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Markov Chains

Last names example has following structure:

Suppose, at generation n there are m individuals.

Number of sons in next generation has distribution of sum of m
independent copies of rv X

Recall X is number of sons in first generation.

Distribution does not depend on n,

Depends only on the value m of Zn.

We call Zn a Markov Chain.
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Ingredients of a Markov Chain

A state space S .

S will be finite or countable in this course.

A sequence X0,X1, . . . of random variables whose values are all in S .

Matrix P with entries Pi ,j for i , j ∈ S .

P is required to be stochastic:∑
k

Pik = 1 and 0 ≤ Pij

for all i , j .
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Stochastic Process

The stochastic process X0,X1, . . . is called a Markov chain if

P (Xk+1 = j |Xk = i ,A) = Pi ,j

Here A is any event defined in terms of X0, . . . ,Xk−1.

Formula must hold for all i , j , k.

Usually used with

A = {Xk−1 = ik−1, . . . ,X0 = i0}

for some i0, . . . , ik−1.

Matrix P is called transition matrix.
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First Markov Chain Example

Suppose X in the last names example has a Poisson(λ) distribution

Given Zn = k, Zn+1 is like sum of k independent Poisson(λ) rvs

This has a Poisson(kλ) distribution.

So

P =


1 0 0 · · ·
e−λ λe−λ λ2e−λ/2 · · ·
e−2λ (2λ)e−2λ 1

2(2λ)2e−2λ · · ·
...

...
...

. . .


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Second Markov Chain Example

Weather: each day is dry (D) or wet (W).

Xn is weather on day n.

Suppose dry days tend to be followed by dry days, say 3 times in 5
and wet days by wet 4 times in 5.

Markov assumption: yesterday’s weather irrelevant to prediction of
tomorrow’s given today’s.

Transition Matrix:

P =

 3
5

2
5

1
5

4
5


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Transition probabilities

Suppose it’s wet today.

Compute P(wet in 2 days)?

P(X2 =W |X0 = W )

=P(X2 = W ,X1 = D|X0 = W ) + P(X2 = W ,X1 = W |X0 = W )

=P(X2 = W |X1 = D,X0 = W )P(X1 = D|X0 = W )

+ P(X2 = W |X1 = W ,X0 = W )P(X1 = W |X0 = W )

=P(X2 = W |X1 = D)P(X1 = D|X0 = W )

+ P(X2 = W |X1 = W )P(X1 = W |X0 = W )

=PW ,DPD,W + PW ,W PW ,W

=

(
1

5

) (
2

5

)
+

(
4

5

) (
4

5

)
Note all entries in last line are items in P.
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Chapman Kolmogorov equations; matrix multiplication

Look at the matrix product PP: 3
5

2
5

1
5

4
5

 3
5

2
5

1
5

4
5

 =

 11
25

14
25

7
25

18
25


Notice that P(X2 = W |X0 = W ) is exactly the W ,W entry in PP.

General case. Define

P
(n)
i ,j = P(Xn = j |X0 = i)

Then

P(Xm+n = j |Xm = i ,Xm−1 = im−1, . . .) = P(Xm+n = j |Xm = i)

= P(Xn = j |X0 = i)

= P
(n)
i ,j = (Pn)ij
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Proof

Proof of these assertions by induction on m, n.

Example for n = 2. Two bits to do:

First suppose U,V ,X ,Y are discrete variables.

Assume: for any x , y , u, v

P(Y = y |X = x ,U = u,V = v) = P(Y = y |X = x)

Then I claim

P(Y = y |X = x ,U = u) = P(Y = y |X = x)

In words, if knowing both U and V doesn’t change the conditional
probability then knowing U alone doesn’t change the conditional
probability.
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Proof of claim:
A = {X = x ,U = u}

Then

P(Y = y |X = x ,U = u) =
P(Y = y ,A)

P(A)

=

∑
v P(Y = y ,A,V = v)

P(A)

=

∑
v P(Y = y |A,V = v)P(A,V = v)

P(A)

=

∑
v P(Y = y |X = x)P(A,V = v)

P(A)

=
P(Y = y |X = x)

∑
v P(A,V = v)

P(A)

