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Markov Chains

Last names example has following structure:

Suppose, at generation n there are m individuals.

Number of sons in next generation has distribution of sum of m
independent copies of rv X

Recall X is number of sons in first generation.

Depends only on the value m of Z,,.

°
@ Distribution does not depend on n,
°
@ We call Z, a Markov Chain.
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Ingredients of a Markov Chain

A state space S.

S will be finite or countable in this course.

A sequence Xp, X1, ... of random variables whose values are all in S.
Matrix P with entries P;j for i,j € S.

P is required to be stochastic:

> Pk=1 and 0<P;
k

for all i j.
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Stochastic Process

@ The stochastic process Xg, X1, ... is called a Markov chain if
P (Xky1 = j|Xk = i,A) = P

@ Here A is any event defined in terms of Xp, ..., Xk_1.
@ Formula must hold for all i, k.

@ Usually used with
A= {X_1=ik-1,..., X0 = o}

for some iy, ..., ik_1.

@ Matrix P is called transition matrix.
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First Markov Chain Example

@ Suppose X in the last names example has a Poisson(\) distribution
e Given Z, = k, Z,1 is like sum of k independent Poisson()\) rvs
@ This has a Poisson(k\) distribution.

e So

1 0 0
e e NeN/2
P=1 g2\ (2\)e~2* %(2)\)2(2’\
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Second Markov Chain Example

Weather: each day is dry (D) or wet (W).

X, is weather on day n.

Suppose dry days tend to be followed by dry days, say 3 times in 5
and wet days by wet 4 times in 5.

Markov assumption: yesterday's weather irrelevant to prediction of
tomorrow's given today’s.

Transition Matrix:

3 2

5 5
P=

1 4

5 5
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Transition probabilities

@ Suppose it's wet today.

e Compute P(wet in 2 days)?

P(Xo =W|Xo = W)
—P(Xo = W, X1 = D|Xo = W)+ P(Xo = W, X; = W|Xo = W)
—P(Xo = W|X1 = D, Xo = W)P(Xs = D|Xo = W)
L P(Xe = WXt = W, Xo = W)P(Xi = W|Xo = W)
=P(Xo = W|X1 = D)P(X1 = D|Xo = W)
+ P(Xo = WXy = W)P(Xy = W|Xo = W)

=Pw pPpw + Pw,wPw,w
(1 2 . 4 4
~\5/\5 5)\5

@ Note all entries in last line are items in P.
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Chapman Kolmogorov equations; matrix multiplication

@ Look at the matrix product PP:

302 302 u 1
5 5 5 5 25 25
14 14 718
5 5 5 5 25 25

@ Notice that P(X, = W|Xy = W) is exactly the W, W entry in PP.

@ General case. Define

P = P(Xy = j|Xo = )

@ Then

P(Xmin = j|Xm = i, Xm—1 = im—1,...) = P(Xmin = j|Xm = 1)
= P(X, = j|Xo = i)
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Proof

Proof of these assertions by induction on m, n.
Example for n = 2. Two bits to do:

First suppose U, V, X, Y are discrete variables.

Assume: for any x,y,u, v
P(Y=ylX=x,U=u,V=v)=P(Y =ylX=x)

@ Then | claim

P(lY=ylX=x,U=u)=P(Y =y|X =x)

@ In words, if knowing both U and V doesn't change the conditional
probability then knowing U alone doesn't change the conditional
probability.
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@ Proof of claim:
A={X=x,U=u}

@ Then

P(Y=ylX=x,U=u)=

Richard Lockhart (Simon Fraser University) Spring 2021 10 / 87



@ Second step: consider

P(Xns2 = k|Xn = i) = P(Xnr2 =k, Xns1 = j| X0 = i)
j

:ZP(XIH—Z = k‘Xn+1 =J,Xn = i)P(Xn+1 :J"Xn = i)
J

= P(Xnt2 = kIXns1 = ))P(Xns1 = j|Xn = i)
J
:Z P,"J'Pj’k
J
@ This shows that

P(Xni2 = k|Xn = i) = (P?); 4

where P2 means the matrix product PP.
@ Note: quantity does not depend on n

@ Note: can compute by taking a power of P.
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Chapman-Kolmogorov

@ More general version
P(Xn+m = k|Xn :J) = (Pm)j,k
@ Since P"P™ = P"*™ e get the Chapman-Kolmogorov equations:

