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Purposes of These Notes

Discuss the behaviour of mles in large samples.

Show log-likelihood is nearly quadratic.

Emphasize local rather than global behaviour.

Give sequence of examples.
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Large Sample Theory

Study approximate behaviour of θ̂ by studying the function U.

Notice U is sum of independent random variables.

Theorem

If Y1,Y2, . . . are iid with mean µ then

∑

Yi

n
→ µ

Law of large numbers. Strong law

P(lim

∑

Yi

n
= µ) = 1

and the weak law that

limP(|
∑

Yi

n
− µ| > ǫ) = 0

For iid Yi the stronger conclusion holds; for our heuristics ignore
differences between these notions.
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Score function at true value of θ

Now suppose θ0 is true value of θ.

Then
U(θ)/n → µ(θ)

where

µ(θ) =Eθ0

[

∂ log f

∂θ
(Xi , θ)

]

=

∫

∂ log f

∂θ
(x , θ)f (x , θ0)dx
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Normal example

Example: N(µ, 1) data:

U(µ)/n =
∑

(Xi − µ)/n = X̄ − µ

If the true mean is µ0 then X̄ → µ0 and

U(µ)/n → µ0 − µ

Consider µ < µ0: derivative of ℓ(µ) is likely to be positive so that ℓ
increases as µ increases.

For µ > µ0: derivative is probably negative and so ℓ tends to be
decreasing for µ > 0.

Hence: ℓ is likely to be maximized close to µ0.
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Same ideas in more general case

Study rv
log[f (Xi , θ)/f (Xi , θ0)].

You know the inequality

E (X )2 ≤ E (X 2)

(difference is Var(X ) ≥ 0.)

Generalization: Jensen’s inequality: for g a convex function (g ′′ ≥ 0
roughly) then

g(E (X )) ≤ E (g(X ))
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Inequality above has g(x) = x2.

Use g(x) = − log(x): convex because g ′′(x) = x−2 > 0. We get

− log(Eθ0 [f (Xi , θ)/f (Xi , θ0)] ≤ Eθ0 [− log{f (Xi , θ)/f (Xi , θ0)}]

But

Eθ0

[

f (Xi , θ)

f (Xi , θ0)

]

=

∫

f (x , θ)

f (x , θ0)
f (x , θ0)dx

=

∫

f (x , θ)dx

= 1

Reassemble the inequality and this calculation to get

Eθ0 [log{f (Xi , θ)/f (Xi , θ0)}] ≤ 0
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Fact: inequality is strict unless the θ and θ0 densities are actually the
same.

Let µ(θ) < 0 be this expected value.

Then for each θ we find

ℓ(θ)− ℓ(θ0)

n
=

∑

log[f (Xi , θ)/f (Xi , θ0)]

n
→ µ(θ)

This proves likelihood probably higher at θ0 than at any other single θ.

Idea can often be stretched to prove that the mle is consistent; need
uniform convergence in θ.
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Definition A sequence θ̂n of estimators of θ is consistent if θ̂n
converges weakly (or strongly) to θ.

Proto theorem: In regular problems the mle θ̂ is consistent.

More precise statements of possible conclusions.

Use notation
N(ǫ) = {θ : |θ − θ0| ≤ ǫ} .

Suppose: θ̂n is global maximizer of ℓ.

θ̂n,δ maximizes ℓ over N(δ) = {|θ − θ0| ≤ δ}.

Aǫ = {|θ̂n − θ0| ≤ ǫ}

Bδ,ǫ = {|θ̂n,δ − θ0| ≤ ǫ}

CL = {∃!θ ∈ N(L/n1/2) : U(θ) = 0,U ′(θ) < 0}
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Some precision

Theorem
1 Under (unspecified) conditions I P(Aǫ) → 1 for each ǫ > 0.

2 Under conditions II there is a δ > 0 such that for all ǫ > 0 we have
P(Bδ,ǫ) → 1.

3 Under conditions III for all δ > 0 there is an L so large and an n0 so
large that for all n ≥ n0, P(CL) > 1− δ.

4 Under conditions III there is a sequence Ln tending to ∞ so slowly
that P(CLn) → 1.

Point: conditions get weaker as conclusions get weaker. Many possible
conditions in literature. See book by Zacks for some precise conditions.

Richard Lockhart (Simon Fraser University) STAT 830 Likelihood Asymptotics STAT 830 — Fall 2013 10 / 34



Asymptotic Normality

Study shape of log likelihood near the true value of θ.

Assume θ̂ is a root of the likelihood equations close to θ0.

Taylor expansion (1 dimensional parameter θ):

U(θ̂) =0

=U(θ0) + U ′(θ0)(θ̂ − θ0)

+ U ′′(θ̃)(θ̂ − θ0)
2/2

for some θ̃ between θ0 and θ̂.