=
P(Y = y |X = x)P(A)

P(A)

= P(Y = y |X = x)
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Second step: consider

P(Xn+2 = k|Xn = i) =
∑

j

P(Xn+2 = k,Xn+1 = j |Xn = i)

=
∑

j

P(Xn+2 = k|Xn+1 = j ,Xn = i)P(Xn+1 = j |Xn = i)

=
∑

j

P(Xn+2 = k|Xn+1 = j)P(Xn+1 = j |Xn = i)

=
∑

j

Pi ,jPj ,k

This shows that

P(Xn+2 = k|Xn = i) = (P2)i ,k

where P2 means the matrix product PP.

Note: quantity does not depend on n

Note: can compute by taking a power of P.
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Chapman-Kolmogorov

More general version

P(Xn+m = k|Xn = j) = (Pm)j ,k

Since PnPm = Pn+m we get the Chapman-Kolmogorov equations:

P(Xn+m = k|X0 = i) =∑
j

P(Xn+m = k|Xn = j)P(Xn = j |X0 = i)

Summary: A Markov Chain has stationary n step transition
probabilities which are the nth power of the 1 step transition
probabilities.
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Maple Output: rainfall example

1,2,4,8 and 16 step transition matrices:

> p:= matrix(2,2,[[3/5,2/5],[1/5,4/5]]);
[3/5 2/5]

p := [ ]
[1/5 4/5]

> p2:=evalm(p*p):
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
> p16:=evalm(p8*p8):

Computes powers (evalm understands matrix algebra).

Fact:

lim
n→∞

Pn =

 1
3

2
3

1
3

2
3


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Maple powers

> evalf(evalm(p));
[.6000000000 .4000000000]
[ ]
[.2000000000 .8000000000]

> evalf(evalm(p2));
[.4400000000 .5600000000]
[ ]
[.2800000000 .7200000000]

> evalf(evalm(p4));
[.3504000000 .6496000000]
[ ]
[.3248000000 .6752000000]
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Maple powers

> evalf(evalm(p8));
[.3337702400 .6662297600]
[ ]
[.3331148800 .6668851200]

> evalf(evalm(p16));
[.3333336197 .6666663803]
[ ]
[.3333331902 .6666668098]

Where did 1/3 and 2/3 come from?
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Initial distributions

Suppose: toss a coin P(H) = αD

Start chain with Dry if we get heads and Wet if we get tails.

Then

P(X0 = x) =

{
αD x = Dry

αW = 1− αD x = Wet

and

P(X1 = x) =
∑
y

P(X1 = x |X0 = y)P(X0 = y)

=
∑
y

αyPy ,x

Last line is matrix multiplication of row vector α by matrix P.
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Stationary initial distribution

A special α: if we put αD = 1/3 and αW = 2/3 then

[
1

3

2

3

] 3
5

2
5

1
5

4
5

 =

[
1

3

2

3

]

In other words if we start off P(X0 = D) = 1/3 then
P(X1 = D) = 1/3 and analogously for W .

So X0 and X1 have the same distribution.
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Formal definitions

A probability vector α is called an initial distribution for the chain if

P(X0 = i) = αi

A Markov Chain is stationary if

P(X1 = i) = P(X0 = i)

for all i

An initial distribution is called stationary if the chain is stationary.

We find that α is a stationary initial distribution if

αP = α
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Characterizing the stationary distribution

Suppose Pn converges to some matrix P∞.

Notice that
lim

n→∞
Pn−1 = P∞

and

P∞ = limPn

=
[
limPn−1

]
P

= P∞P

This proves that each row α of P∞ satisfies

α = αP
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Eigenvectors

Def’n: A row vector x is a left eigenvector of A with eigenvalue λ if

xA = λx

So each row of P∞ is a left eigenvector of P with eigenvalue 1.
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Finding Stationary Initial Distributions

Consider P for the weather example.

