F tests and the Extra Sum of Squares

Example:

$$Y =$$
 plaster hardness $s =$ sand content $f =$ fibre content

Model:

$$Y_i = \beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i + \beta_4 f_i^2 + \beta_5 s_i f_i + \epsilon_i$$

In matrix form:

$$\begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix} = \begin{bmatrix} 1 & s_1 & s_1^2 & f_1 & f_1^2 & s_1 f_1 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & s_n & s_n^2 & f_n & f_n^2 & s_n f_n \end{bmatrix} \begin{bmatrix} \beta_0 \\ \vdots \\ \beta_5 \end{bmatrix}$$

Hypotheses to test

Questions:

- ▶ Do we need the S * F term?
- ▶ Do we need the F or F^2 terms?
- ▶ Do we need the S or S^2 terms?

To answer these questions we test

- ► H_o : $\beta_5 = 0$
- $H_o: \beta_3 = \beta_4 = 0$ (or perhaps $H_o: \beta_3 = \beta_4 = \beta_5 = 0$)
- $H_o: \beta_1 = \beta_2 = 0$

Technique: we fit a sequence of models:

- (a) Original "full" model.
- (b) The model with **no interactions**:

$$\mu_{i} = \beta_{0} + \beta_{1}s_{i} + \beta_{2}s_{i}^{2} + \beta_{3}f_{i} + \beta_{4}f_{i}^{2}$$

(c) The Sand only model:

$$\mu_i = \beta_0 + \beta_1 s_i + \beta_2 s_i^2$$

(d) The Fibre only model:

$$\mu_i = \beta_0 + \beta_3 f_i + \beta_4 f_i^2$$

(e) The "Empty" model:

$$\mu_i = \beta_0$$

Each model has design matrix which is submatrix of full design matrix:

$$Y = \begin{bmatrix} \mathbf{1}|X_1|X_2|X_3 \end{bmatrix} \begin{bmatrix} \frac{\beta_0}{\beta_1} \\ \frac{\beta_2}{\beta_3} \\ \frac{\beta_4}{\beta_5} \end{bmatrix} + \epsilon$$

The design matrices for the models a, b, c, d and e are given by

$$X_a = X$$
 $X_b = [1|X_1|X_2]$
 $X_c = [1|X_1]$
 $X_d = [1|X_2]$
 $X_e = [1]$

Note that $\mathbf{1}$ is a column vector of n 1s.

F tests

- Can compare two models easily if one is a special case of the other.
- Example: design matrix of first model is submatrix of second obtained by selecting subcolumns.
- ▶ Model (b) is a special case of (a), model (c) is a special case of (a) or (b) but models (c) and (d) are not comparable.

Comparing two models: General Theory

▶ Consider matrix X partitioned into pieces X_1 and X_2 .

$$X=[X_1|X_2]$$

The Full Model is

$$Y = X\beta + \epsilon$$

$$= [X_1|X_2] \begin{bmatrix} \beta_1 \\ \beta_2 \end{bmatrix} + \epsilon$$

$$= X_1\beta_1 + X_2\beta_2 + \epsilon$$

▶ The Reduced model is

$$Y = X_1 \beta_1 + \epsilon$$

▶ Difference is term $X_2\beta_2$ which is 0 IF the null hypothesis $H_o: \beta_2 = 0$ is true.

Dimensions

- $\triangleright \beta$ has p parameters.
- ▶ β_i has p_i parameters with $p_1 + p_2 = p$.

Testing H_o : $\beta_2 = 0$

Fit both full and reduced models; get:

$$Y = \hat{\mu}_F + \hat{\epsilon}_F$$
$$= \hat{\mu}_R + \hat{\epsilon}_R$$

- ▶ Subscript *F* refers to full model and *R* to reduced model.
- ► Get decomposition of data vector *Y* into sum of three perpendicular vectors:

$$Y = \hat{\mu}_R + (\hat{\mu}_F - \hat{\mu}_R) + \hat{\epsilon}_F$$

I showed

$$\hat{\mu}_R \perp \hat{\mu}_F - \hat{\mu}_R$$
 $\hat{\mu}_R \perp \hat{\epsilon}_F$ $\hat{\mu}_F - \hat{\mu}_R \perp \hat{\epsilon}_F$