P(Xpim = k|Xo = i) =

ZP(Xn—f—m = k| Xn = j)P(Xn = j|Xo = i)
J

@ Summary: A Markov Chain has stationary n step transition
probabilities which are the nth power of the 1 step transition
probabilities.
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Maple Output: rainfall example

1,2,4,8 and 16 step transition matrices:

> p:= matrix(2,2,[[3/5,2/5],[1/5,4/511);

[3/5 2/5]
p := [ ]
[1/5 4/5]

p2:=evalm(p*p) :

p4:=evalm(p2#*p2) :
p8:=evalm(p4*p4) :
pl6:=evalm(p8*p3) :

V V V V

e Computes powers (evalm understands matrix algebra).

o Fact:
1 2
. 3 3
lim P" =
n—oo 1 2
3 3
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Maple powers

> evalf(evalm(p));

[.6000000000 .4000000000]

[ ]

[.2000000000 .8000000000]
> evalf (evalm(p2));

[.4400000000 .5600000000]

[ ]

[.2800000000 . 72000000001
> evalf(evalm(p4d));

[.3504000000 .64960000001]

[ ]

[.3248000000 .67520000001]
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Maple powers

> evalf (evalm(p8));

[.3337702400 .6662297600]

[ ]

[.3331148800 .66688512001]
> evalf(evalm(p16));

[.3333336197 .6666663803]

[ ]

[.3333331902 .6666668098]

Where did 1/3 and 2/3 come from?
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Initial distributions

@ Suppose: toss a coin P(H) = ap
@ Start chain with Dry if we get heads and Wet if we get tails.
@ Then

P(X ) ap x = Dry
= X)) =
0 aw =1—ap x=Wet

and

@ Last line is matrix multiplication of row vector o by matrix P.
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Stationary initial distribution

@ A special a: if we put ap =1/3 and aw = 2/3 then

BN

@ In other words if we start off P(Xo = D) = 1/3 then
P(X1 = D) = 1/3 and analogously for W.

@ So Xp and Xj have the same distribution.

[&]
[&118)

—
ol
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Formal definitions

@ A probability vector « is called an initial distribution for the chain if
P(Xo=1) =«
@ A Markov Chain is stationary if
P(Xi=1i)=P(Xo =1)

for all i
@ An initial distribution is called stationary if the chain is stationary.

@ We find that « is a stationary initial distribution if

aP =«
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Characterizing the stationary distribution

@ Suppose P" converges to some matrix P°°.
@ Notice that

lim P"t = P>
and
P> = limP"
= [limP" '] P
=P>P

@ This proves that each row a of P™ satisfies

a=oP
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Eigenvectors

o Def'n: A row vector x is a left eigenvector of A with eigenvalue A if
XA = Ax

@ So each row of P is a left eigenvector of P with eigenvalue 1.
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Finding Stationary Initial Distributions

@ Consider P for the weather example.

@ The equation
aP =«

is really

ap = 3aD/5+aW/5
aw =2ap/5+ 4aw /5

@ The first can be rearranged to
aw = 2ap;

so can the second.
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Finding Stationary Initial Distributions again

o If o is to be a probability vector then
aw +ap =1

so we get
1-— ap = 2C¥D

leading to
ap = 1/3
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More examples

0o 1/3 0 2/3
1/3 0 2/3 0
0o 2/3 0 1/3
2/3 0 1/3 0
@ Set aP = « and get
a1 =a2/3+2a4/3
ap = a1/3+2a3/3
a3 =2a2/3+ ay/3
ag =2a1/3+ a3/3
l=a14+ar+a3+as
o First plus third gives
altaz=az2+ oy

so both sums 1/2.
o Continue algebra to get (1/4,1/4,1/4,1/4).

Spring 2021
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Maple examples

p:=matrix([[0,1/3,0,2/3],[1/3,0,2/3,0],
(0,2/3,0,1/3],[2/3,0,1/3,011);

[ o 1/3 0 2/3]
[ ]
[1/3 0 2/3 0]
p:=1[ ]
[0 2/3 0 1/31]
[ ]
[2/3 0 1/3 01
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Maple examples

> p2:=evalm(p*p);

[5/9 0

C

[0 5/9
p2:= [

[4/9 0

C

[0 4/9

p4:=evalm(p2*p2) :
p8:=evalm(p4*p4d) :
pl16:=evalm(p8*p8) :
pl7:=evalm(p8*p8*p) :

vV V V V

Richard Lockhart (Simon Fraser University)
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Maple examples