The equation
αP = α

is really

αD = 3αD/5 + αW /5

αW = 2αD/5 + 4αW /5

The first can be rearranged to

αW = 2αD ;

so can the second.
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Finding Stationary Initial Distributions again

If α is to be a probability vector then

αW + αD = 1

so we get
1− αD = 2αD

leading to
αD = 1/3
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More examples

P =


0 1/3 0 2/3

1/3 0 2/3 0
0 2/3 0 1/3

2/3 0 1/3 0


Set αP = α and get

α1 = α2/3 + 2α4/3

α2 = α1/3 + 2α3/3

α3 = 2α2/3 + α4/3

α4 = 2α1/3 + α3/3

1 = α1 + α2 + α3 + α4

First plus third gives
α1 + α3 = α2 + α4

so both sums 1/2.
Continue algebra to get (1/4, 1/4, 1/4, 1/4).
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Maple examples

p:=matrix([[0,1/3,0,2/3],[1/3,0,2/3,0],
[0,2/3,0,1/3],[2/3,0,1/3,0]]);

[ 0 1/3 0 2/3]
[ ]
[1/3 0 2/3 0 ]

p := [ ]
[ 0 2/3 0 1/3]
[ ]
[2/3 0 1/3 0 ]
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Maple examples

> p2:=evalm(p*p);
[5/9 0 4/9 0 ]
[ ]
[ 0 5/9 0 4/9]

p2:= [ ]
[4/9 0 5/9 0 ]
[ ]
[ 0 4/9 0 5/9]

> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
> p16:=evalm(p8*p8):
> p17:=evalm(p8*p8*p):
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Maple examples

> evalf(evalm(p16));
[.5000000116 , 0 , .4999999884 , 0]
[ ]
[0 , .5000000116 , 0 , .4999999884]
[ ]
[.4999999884 , 0 , .5000000116 , 0]
[ ]
[0 , .4999999884 , 0 , .5000000116]

> evalf(evalm(p17));
[0 , .4999999961 , 0 , .5000000039]
[ ]
[.4999999961 , 0 , .5000000039 , 0]
[ ]
[0 , .5000000039 , 0 , .4999999961]
[ ]
[.5000000039 , 0 , .4999999961 , 0]
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Maple examples

> evalf(evalm((p16+p17)/2));
[.2500, .2500, .2500, .2500]
[ ]
[.2500, .2500, .2500, .2500]
[ ]
[.2500, .2500, .2500, .2500]
[ ]
[.2500, .2500, .2500, .2500]

Pn doesn’t converge but(Pn + Pn+1)/2 does.
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Maple examples

p =


2
5

3
5 0 0

1
5

4
5 0 0

0 0 2
5

3
5

0 0 1
5

4
5


Solve αP = α:

α1 =
2

5
α1 +

1

5
α2

α2 =
3

5
α1 +

4

5
α2

α3 =
2

5
α3 +

1

5
α4

α4 =
3

5
α3 +

4

5
α4

1 = α1 + α2 + α3 + α4

Richard Lockhart (Simon Fraser University) STAT 380 Markov Chains Spring 2021 35 / 87



More

Second and fourth equations redundant.

Get

α2 = 3α1

3α3 = α4

1 = 4α1 + 4α3

Pick α1 in [0, 1/4]; put α3 = 1/4− α1.

α = (α1, 3α1, 1/4− α1, 3(1/4− α1))

solves αP = α.

So solution is not unique.
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Another Example

> p:=matrix([[2/5,3/5,0,0],[1/5,4/5,0,0],
[0,0,2/5,3/5],[0,0,1/5,4/5]]);

[2/5 3/5 0 0 ]
[ ]
[1/5 4/5 0 0 ]

p := [ ]
[ 0 0 2/5 3/5]
[ ]
[ 0 0 1/5 4/5]

> p2:=evalm(p*p):
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
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More

> evalf(evalm(p8*p8));
[.2500000000 , .7500000000 , 0 , 0]
[ ]
[.2500000000 , .7500000000 , 0 , 0]
[ ]
[0 , 0 , .2500000000 , .7500000000]
[ ]
[0 , 0 , .2500000000 , .7500000000]
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Limit Distributions

Notice that rows converge but to two different vectors:

α(1) = (1/4, 3/4, 0, 0)

and
α(2) = (0, 0, 1/4, 3/4)

Solutions of αP = α revisited?

