letter are not significantly different.
Tukey Grouping Mean N SEED
A 9.49833 12 B
A
A 9.29917 12 D
B 8.98917 12 C
B
B 8.79250 12 A
DATA
89 1 A 88 1 B 97 1 C 94 1 D 84 2 A 77 2 B 92 2 C 79 2 D 81 3 A 87 3 B 87 3 C 85 3 D 87 4 A 92 4 B 89 4 C 84 4 D 79 5 A 81 5 B 80 5 C 88 5 DCODE
data strength; infile 'bhhp281q1.dat'; input strength batch $ operator $ ; proc glm data=strength; class operator; model yield = operator; means operator / tukey cldiff alpha=0.05; run;OUTPUT
General Linear Models Procedure
Dependent Variable: STRENGTH
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 70.00000000 23.33333333 0.76 0.5318
Error 16 490.00000000 30.62500000
Corrected Total 19 560.00000000
R-Square C.V. Root MSE STRENGTH Mean
0.125000 6.434867 5.5339859 86.000000
Source DF Type III SS Mean Square F Value Pr > F
OPERATOR 3 70.00000000 23.33333333 0.76 0.5318
Tukey's Studentized Range (HSD) Test for variable: STRENGTH
Alpha= 0.05 Confidence= 0.95 df= 16 MSE= 30.625
Critical Value of Studentized Range= 4.046
Minimum Significant Difference= 10.014
Comparisons significant at the 0.05 level are indicated by '***'.
Simultaneous Simultaneous
Lower Difference Upper
OPERATOR Confidence Between Confidence
Comparison Limit Means Limit
C - D -7.014 3.000 13.014
C - B -6.014 4.000 14.014
C - A -5.014 5.000 15.014
D - C -13.014 -3.000 7.014
D - B -9.014 1.000 11.014
D - A -8.014 2.000 12.014
B - C -14.014 -4.000 6.014
B - D -11.014 -1.000 9.014
B - A -9.014 1.000 11.014
A - C -15.014 -5.000 5.014
A - D -12.014 -2.000 8.014
A - B -11.014 -1.000 9.014
CODE
data strength; infile 'bhhp281q1.dat'; input strength batch $ operator $ ; proc glm data=strength; class batch operator; model yield = batch operator; means batch / tukey cldiff alpha=0.05; means operator / tukey cldiff alpha=0.05; run;OUTPUT
General Linear Models Procedure
Dependent Variable: STRENGTH
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 7 334.00000000 47.71428571 2.53 0.0754
Error 12 226.00000000 18.83333333
Corrected Total 19 560.00000000
R-Square C.V. Root MSE STRENGTH Mean
0.596429 5.046208 4.3397389 86.000000
Source DF Type III SS Mean Square F Value Pr > F
BATCH 4 264.00000000 66.00000000 3.50 0.0407
OPERATOR 3 70.00000000 23.33333333 1.24 0.3387
Tukey's Studentized Range (HSD) Test for variable: STRENGTH
Alpha= 0.05 Confidence= 0.95 df= 12 MSE= 18.83333
Critical Value of Studentized Range= 4.508
Minimum Significant Difference= 9.781
Comparisons significant at the 0.05 level are indicated by '***'.
Simultaneous Simultaneous
Lower Difference Upper
BATCH Confidence Between Confidence
Comparison Limit Means Limit
1 - 4 -5.781 4.000 13.781
1 - 3 -2.781 7.000 16.781
1 - 2 -0.781 9.000 18.781
1 - 5 0.219 10.000 19.781 ***
4 - 1 -13.781 -4.000 5.781
4 - 3 -6.781 3.000 12.781
4 - 2 -4.781 5.000 14.781
4 - 5 -3.781 6.000 15.781
3 - 1 -16.781 -7.000 2.781
3 - 4 -12.781 -3.000 6.781
3 - 2 -7.781 2.000 11.781
3 - 5 -6.781 3.000 12.781
2 - 1 -18.781 -9.000 0.781
2 - 4 -14.781 -5.000 4.781
2 - 3 -11.781 -2.000 7.781
2 - 5 -8.781 1.000 10.781
5 - 1 -19.781 -10.000 -0.219 ***
5 - 4 -15.781 -6.000 3.781
5 - 3 -12.781 -3.000 6.781
5 - 2 -10.781 -1.000 8.781
Tukey's Studentized Range (HSD) Test for variable: STRENGTH
Alpha= 0.05 Confidence= 0.95 df= 12 MSE= 18.83333
Critical Value of Studentized Range= 4.199
Minimum Significant Difference= 8.1485
Comparisons significant at the 0.05 level are indicated by '***'.