> evalf (evalm(p16));
[.5000000116 , O , .4999999884 , 0]

L ]
[0 , .5000000116 , O , .4999999884]
L ]
[.4999999884 , 0 , .5000000116 , O]
L ]

[0 , .4999999884 , 0 , .5000000116]
> evalf (evalm(pl7));
[0 , .4999999961 , 0 , .5000000039]

L ]
[.4999999961 , 0 , .5000000039 , 0]
L ]
[0 , .5000000039 , O , .4999999961]
L ]

[.5000000039 , 0 , .4999999961 , 0]
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Maple examples

> evalf (evalm((pl16+pl7)/2));

[.2500,
[
[.2500,
C
[.2500,
(
[.2500,

P" doesn't converge but(P" 4+ P"1)/2 does.
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.2500, .2500]

]

.2500, .2500]

]

.2500, .2500]

]

.2500, .2500]
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Maple examples

% 200
_ |5 & 00
p= 0o o0 2 3
0o o 1 3
5 5§
Solve aP = a:
alzga1+ga2
3 +4
a2—5a1 5a2
2 +1
a3 = - e
3T gty
L4
s = -« e
4= g3t s

l=a1+ar+a3+as
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More

Second and fourth equations redundant.
o Get

as = 301
303 = aa
1=4a; 4+ 4a3

a=(oq,301,1/4 — 1,3(1/4 — 1))

solves aP = o

So solution is not unique.

Richard Lockhart (Simon Fraser University) Spring 2021 36 / 87



Another Example

> p:=matrix([[2/5,3/5,0,0],[1/5,4/5,0,0],
(0,0,2/5,3/51,[0,0,1/5,4/511);

[2/5 3/5 0 0]
[ ]
[1/5 4/5 0 0]
p:=1[ ]
[ O 0 2/5 3/51]
[ ]
[ O 0 1/5 4/5]

> p2:=evalm(p*p):
> p4:=evalm(p2+*p2):
> p8:=evalm(p4*p4) :
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More

> evalf (evalm(p8*p8));

[.2500000000 , .7500000000 , 0 , O]

L

[.2500000000 , .7500000000 , 0 , O]

L
[0, 0, .2500000000 ,
L
[0, 0, .2500000000 ,

Richard Lockhart (Simon Fraser University)
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Limit Distributions

@ Notice that rows converge but to two different vectors:
ol = (1/4,3/4,0,0)

and
a® =(0,0,1/4,3/4)
@ Solutions of aP = « revisited?

@ Check that
ap = oM

and
a@p = o?

o If a=Xxa® +(1—-X)a® (0 <\ <1)then

aP =«

so again solution is not unique.
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Last example

> p:=matrix([[2/5,3/5,0],[1/5,4/5,0], [1/2,0,1/2]11);

[2/5 3/5 01
[ ]
p := [1/5 4/5 0]
[ ]
[1/2 0 1/2]

> p2:=evalm(p*p):
> p4:=evalm(p2+*p2):
> p8:=evalm(p4+*p4) :
> evalf (evalm(p8*p8));

[.2500000000 .7500000000 0

[

[.2500000000 .7500000000 0

[

[.2500152588 .7499694824 .00001525878906

—_ e
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Interpretation of examples

For some P all rows converge to some .
In this case this « is a stationary initial distribution.
For some P the locations of zeros flip flop.

P”" does not converge.

Observation: average

P+P24...+P"

does converge.

@ For some P some rows converge to one o and some to another. In
this case the solution of aP = « is not unique.

@ Basic distinguishing features: pattern of Os in matrix P.
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Classification of States

o State /i leads to state j if P; >0 for some n.
e Convenient to agree say P® = I, the identity matrix.
@ So / leads to i.

@ Note / leads to j and j leads to k implies i leads to k
(Chapman-Kolmogorov).

@ States / and j communicate if / leads to j and j leads to i.
@ The relation of communication is an equivalence relation.

@ it is reflexive, symmetric and transitive: if i and j communicate and j
and k communicate then / and k communicate.

@ Group of communicating states called Communicating Class.
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Example of communicating classes

e Example (+ signs indicate non-zero entries):

+ o+ ow
oo+ R o
+ +ocooco
+ o o oo

0
0
P=| +
+
0

For this example: 1~ 2, 2~+ 3,3~ 1
So 1,2, 3 are all in the same communicating class.
4 ~~ 1,2,3 but not vice versa.

5~ 1,2, 3,4 but not vice versa.