Check that
α(1)P = α(1)

and
α(2)P = α(2)

If α = λα(1) + (1− λ)α(2) (0 ≤ λ ≤ 1) then

αP = α

so again solution is not unique.
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Last example

> p:=matrix([[2/5,3/5,0],[1/5,4/5,0], [1/2,0,1/2]]);

[2/5 3/5 0 ]
[ ]

p := [1/5 4/5 0 ]
[ ]
[1/2 0 1/2]

> p2:=evalm(p*p):
> p4:=evalm(p2*p2):
> p8:=evalm(p4*p4):
> evalf(evalm(p8*p8));
[.2500000000 .7500000000 0 ]
[ ]
[.2500000000 .7500000000 0 ]
[ ]
[.2500152588 .7499694824 .00001525878906]
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Interpretation of examples

For some P all rows converge to some α.

In this case this α is a stationary initial distribution.

For some P the locations of zeros flip flop.

Pn does not converge.

Observation: average

P + P2 + · · ·+ Pn

n

does converge.

For some P some rows converge to one α and some to another. In
this case the solution of αP = α is not unique.

Basic distinguishing features: pattern of 0s in matrix P.
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Classification of States

State i leads to state j if Pn
ij > 0 for some n.

Convenient to agree say P0 = I, the identity matrix.

So i leads to i .

Note i leads to j and j leads to k implies i leads to k
(Chapman-Kolmogorov).

States i and j communicate if i leads to j and j leads to i .

The relation of communication is an equivalence relation.

it is reflexive, symmetric and transitive: if i and j communicate and j
and k communicate then i and k communicate.

Group of communicating states called Communicating Class.
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Example of communicating classes

Example (+ signs indicate non-zero entries):

P =


0 1 0 0 0
0 0 1 0 0
+ + + 0 0
+ 0 0 + 0
0 + 0 + +


For this example: 1 2, 2 3, 3 1

So 1, 2, 3 are all in the same communicating class.

4 1, 2, 3 but not vice versa.

5 1, 2, 3, 4 but not vice versa.

So the communicating classes are

{1, 2, 3} {4} {5}
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Irreducible Chains, transience, recurrence

A Markov Chain is irreducible if there is only one communicating
class.

Notation:
fi = P(∃n > 0 : Xn = i |X0 = i)

State i is recurrent if fi = 1, otherwise transient.

If fi = 1 then Markov property (chain starts over when it gets back to
i) means prob return infinitely many times (given started in i or given
ever get to i) is 1.
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Number of returns to transient state

Consider chain started from transient i .

Let N be number of visits to state i (including visit at time 0).

To return m times must return once then starting over return m − 1
times, then never return.

So:
P(N = m|X0 = i) = f m−1

i (1− fi )

for m = 1, 2, . . ..

N has a Geometric distribution and E(N|X0 = i) = 1/(1− fi ).
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Condition for transience

Another calculation:

N =
∞∑

k=0

1(Xk = i)

so

E(N|X0 = i) =
∞∑

k=0

P(Xk = i |X0 = i)

If we start the chain in state i then this is

E(N|X0 = i) =
∞∑

k=0

Pk
ii

and i is transient if and only if

∞∑
k=0

Pk
ii < ∞ .
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Continued

For last example: 4 and 5 are transient.

Claim: states 1, 2 and 3 are recurrent.

Proof: argument above shows each transient state is visited only
finitely many times.

So: there is a recurrent state.

(Note use of finite number of states.)

It must be one of 1, 2 and 3.
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Class properties

Proposition: If one state in a communicating class is recurrent then
all states in the communicating class are recurrent.

Proof: Let i be the known recurrent state so∑
n

Pn
ii = ∞

Assume i and j communicate. Find integers m and k such that

Pm
ij > 0 and Pk

ji > 0

Then
Pm+n+k

jj ≥ Pk
jiP

n
iiP

m
ij

Sum RHS over n get ∞ so ∑
n

Pn
jj = ∞

Proposition also means that if 1 state in a class is transient so are all.
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Periodic chains

State i has period d if d is greatest common divisor of

{n : Pn
ii > 0}

If i and j are in the same class then i and j have same period.

If d = 1 then state i is called aperiodic.

