Stat 330 Assignment 10 Partial Solutions
options pagesize =60 linesize=80;
data q16;
infile 'q16.dat';
input x y;
proc reg;
model y=x;
plot residual.*predicted.;
plot y*x;
run;
The output for the full data set is
Dependent Variable: Y
Analysis of Variance
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 538208.57051 538208.57051 385.024 0.0001
Error 4 5591.42949 1397.85737
C Total 5 543800.00000
Root MSE 37.38793 R-square 0.9897
Dep Mean 560.00000 Adj R-sq 0.9871
C.V. 6.67642
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 137.875631 26.37756553 5.227 0.0064
X 1 9.311567 0.47454663 19.622 0.0001
----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
RESIDUAL | |
| |
50 + +
| |
| |
| 1 |
| |
40 + +
| |
| |
| |
| |
30 + +
| |
| |
| |
| |
20 + 1 +
| |
| |
| |
R | 1 |
e 10 + +
s | |
i | |
d | 1 |
u | |
a 0 + +
l | |
| |
| |
| |
-10 + +
| |
| |
| |
| |
-20 + +
| |
| |
| |
| |
-30 + +
| |
| |
| |
| 1 |
-40 + 1 +
| |
| |
----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
200 300 400 500 600 700 800 900 1000 1100 1200
Predicted Value of Y PRED
----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
Y | |
| |
| |
| |
| |
1200 + 1 +
| |
| |
| |
1100 + +
| |
| |
| |
1000 + +
| |
| |
| |
900 + +
| |
| |
| |
800 + +
| |
| |
| |
700 + +
| |
| |
| |
600 + +
| |
| 1 |
| |
500 + 1 +
| 1 |
| |
| |
400 + +
| |
| 1 |
| |
300 + +
| 1 |
| |
| |
200 + +
| |
| |
| |
| |
----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+-----+----
10 20 30 40 50 60 70 80 90 100 110 120
X
while that for the edited data set is
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 49839.81693 49839.81693 61.274 0.0043
Error 3 2440.18307 813.39436
C Total 4 52280.00000
Root MSE 28.52007 R-square 0.9533
Dep Mean 432.00000 Adj R-sq 0.9378
C.V. 6.60187
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 190.352403 33.40167361 5.699 0.0107
X 1 7.551487 0.96470574 7.828 0.0043
-+----+----+----+----+----+----+----+----+----+----+----+----+----+--
RESIDUAL | |
| |
| |
| |
30 + 1 +
| |
| |
| |
| 1 |
| |
| |
20 + +
| |
| |
| |
| |
| |
| |
10 + +
| |
| |
R | |
e | |
s | |
i | |
d 0 + +
u | |
a | |
l | |
| |
| |
| |
-10 + +
| |
| |
| |
| 1 1 |
| |
| |
-20 + +
| |
| 1 |
| |
| |
| |
| |
-30 + +
| |
| |
| |
-+----+----+----+----+----+----+----+----+----+----+----+----+----+--
280 300 320 340 360 380 400 420 440 460 480 500 520 540
Predicted Value of Y PRED
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----
600 + +
| |
| |
| |
| |
| |
| 1 |
550 + +
| |
| |
| |
| |
| |
| |
500 + 1 +
| |
| |
Y | |
| 1 |
| |
| |
450 + +
| |
| |
| |
| |
| |
| |
400 + +
| |
| |
| |
| |
| |
| |
350 + 1 +
| |
| |
| |
| |
| |
| |
300 + +
| |
| |
| 1 |
| |
| |
| |
250 + +
-----+----+----+----+----+----+----+----+----+----+----+----+----+----+-----
12.5 15.0 17.5 20.0 22.5 25.0 27.5 30.0 32.5 35.0 37.5 40.0 42.5 45.0
X
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 8.17906 8.17906 674.982 0.0001
Error 8 0.09694 0.01212
C Total 9 8.27600
Root MSE 0.11008 R-square 0.9883
Dep Mean 3.92000 Adj R-sq 0.9868
C.V. 2.80814
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 2.141648 0.07679262 27.889 0.0001
X 1 0.006801 0.00026176 25.980 0.0001
Putting the two pieces we get
which is just
.
The estimated standard error
of
is
To evaluate this note first that
. Next
Assembling the pieces shows that
Sum of Mean
Source DF Squares Square F Value Prob>F
Model 1 25.62223 25.62223 17.604 0.0057
Error 6 8.73277 1.45546
C Total 7 34.35500
Root MSE 1.20643 R-square 0.7458
Dep Mean 77.72500 Adj R-sq 0.7034
C.V. 1.55217
Parameter Estimates
Parameter Standard T for H0:
Variable DF Estimate Error Parameter=0 Prob > |T|
INTERCEP 1 81.173057 0.92589886 87.669 0.0001
X 1 -0.133258 0.03176040 -4.196 0.0057
General Linear Models Procedure
R-Square C.V. Root MSE Y Mean
0.070002 26.22198 198.15080 755.66667
T for H0: Pr > |T| Std Error of
Parameter Estimate Parameter=0 Estimate
INTERCEPT 684.4057037 5.78 0.0007 118.3236387
X 14.8804795 0.73 0.4915 20.5000646
The test statistic is 0.73 with 7 degrees of freedom. Since the test is one
sided we get a P value of 0.4915/2 which is certainly not significant.
Thus it seems quite possible that there is no (linear) relation between
eye weight and thickness.
as required.
Divide through by SSTotal and use the formula
where
, etc., to get
Then
which is the usual t-statistic. Note the use of the fact that
.