So the communicating classes are

{1,2,3p {4 {5
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Irreducible Chains, transience, recurrence

@ A Markov Chain is irreducible if there is only one communicating
class.

@ Notation:
fi=P(En>0:X,=1ilXo=1)

@ State / is recurrent if f; = 1, otherwise transient.

e If f; = 1 then Markov property (chain starts over when it gets back to
i) means prob return infinitely many times (given started in i or given
ever get to /) is 1.
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Number of returns to transient state

Consider chain started from transient /.

Let NV be number of visits to state / (including visit at time 0).

To return m times must return once then starting over return m — 1
times, then never return.

e So:
P(N=m|Xo =i)=f""1-f)
form=12 ...
e N has a Geometric distribution and E(N|Xy = i) =1/(1 — f;).
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Condition for transience
@ Another calculation: -
N=> 1(Xc=1)
k=0
SO

o0
E(N[Xo=1)=Y_ P(Xe=ilX =)
k=0

@ If we start the chain in state i then this is
o0
E(N|Xo=i)=> Pk
k=0
and i is transient if and only if
oo
Z PX < 0.
k=0

Richard Lockhart (Simon Fraser University) Spring 2021
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Continued

For last example: 4 and 5 are transient.

Claim: states 1, 2 and 3 are recurrent.

Proof: argument above shows each transient state is visited only
finitely many times.

So: there is a recurrent state.

(Note use of finite number of states.)
It must be one of 1, 2 and 3.
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Class properties

@ Proposition: If one state in a communicating class is recurrent then
all states in the communicating class are recurrent.

@ Proof: Let i be the known recurrent state so

@ Assume i and j communicate. Find integers m and k such that
k
PZ‘7>03nd P_]l>0

@ Then
m+n-+k k m
ij k> Pj,-Pf}P,-j

Sum RHS over n get oo so
SRS
n

@ Proposition also means that if 1 state in a class is transient so are all.
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Periodic chains

State / has period d if d is greatest common divisor of

{n: P} >0}

If i and j are in the same class then i and j have same period.

If d =1 then state i/ is called aperiodic.

If d > 1 then i is periodic.
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Periodic example

01000
00100
P=|10000O0
0 00O0°1
00010

@ For this example {1,2,3} is a class of period 3 states and {4,5} a
class of period 2 states.

has a single communicating class of period 2.

@ A chain is aperiodic if all its states are aperiodic.
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Infinite State Spaces

Example: sequence of independent coin tosses; probability p of Heads
on a single toss.

X, is number of heads minus number of tails after n tosses.
Put Xo = 0.
X, is a Markov Chain.

State space is Z, the integers and

p j=i+1
Pi=q1-p j=i-1
0 otherwise
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Analysis of heads minus tails

Chain has one communicating class (for p # 0, 1).

All states have period 2.

According to the strong law of large numbers X, /n converges to

2p — 1.

If p # 1/2 this guarantees that for all large enough n X, # 0, that is,
the number of returns to 0 is not infinite.

@ So state 0 is transient

@ So all states must be transient.
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Fair coin case

e For p = 1/2 the situation is different.
@ It is a fact that

Pgo = P(# H = # T at time n)

For n even this is the probability of exactly n/2 heads in n tosses.

Local Central Limit Theorem (normal approximation to
P(—1/2 < X, < 1/2)) (or Stirling's approximation) shows

\/27mP(Binomia|(2m, 1/2) =m) — (2/77)1/2

SO;
n __
g Pgo = o0
n

That is: 0 is a recurrent state.
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Hitting Times

@ Start irreducible recurrent chain X, in state J.
@ Let T; be first n > 0 such that X, = j.
@ Define

mij = E(Tj|Xo = 1)

o First step analysis:
mj = 1. P(Xl :j|X0 = i)

+ ) (A +E(T;1X0 = k))Pu
ki
= Z Pix + Z Pikemyg
k k#j

=14 Pimy;
Py

Richard Lockhart (Simon Fraser University) Spring 2021
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Example

@ Example
3 2
5 5
P=
1 4
5 5

@ The equations are
2
my; =1+ M1

3
mpp =1+ gmu

4
my =1+ gm21

=1+-m
m22 5 M2
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Example Continued

@ The second and third equations give immediately

5
mi2 = 2
mp1 =5
@ Then plug in to the others to get
mi =3
- 3
2= 5
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Relation to Stationary Initial Distribution

@ Notice stationary initial distribution is
()
mi1’ moo
@ Consider fraction of time spent in state j:
1(Xo=Jj)+- -+ 1(Xn =)
n+1
@ Imagine chain starts in state i; take expected value.
SILPLLi=]) Y, P;
n+1 - on+1
@ If rows of P" converge to stationary « then fraction converges to «;;

i.e. limiting fraction of time in state j is «;.
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Heuristics

Heuristic: start chain in J.