WARNING: This form of the remainder in Taylor’s theorem is not
valid for multivariate θ.
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Asymptotic normality continued

Derivatives of U are sums of n terms.

So each derivative should be proportional to n in size.

Second derivative is multiplied by the square of the small number
θ̂ − θ0 so should be negligible compared to the first derivative term.

Ignoring second derivative term get

−U ′(θ0)(θ̂ − θ0) ≈ U(θ0)

Now look at terms U and U ′.
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Asymptotic normality continued

Normal case:
U(θ0) =

∑

(Xi − µ0)

has a normal distribution with mean 0 and variance n (SD
√
n).

Derivative is
U ′(µ) = −n .

Next derivative U ′′ is 0.

Notice: both U and U ′ are sums of iid random variables.

Let

Ui =
∂ log f

∂θ
(Xi , θ0)

and

Vi = −∂
2 log f

∂θ2
(Xi , θ)
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In general, U(θ0) =
∑

Ui has mean 0 and approximately a normal
distribution.

Here is how we check that:

Eθ0(U(θ0)) = nEθ0(U1)

= n

∫

∂ log(f (x , θ0))

∂θ
f (x , θ0)dx

= n

∫

∂f (x , θ0)/∂θ

f (x , θ0)
f (x , θ0)dx

= n

∫

∂f

∂θ
(x , θ0)dx

= n
∂

∂θ

∫

f (x , θ)dx

∣

∣

∣

∣

θ=θ0

= n
∂

∂θ
1

= 0
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Notice: interchanged order of differentiation and integration at one
point.

This step is usually justified by applying the dominated convergence
theorem to the definition of the derivative.

Differentiate identity just proved:
∫

∂ log f

∂θ
(x , θ)f (x , θ)dx = 0

Take derivative of both sides wrt θ; pull derivative under integral sign:
∫

∂

∂θ

[

∂ log f

∂θ
(x , θ)f (x , θ)

]

dx = 0

Do the derivative and get

−
∫

∂2 log(f )

∂θ2
f (x , θ)dx =

∫

∂ log f

∂θ
(x , θ)

∂f

∂θ
(x , θ)dx

=

∫
[

∂ log f

∂θ
(x , θ)

]2

f (x , θ)dx
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Definition: The Fisher Information is

I (θ) = −Eθ(U
′(θ)) = nEθ0(V1)

We refer to I(θ0) = Eθ0(V1) as the information in 1 observation.

The idea is that I is a measure of how curved the log likelihood tends
to be at the true value of θ.

Big curvature means precise estimates.

Our identity above is

I (θ) = Varθ(U(θ)) = nI(θ)
Now we return to our Taylor expansion approximation

−U ′(θ0)(θ̂ − θ0) ≈ U(θ0)

and study the two appearances of U.

Have shown U =
∑

Ui is a sum of iid mean 0 random variables.

The central limit theorem thus proves that

n−1/2U(θ0) ⇒ N(0, σ2)

where σ2 = Var(Ui) = E (Vi ) = I(θ).
Richard Lockhart (Simon Fraser University) STAT 830 Likelihood Asymptotics STAT 830 — Fall 2013 16 / 34



Next observe that
−U ′(θ) =

∑

Vi

where again

Vi = −∂Ui

∂θ

The law of large numbers can be applied to show

−U ′(θ0)/n → Eθ0 [V1] = I(θ0)

Now manipulate our Taylor expansion as follows

n1/2(θ̂ − θ0) ≈
[∑

Vi

n

]

−1 ∑Ui√
n

Apply Slutsky’s Theorem to conclude that the right hand side of this
converges in distribution to N(0, σ2/I(θ)2) which simplifies, because
of the identities, to N{0, 1/I(θ)}.
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Summary

In regular families: assuming θ̂ = θ̂n is a consistent root of U(θ) = 0.

n−1/2U(θ0) ⇒ MVN(0,I) where

Iij = Eθ0 {V1,ij(θ0)}

and

Vk,ij(θ) = −∂
2 log f (Xk , θ)

∂θi∂θj

If Vk(θ) is the matrix [Vk,ij ] then

∑n
k=1 Vk(θ0)

n
→ I

If V(θ) =
∑

k Vk(θ) then

{V(θ0)/n}n1/2(θ̂ − θ0)− n−1/2U(θ0) → 0

in probability as n → ∞.
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Summary Continued
Also

{V(θ̂)/n}n1/2(θ̂ − θ0)− n−1/2U(θ0) → 0

in probability as n → ∞.
n1/2(θ̂ − θ0)− {I(θ0)}−1U(θ0) → 0 in probability as n → ∞.
n1/2(θ̂ − θ0) ⇒ MVN(0,I−1).
In general (not just iid cases)

√

I (θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

I (θ̂)(θ̂ − θ0) ⇒ N(0, 1)
√

V (θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

V (θ̂)(θ̂ − θ0) ⇒ N(0, 1)

where V = −ℓ′′ is the so-called observed information, the negative
second derivative of the log-likelihood.
Note: If the square roots are replaced by matrix square roots we can
let θ be vector valued and get MVN(0, I ) as the limit law.
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Why all these different forms?