If d > 1 then i is periodic.
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Periodic example

P =


0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 0 0 0 1
0 0 0 1 0


For this example {1, 2, 3} is a class of period 3 states and {4, 5} a
class of period 2 states.

P =

 0 1/2 1/2
1 0 0
1 0 0


has a single communicating class of period 2.

A chain is aperiodic if all its states are aperiodic.
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Infinite State Spaces

Example: sequence of independent coin tosses; probability p of Heads
on a single toss.

Xn is number of heads minus number of tails after n tosses.

Put X0 = 0.

Xn is a Markov Chain.

State space is Z, the integers and

Pij =


p j = i + 1

1− p j = i − 1

0 otherwise
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Analysis of heads minus tails

Chain has one communicating class (for p 6= 0, 1).

All states have period 2.

According to the strong law of large numbers Xn/n converges to
2p − 1.

If p 6= 1/2 this guarantees that for all large enough n Xn 6= 0, that is,
the number of returns to 0 is not infinite.

So state 0 is transient

So all states must be transient.
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Fair coin case

For p = 1/2 the situation is different.

It is a fact that

Pn
00 = P(# H = # T at time n)

For n even this is the probability of exactly n/2 heads in n tosses.

Local Central Limit Theorem (normal approximation to
P(−1/2 < Xn < 1/2)) (or Stirling’s approximation) shows

√
2mP(Binomial(2m, 1/2) = m) → (2/π)1/2

so: ∑
n

Pn
00 = ∞

That is: 0 is a recurrent state.
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Hitting Times

Start irreducible recurrent chain Xn in state i .

Let Tj be first n > 0 such that Xn = j .

Define
mij = E(Tj |X0 = i)

First step analysis:

mij = 1 · P(X1 = j |X0 = i)

+
∑
k 6=j

(1 + E(Tj |X0 = k))Pik

=
∑
k

Pik +
∑
k 6=j

Pikmkj

= 1 +
∑
k 6=j

Pikmkj
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Example

Example

P =

 3
5

2
5

1
5

4
5


The equations are

m11 = 1 +
2

5
m21

m12 = 1 +
3

5
m12

m21 = 1 +
4

5
m21

m22 = 1 +
1

5
m12
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Example Continued

The second and third equations give immediately

m12 =
5

2
m21 = 5

Then plug in to the others to get

m11 = 3

m22 =
3

2
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Relation to Stationary Initial Distribution

Notice stationary initial distribution is(
1

m11
,

1

m22

)
Consider fraction of time spent in state j :

1(X0 = j) + · · ·+ 1(Xn = j)

n + 1

Imagine chain starts in state i ; take expected value.∑n
r=1 Pr

ij + 1(i = j)

n + 1
=

∑n
r=0 Pr

ij

n + 1

If rows of Pn converge to stationary α then fraction converges to αj ;
i.e. limiting fraction of time in state j is αj .
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Heuristics

Heuristic: start chain in i .

Expect to return to i every mii time units.

So are in state i about once every mii time units; i.e. limiting fraction
of time in state i is 1/mii .

Conclusion: for an irreducible recurrent finite state space Markov
chain

αi =
1

mii
.
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Infinite State Spaces

Conclusion still right if ∃ a stationary initial distribution.

Example: Xn = Heads− Tails after n tosses of fair coin.

Equations are

m0,0 = 1 +
1

2
m1,0 +

1

2
m−1,0

m1,0 = 1 +
1

2
m2,0

and many more.

You have to go through 1 to get to 0 from 2 so

m2,0 = m2,1 + m1,0

Symmetry (switching H and T):

m1,0 = m−1,0

The transition probabilities are homogeneous:

m2,1 = m1,0
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Example continued

Conclusion:

m0,0 = 1 + m1,0

= 1 + 1 +
1

2
m2,0

= 2 + m1,0

Notice that there are no finite solutions!

Summary of the situation:

Every state is recurrent.

All the expected hitting times mij are infinite.

All entries Pn
ij converge to 0.

Jargon: The states in this chain are null recurrent.
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One Example

Page 229, question 21 in old edition.

Runner goes from front or back door, prob 1/2 each.

Returns front or back, prob 1/2 each.