Resulting ANOVA table

Source	Sum of Squares	Degrees of Freedom
X_1	$ \hat{\mu}_R ^2$	$ ho_1$
$X_2 X_1$	$ \hat{\mu}_F - \hat{\mu}_R ^2$	p_2
Error	$ \hat{\epsilon} ^2$	п — р
Total (Unadjusted)	$ Y ^2$	n

F tests again

- ▶ In this table the notation $X_2|X_1$ means X_2 adjusted for X_1 or X_2 after fitting X_1 .
- ▶ This table can now be used to test H_o : $\beta_2 = 0$ by computing

$$F = \frac{\text{MS}(X_2|X_1)}{\text{MSE}} = \frac{||\hat{\mu}_F - \hat{\mu}_R||^2/p_2}{||\hat{\epsilon}||^2/(n-p)}$$

- ▶ Get *P* value from $F_{p_2,n-p}$ distribution.
- ▶ *P* value usually computed by software.
- ▶ Do level α test by comparing P to α .

Another Formula for this F statistic

Recall that

$$||\hat{\mu}_R||^2 + ||\hat{\epsilon}_R||^2 = ||Y||^2$$

and

$$||\hat{\mu}_R||^2 + ||\hat{\mu}_F - \hat{\mu}_R||^2 + ||\hat{\epsilon}_F||^2 = ||Y||^2$$

so that

$$||\hat{\epsilon}_R||^2 = ||\hat{\epsilon}_F||^2 + ||\hat{\mu}_F - \hat{\mu}_R||^2$$

► This makes

$$F = \frac{(\text{ESS}_R - \text{ESS}_F)/p_2}{\text{ESS}_F/(n-p)}$$
$$= \frac{\text{ExtraSS}/p_2}{\text{ESS}_F/(n-p)}$$

Remarks

1. If the errors are normal then

$$\frac{\mathrm{ESS}_F}{\sigma^2} \sim \chi^2_{n-p}$$

2. If the errors are normal and H_o : $\beta_2 = 0$ is true then

$$\frac{\rm ExtraSS}{\sigma^2} \sim \chi^2_{p_2}$$

- 3. ESS_F is independent of the Extra SS.
- 4. SO:

$$\frac{\mathrm{ExtraSS}/(\sigma^2 p_2)}{\mathrm{ESS}_F/(\sigma^2 (n-p))} = F \sim F_{p_2,n-p}$$

Example of the above: Multiple Regression

- ▶ Hardness, Y_i , of plaster measured for each of 9 combinations of sand content and fibre content.
- ▶ Sand content s_i was set at one of 3 levels as was fibre content f_i .
- All possible combinations tried, each on two batches of plaster.
- Here is an excerpt of the data:

Sand	Fibre	Hardness	Strength
0	0	61	34
0	0	63	16
15	0	67	36
15	0	69	19
30	0	65	28

Models Fitted

▶ I fit submodels of the following "Full" model:

$$Y_i = \beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i + \beta_4 f_i^2 + \beta_5 s_i f_I + \epsilon_i$$

- ▶ There are $2^5 = 32$ possible submodels of the full model
- Many of these 32 models are not sensible, such as

$$Y_i = \beta_0 + \beta_4 f_i^2 + \epsilon_i$$

or

$$Y_i = \beta_0 + \beta_5 s_i f_i + \epsilon_i$$

- Assume interaction term $(\beta_5 s_i f_i)$ is negligible unless each of S and F have some effect .
- Assume that quadratic terms will probably not be present unless linear terms are present.
- ▶ This limits the set of potential reasonable models.
- ▶ Fit each; error sum of squares in following table:

Fitting various models

Model for μ	Error SS	Error df
Full	81.264	12
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i + \beta_4 f_i^2$	82.389	13
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i$	104.167	14
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2$	169.500	15
$eta_0 + eta_1 s_i$	174.194	16
$\beta_0 + \beta_1 s_i + \beta_3 f_i + \beta_4 f_i^2$	87.083	14
$\beta_0 + \beta_1 f_i + \beta_2 f_i^2$	189.167	15
$eta_0 + eta_1 f_i$	210.944	16
$\beta_0 + \beta_1 s_i + \beta_3 f_i$	108.861	15