Expect to return to i every mj; time units.

So are in state / about once every mj; time units; i.e. limiting fraction
of time in state i is 1/mj;.

@ Conclusion: for an irreducible recurrent finite state space Markov
chain

1
ap = —.
mj;
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Infinite State Spaces

Conclusion still right if 3 a stationary initial distribution.
Example: X, = Heads — Tails after n tosses of fair coin.
Equations are

1
=14+ —m_
mo 0 + 2m1,0 + 2m 1,0

1
myo =1+ 5Mm2,0
and many more.

You have to go through 1 to get to 0 from 2 so

moo=my1+ mpo

Symmetry (switching H and T):

mo=m-1p

The transition probabilities are homogeneous:
ma1 = Mmio

)
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Example continued

@ Conclusion:
moo =1+ mpo
1
=1+1+ 5M2,0
=2+ mio
@ Notice that there are no finite solutions!
@ Summary of the situation:
o Every state is recurrent.
@ All the expected hitting times mj; are infinite.
o All entries P} converge to 0.
@ Jargon: The states in this chain are null recurrent.
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One Example

Page 229, question 21 in old edition.
Runner goes from front or back door, prob 1/2 each.

Returns front or back, prob 1/2 each.

Has k pairs of shoes, wears pair if any at departure door, leaves at
return door.

No shoes? Barefoot.

@ Long run fraction of time barefoot?
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Solution

Let X,, be number of shoes at front door on day n.
Then X, is a Markov Chain.
Transition probabilities?

k pairs at front door on day n.

Xnt1 is k if goes out back door (prob is 1/2) or out front door and
back in front door (prob is 1/4).

Otherwise X,y1 is k — 1.
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Solution

0 < j < k pairs at front door on day n.

Xnt1 is j + 1 if out back, in front (prob is 1/4). Xp41is j — 1 if out
front, in back.

Otherwise X,41 is j.

0 pairs at front door on day n.

Xn+1 is 0 if out front door (prob 1/2) or out back door and in back
door (prob 1/4) otherwise Xp41 is 1.
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Solution

@ Transition matrix P:

r3 1

7 12 0 0
1 1 1
i 2 3z O

00 0 - 1

@ Doubly stochastic: row sums and column sums are 1.

3

r

@ So aj =1/(k + 1) for all i is stationary initial distribution.
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Solution

Solution to problem: 1 day in k 4+ 1 no shoes at front door.

Half of those go barefoot.

Also 1 day in k + 1 all shoes at front door; go barefoot half of these
days.

Overall go barefoot 1/(k + 1) of the time.
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Gambler's Ruin

Insurance company’s reserves fluctuate: sometimes up, sometimes
down.

Ruin is event they hit 0 (company goes bankrupt).

General problem.

For given model of fluctuation compute probability of ruin either
eventually or in next k time units.
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Gambler's Ruin, simple example

@ Simplest model: gambling on Red at Casino.

@ Bet $1 at a time.

@ Win $1 with probability p, lose $1 with probability 1 — p.
@ Start with k dollars.

@ Quit playing when down to $0 or up to N.

o Compute

Py = P(reach N before 0|Xy = k)
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Gambler's Ruin, simple example

e X, = fortune after n plays.
e Xy = k.

@ Transition matrix:

1 0O 0 0 0
1—p 0 p O 0
P=1 0 1-p 0 »p 0
0 0 0 0 1]
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Gambler's Ruin, simple example

o First step analysis:

Po=0

1

o = = E A
Richard Lockhart (Simon Fraser University)
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Gambler's Ruin, simple example
o Middle equation is
pPi+ (1 —p)Pi = (1 - p)Pi—1 + pPit1
or

Pis1— Pr=="—"(P; — Pi_1)

Richard Lockhart (Simon Fraser University) Spring 2021
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Gambler's Ruin, simple example

@ Sum from i =0toi=k —1 to get

k—1 1_pi
Pe=>_ — Py

i=0

or

b Lo10-p)p)
L (=P
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Gambler's Ruin, simple example

o For k = N we get

P () ) i
1-{(1-p)/p}

so that .
_1-{0-p)/p}
Pr = m
1-{(1-p)/p}
@ Notice that if p =1/2 our formulas for the sum of the geometric
series are wrong.