Simultaneous Simultaneous
Lower Difference Upper
OPERATOR Confidence Between Confidence
Comparison Limit Means Limit
C - D -5.149 3.000 11.149
C - B -4.149 4.000 12.149
C - A -3.149 5.000 13.149
D - C -11.149 -3.000 5.149
D - B -7.149 1.000 9.149
D - A -6.149 2.000 10.149
B - C -12.149 -4.000 4.149
B - D -9.149 -1.000 7.149
B - A -7.149 1.000 9.149
A - C -13.149 -5.000 3.149
A - D -10.149 -2.000 6.149
A - B -9.149 -1.000 7.149
DATA
560 1 546 1 547 1 548 1 559 1 559 1 544 1 477 2 468 2 523 2 484 2 524 2 527 2 457 2 455 3 481 3 506 3 492 3 468 3 450 3 448 3 460 4 503 4 482 4 526 4 462 4 545 4 534 4
data wattage; infile 'erglep656q17.dat'; input watts company ; proc sort data=wattage; by company; proc glm data=wattage; class company; model watts = company; means company / tukey cldiff; run;OUTPUT
General Linear Models Procedure
Dependent Variable: WATTS
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 3 24136.678571 8045.559524 12.24 0.0001
Error 24 15779.428571 657.476190
Corrected Total 27 39916.107143
R-Square C.V. Root MSE WATTS Mean
0.604685 5.079281 25.641299 504.82143
Tukey's Studentized Range (HSD) Test for variable: WATTS
Alpha= 0.05 Confidence= 0.95 df= 24 MSE= 657.4762
Critical Value of Studentized Range= 3.901
Minimum Significant Difference= 37.809
Comparisons significant at the 0.05 level are indicated by '***'.
Simultaneous Simultaneous
Lower Difference Upper
COMPANY Confidence Between Confidence
Comparison Limit Means Limit
1 - 4 12.33 50.14 87.95 ***
1 - 2 19.76 57.57 95.38 ***
1 - 3 42.62 80.43 118.24 ***
4 - 1 -87.95 -50.14 -12.33 ***
4 - 2 -30.38 7.43 45.24
4 - 3 -7.52 30.29 68.09
2 - 1 -95.38 -57.57 -19.76 ***
2 - 4 -45.24 -7.43 30.38
2 - 3 -14.95 22.86 60.67
3 - 1 -118.24 -80.43 -42.62 ***
3 - 4 -68.09 -30.29 7.52
3 - 2 -60.67 -22.86 14.95
DATA
150 77.4 150 76.7 150 78.2 200 84.1 200 84.5 200 83.7 250 88.9 250 89.2 250 89.7 300 94.8 300 94.7 300 95.9CODE
data yield; infile 'yield.dat'; input temp yield ; proc glm data=yield; model yield = temp; run;OUTPUT
General Linear Models Procedure
Dependent Variable: YIELD
Sum of Mean
Source DF Squares Square F Value Pr > F
Model 1 509.25066667 509.25066667 1317.25 0.0001
Error 10 3.86600000 0.38660000
Corrected Total 11 513.11666667
R-Square C.V. Root MSE YIELD Mean
0.992466 0.718950 0.6217717 86.483333
Source DF Type III SS Mean Square F Value Pr > F
TEMP 1 509.25066667 509.25066667 1317.25 0.0001
T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 60.26333333 80.96 0.0001 0.74439685
TEMP 0.11653333 36.29 0.0001 0.00321082