Has k pairs of shoes, wears pair if any at departure door, leaves at
return door.

No shoes? Barefoot.

Long run fraction of time barefoot?
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Solution

Let Xn be number of shoes at front door on day n.

Then Xn is a Markov Chain.

Transition probabilities?

k pairs at front door on day n.

Xn+1 is k if goes out back door (prob is 1/2) or out front door and
back in front door (prob is 1/4).

Otherwise Xn+1 is k − 1.
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Solution

0 < j < k pairs at front door on day n.

Xn+1 is j + 1 if out back, in front (prob is 1/4). Xn+1 is j − 1 if out
front, in back.

Otherwise Xn+1 is j .

0 pairs at front door on day n.

Xn+1 is 0 if out front door (prob 1/2) or out back door and in back
door (prob 1/4) otherwise Xn+1 is 1.
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Solution

Transition matrix P:

3
4

1
4 0 0 · · · 0

1
4

1
2

1
4 0 · · · 0

0 1
4

1
2

1
4 · · · 0

...
...

. . .
. . .

. . .
...

0 0 0 · · · 1
4

3
4


Doubly stochastic: row sums and column sums are 1.

So αi = 1/(k + 1) for all i is stationary initial distribution.
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Solution

Solution to problem: 1 day in k + 1 no shoes at front door.

Half of those go barefoot.

Also 1 day in k + 1 all shoes at front door; go barefoot half of these
days.

Overall go barefoot 1/(k + 1) of the time.
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Gambler’s Ruin

Insurance company’s reserves fluctuate: sometimes up, sometimes
down.

Ruin is event they hit 0 (company goes bankrupt).

General problem.

For given model of fluctuation compute probability of ruin either
eventually or in next k time units.
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Gambler’s Ruin, simple example

Simplest model: gambling on Red at Casino.

Bet $1 at a time.

Win $1 with probability p, lose $1 with probability 1− p.

Start with k dollars.

Quit playing when down to $0 or up to N.

Compute
Pk = P(reach N before 0|X0 = k)

Richard Lockhart (Simon Fraser University) STAT 380 Markov Chains Spring 2021 70 / 87



Gambler’s Ruin, simple example

Xn = fortune after n plays.

X0 = k.

Transition matrix:

P =



1 0 0 0 · · · 0

1− p 0 p 0 · · · 0

0 1− p 0 p · · · 0

...
...

. . .
. . .

. . .
...

0 0 0 · · · 0 1


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Gambler’s Ruin, simple example

First step analysis:

P0 = 0

Pi = (1− p)Pi−1 + pPi+1

PN = 1
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Gambler’s Ruin, simple example

Middle equation is

pPi + (1− p)Pi = (1− p)Pi−1 + pPi+1

or

Pi+1 − Pi =
1− p

p
(Pi − Pi−1)

=

(
1− p

p

)2

(Pi−1 − Pi−2)

...

=

(
1− p

p

)i

(P1 − P0)

=

(
1− p

p

)i

P1
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Gambler’s Ruin, simple example

Sum from i = 0 to i = k − 1 to get

Pk =
k−1∑
i=0

(
1− p

p

)i

P1

or

Pk =
1− {(1− p)/p}k

1− {(1− p)/p}
P1
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Gambler’s Ruin, simple example

For k = N we get

1 =
1− {(1− p)/p}N

1− {(1− p)/p}
P1

so that

Pk =
1− {(1− p)/p}k

1− {(1− p)/p}N

Notice that if p = 1/2 our formulas for the sum of the geometric
series are wrong.

But for p = 1/2 we get
Pk = kP1

so

Pk =
k

N
.
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Mean time in transient states

P =



1
2

1
2 0 0

1
4

3
4 0 0

1
4

1
4

1
4

1
4

1
4

1
4

3
8

1
8


States 3 and 4 are transient.

Let mi ,j be the expected total number of visits to state j for chain
started in i .