Hypotheses tested

- ▶ First question: do 2nd degree polynomial terms, that is, those involving β_2 , β_4 and β_5 need to be included?
- ▶ Compare top line with model containing only $\beta_0 + \beta_1 s_i + \beta_3 f_i$.
- ► The extra SS is 108.861-81.264 on 3 degrees of freedom which gives a mean square of (108.861-81.264)/3= 9.199.
- ► The MSE is 81.264/12 = 6.772.
- ► Gives an *F*-statistic of 9.199/6.772=1.358 on 3 numerator and 12 denominator degrees of freedom.
- ▶ *P*-value is 0.30 which is not significant.
- So we delete quadratic terms and consider the coefficients of S and F.

A t test and an F test

 \mathbf{Q} : Are the effects of S and F additive?

A : Test H_o : $\beta_5 = 0$.

- ▶ There are two methods to carry out such a test:
 - 1. A *t* test
 - 2. A *F* test.

Fact: the F test is equivalent to a two sided t test.

▶ The *t* test uses

$$t = \frac{\hat{\beta}_5 - 0}{\hat{\sigma}_{\hat{\beta}_5}} = \frac{\hat{\beta}_5}{\sqrt{\text{MSE}}\sqrt{(X^T X)_{66}^{-1}}} \sim t_{1,n-6}$$

t tests

See Distribution Theory section for linear combinations:

$$\beta_5 = \underbrace{[0,0,0,0,0,1]}_{x^T} \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \beta_5 \end{bmatrix}$$

and $x^T(X^TX)^{-1}x$ is the lower right hand corner entry in $(X^TX)^{-1}$, that is, $(X^TX)_{66}^{-1}$.

▶ The *F* test uses

$$F = \frac{(\mathrm{ESS_R} - \mathrm{ESS}_F)/1}{\mathrm{ESS_{FULL}}/(n-6)} \sim F_{1,n-6} \quad (=t^2)$$

Testing for Main Effects

The Data

- $ightharpoonup Y = \text{hardness of plaster}. \ n = 18 \ \text{batches}.$
- ▶ S = sand content. Values used 0%, 15% 30%.
- ightharpoonup F = fibre content. Values used 0%, 25% 50%.
- ► Factorial design with 2 replicates.

Comparison of Models

"Full" model

$$Y_i = \beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i + \beta_4 f_i^2 + \beta_5 s_i f_l + \epsilon_i$$

Fitted Models, ESS, df for error

Model for μ	ESS	Error df
Full	81.264	12
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i + \beta_4 f_i^2$	82.389	13
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2 + \beta_3 f_i$	104.167	14
$\beta_0 + \beta_1 s_i + \beta_2 s_i^2$	169.500	15
$\beta_0 + \beta_1 s_i$	174.194	16
$\beta_0 + \beta_1 s_i + \beta_3 f_i + \beta_4 f_i^2$	87.083	14
$\beta_0 + \beta_1 f_i + \beta_2 f_i^2$	189.167	15
$\beta_0 + \beta_1 f_i$	210.944	16
$\beta_0 + \beta_1 s_i + \beta_3 f_i$	108.861	15
$eta_0(empty \; model)$	276.278	17

Hypothesis tests:

- 1. Quadratic terms needed? $H_o: \beta_2 = \beta_4 = \beta_5 = 0$.
 - ► Extra SS = 108.861-81.264.
 - F = [(108.861 81.264)/3]/[81.264/12] = 1.358.
 - ▶ Degrees of freedom are 3, 12 so P = 0.30, not significant.

- 3. Linear terms needed? There are several possible *F*-tests.
 - 3.1 Compare full model to empty model.

$$F = (276.278 - 81.264)/5/(81.264/12) = 5.76$$

so P is about .006.

3.2 Assume full model is now additive, linear model

$$\beta_0 + \beta_1 s_i + \beta_3 f_i.$$

Then

$$F = [(276.278 - 108.861)/2]/[108.861/15] = 11.53$$

and P is about 0.0009.

- 3.3 Use estimate of σ^2 from full model
- 3.4 But get extra SS from last comparison: F = [(276.278 108.861)/2]/[81.264/12] = 12.36 for a P value of 0.001

Conclusions

- Both Sand and Fibre influence Hardness.
- ▶ Linear terms in S and F are adequate.