e But for p =1/2 we get
Py = kP,

SO

k
P, = <.
Y
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Mean time in transient states

— 1 1 -
5 3 00
1 3
7 2 00
P=
11 1 1
4 3 1 1
11 3 1
L4 4 3 g
@ States 3 and 4 are transient.
@ Let m;; be the expected total number of visits to state j for chain
started in i.
@ Fori=1lori=2andj=3or4:
mj = 0
@ Forj=1lorj=2
mjj = o0
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Mean time in transient states
e For i,j € {3,4} first step analysis:

1
m33 =1+ —-m33+ —my3

4 4
0+ + 1
msa = -m -m
3,4 g4 g Maa
0+ 3 + 1
ma3 = -m -m
4.3 8 3,3 3 4.3
1+ 3 + L
mas = -m -m
4.4 gMm34 T gmas
@ In matrix form
m3,3 m3’4 1 0
= -
ma3 Mgy 01
1 1
i 3 m33 m3a
% % Ma3 Myaq
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Mean time in transient states
@ Translate to matrix notation:
M=1+PrM

@ where | is the identity,

@ M is the matrix of means and

@ P the part of the transition matrix corresponding to transient states.
@ Solution is

M=(1-Pp)!
In our case
3 _1
4 1
I-Pr =
_3 7
8 8
so that
14 4
9 9
M=
2 4
3 3
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Data Analysis

@ Imagine we have data Xy, ..., Xy which we model as coming from a
Markov Chain.

@ Simplest case: K states.

o If we observe Xy = xq, ..., Xy = xy how should we estimate the
transition probabilities?

@ Two kinds of models: parametric and ‘empirical’?

@ Second kind: Pj; can be any probabilities subject to ZJ- P =1.

@ First kind: each Pj; is function of smaller number of parameters, 6.

@ The 6 or the P are parameters.
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Small likelihood example

e Two states {0,1}.

@ Suppose we observe the sequence 0,0,1,1,1,0,1,0, 1.
@ SoN=8and xp =0,xy=0,...,xg=1.

@ The likelihood is

L=P(Xo=0,X =0,X=1,X; =1,
Xs=1,X=0,Xs=1,% =0,X5 = 1)

@ Use Markov property to get

L = P(Xo = 0)PooPo1P11P11P10Po1PioPo1
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Small likelihood example, Il

o Collect terms:
L = P(Xo = 0)Poo P, P3, P}

Power on Pj; is number of times we observe a transition from i to j.

Let Nj; be number of transitions from i to j.

Likelihood is generally

L=P(Xo=x) ][] P}’
ij

Usually: we condition on Xy and use conditional likelihood
Nj;
Le=]1]P;"
ij

@ Conditional log-likelihood is

0. = Z Nijlog(Pj)
ij
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Maximum likelihood

Maximize /. over all P

@ Remember K constraints

> Pi=1
j

o Lagrange multipliers:
k
o Y|y
i=1 j
o Take derivative wrt Py to get
N
0,
Py
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Maximum likelihood

@ Set equal to 0 to find

@ Use constraint to get

e So
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Maximum likelihood, parametric models

e If each Pjj = Pjj() then the likelihood equations become

N; 9Py(6) _
— Py 00,
ij
forr=1,...,qif 0 =(61,...,0q).
@ In parametric models we usually parametrize the functions P;j; in such
a way that the constraints are automatic.

0
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Data example from Guttorp, 1995

Rock layers (strata), N = 606.
Xp is one of 6 types (numbered 0 to 5).
Markov chain model.

The Nj; are sufficient statistics.

Simple parametric model: § = (6o, ...,05) and

o 0 i=j
j = 0; . .
! Zk;iek I#J

Best approximation to independent.

Independence of layers not possible because P;; = 0 by definition.
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Data example from Guttorp, 1995

@ Needed derivatives

0 =
opse) _ |° . o
89!‘ Zk#i Gk - (Zk#i)Z 1 #Ja r —./
k#i

o Equations tedious to write out.
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The Data

Facies |0 1 2 3 4 5

0 0 2 0 2 2 0 6
1 5 0 23 31 17 8| 84
2 0 21 0 45 27 8101
3 1 54 44 0 66 25190
4 0 6 24 81 0 38| 149
5 0 5 8 31 32 0| 76

6 88 99 190 144 79 | 606
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