For i = 1 or i = 2 and j = 3 or 4:

mij = 0

For j = 1 or j = 2
mij = ∞
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Mean time in transient states

For i , j ∈ {3, 4} first step analysis:

m3,3 = 1 +
1

4
m3,3 +

1

4
m4,3

m3,4 = 0 +
1

4
m3,4 +

1

4
m4,4

m4,3 = 0 +
3

8
m3,3 +

1

8
m4,3

m4,4 = 1 +
3

8
m3,4 +

1

8
m4,4

In matrix form m3,3 m3,4

m4,3 m4,4

 =

 1 0

0 1

+

 1
4

1
4

3
8

1
8

 m3,3 m3,4

m4,3 m4,4


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Mean time in transient states

Translate to matrix notation:

M = I + PTM

where I is the identity,

M is the matrix of means and

PT the part of the transition matrix corresponding to transient states.

Solution is
M = (I− PT )−1

In our case

I− PT =

 3
4 −1

4

−3
8

7
8


so that

M =

 14
9

4
9

2
3

4
3


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Data Analysis

Imagine we have data X0, . . . ,XN which we model as coming from a
Markov Chain.

Simplest case: K states.

If we observe X0 = x0, . . . ,XN = xN how should we estimate the
transition probabilities?

Two kinds of models: parametric and ‘empirical’?

Second kind: Pij can be any probabilities subject to
∑

j Pij = 1.

First kind: each Pij is function of smaller number of parameters, θ.

The θ or the Pij are parameters.
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Small likelihood example

Two states {0, 1}.
Suppose we observe the sequence 0, 0, 1, 1, 1, 0, 1, 0, 1.

So N = 8 and x0 = 0, x1 = 0, . . . , x8 = 1.

The likelihood is

L = P(X0 = 0,X1 = 0,X2 = 1,X3 = 1,

X4 = 1,X5 = 0,X6 = 1,X7 = 0,X8 = 1)

Use Markov property to get

L = P(X0 = 0)P00P01P11P11P10P01P10P01
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Small likelihood example, II

Collect terms:
L = P(X0 = 0)P00P

3
01P

2
10P

2
11

Power on Pij is number of times we observe a transition from i to j .

Let Nij be number of transitions from i to j .

Likelihood is generally

L = P(X0 = x0)
∏
ij

P
Nij

ij .

Usually: we condition on X0 and use conditional likelihood

Lc =
∏
ij

P
Nij

ij .

Conditional log-likelihood is

`c =
∑
ij

Nij log(Pij)
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Maximum likelihood

Maximize `c over all Pij

Remember K constraints ∑
j

Pij = 1

Lagrange multipliers:

`P −
k∑

i=1

λi

∑
j

Pij − 1


Take derivative wrt Pkl to get

Nkl

Pkl
− λk
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Maximum likelihood

Set equal to 0 to find

Pkl =
Nkl

λk

Use constraint to get

1 =
∑

l

Pkl =

∑
l Nkl

λk

So

P̂kl =
Nkl∑
l Nkl
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Maximum likelihood, parametric models

If each Pij = Pij(θ) then the likelihood equations become

∑
ij

Nij

Pij

∂Pij(θ)

∂θr
= 0

for r = 1, . . . , q if θ = (θ1, . . . , θq).

In parametric models we usually parametrize the functions Pij in such
a way that the constraints are automatic.
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Data example from Guttorp, 1995

Rock layers (strata), N = 606.

Xn is one of 6 types (numbered 0 to 5).

Markov chain model.

The Nij are sufficient statistics.

Simple parametric model: θ = (θ0, . . . , θ5) and

Pij =

{
0 i = j

θjP
k 6=i θk

i 6= j

Best approximation to independent.

Independence of layers not possible because Pii = 0 by definition.
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Data example from Guttorp, 1995

Needed derivatives

∂Pij(θ)

∂θr
=



0 i = j

0 r = i
1P

k 6=i θk
− θr

(
P

k 6=i)
2 i 6= j , r = j

− θj

(
P

k 6=i)
2 i 6= j , r 6= j

Equations tedious to write out.
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The Data

Facies 0 1 2 3 4 5

0 0 2 0 2 2 0 6
1 5 0 23 31 17 8 84
2 0 21 0 45 27 8 101
3 1 54 44 0 66 25 190
4 0 6 24 81 0 38 149
5 0 5 8 31 32 0 76

6 88 99 190 144 79 606
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