Use limit laws to test hypotheses and compute confidence intervals.

Test Ho : θ = θ0 using one of the 4 quantities as test statistic.

Find confidence intervals using quantities as pivots.

E.g.: second and fourth limits lead to confidence intervals

θ̂ ± zα/2/

√

I (θ̂)

and

θ̂ ± zα/2/

√

V (θ̂)

respectively.

The other two are more complicated.
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For iid N(0, σ2) data we have

V (σ) =
3
∑

X 2
i

σ4
− n

σ2

and

I (σ) =
2n

σ2

The first line above then justifies confidence intervals for σ computed
by finding all those σ for which

∣

∣

∣

∣

∣

√
2n(σ̂ − σ)

σ

∣

∣

∣

∣

∣

≤ zα/2

Similar interval can be derived from 3rd expression, though this is
much more complicated.

Usual summary: mle is consistent and asymptotically normal with an
asymptotic variance which is the inverse of the Fisher information.
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Problems with maximum likelihood

1 Many parameters lead to poor approximations. MLEs can be far from
right answer.

2 See homework for Neyman Scott example where MLE is not
consistent.

3 Multiple roots of the likelihood equations: you must choose the right
root.

4 Start with different, consistent, estimator; apply iterative scheme like
Newton Raphson to likelihood equations to find MLE.

5 Not many steps of NR generally required if starting point is a
reasonable estimate.
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Finding (good) preliminary Point Estimates

Method of Moments

Basic strategy: set sample moments equal to population moments
and solve for the parameters.

Definition: The r th sample moment (about the origin) is

1

n

n
∑

i=1

X r
i

The r th population moment is

E(X r )

(Central moments are

1

n

n
∑

i=1

(Xi − X̄ )r

and
E [(X − µ)r ] .
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Method of moments continued

If we have p parameters we can estimate the parameters θ1, . . . , θp by
solving the system of p equations:

µ1 = X̄

µ′2 = X 2

and so on to
µ′p = X p

Remember that population moments µ′k are formulas involving the
parameters.
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Gamma Example

The Gamma(α, β) density is

f (x ;α, β) =
1

βΓ(α)

(

x

β

)α−1

exp

[

− x

β

]

1(x > 0)

and has
µ1 = αβ

and
µ′2 = α(α+ 1)β2.

This gives the equations

αβ = X

α(α + 1)β2 = X 2

or

αβ = X

αβ2 = X 2 − X
2
.
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Gamma continued

Divide the second equation by the first to find the method of
moments estimate of β is

β̃ = (X 2 − X
2
)/X .

Then from the first equation get

α̃ = X/β̃ = (X )2/(X 2 − X
2
) .

Method of moments equations much easier to solve than likelihood
equations which involve digamma ftn

ψ(α) =
d

dα
log(Γ(α))

Score function has components

Uβ =

∑

Xi

β2
− nα/β

and
Uα = −nψ(α) +

∑

log(Xi )− n log(β) .
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Gamma continued

You can solve for β in terms of α to leave you trying to find a root of
the equation

−nψ(α) +
∑

log(Xi)− n log(
∑

Xi/(nα)) = 0

To use Newton Raphson on this you begin with the preliminary
estimate α̂1 = α̃ and then compute iteratively

α̂k+1 =
log(X )− ψ(α̂k)− log(X )/α̂k

1/α − ψ′(α̂k)

until the sequence converges.

Computation of ψ′, the trigamma function, requires special software.

Web sites like netlib and statlib are good sources for this sort of thing.
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Estimating Equations

Same large sample ideas arise whenever estimates derived by solving
some equation.

Example: large sample theory for Generalized Linear Models.

Suppose Yi is number of cancer cases in some group of people
characterized by values xi of some covariates.

Think of xi as containing variables like age, or a dummy for sex or
average income or . . ..

Possible parametric regression model: Yi has a Poisson distribution
with mean µi where the mean µi depends somehow on xi .

Typically assume g(µi ) = β0 + xiβ; g is link function.

Often g(µ) = log(µ) and xiβ is a matrix product: xi row vector, β
column vector.
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GLM: “Linear regression model with Poisson errors”

Special case log(µi ) = βxi where xi is a scalar.

The log likelihood is simply (ignoring irrelevant factorials)

ℓ(β) =
∑

(Yi log(µi )− µi ).

The score function is, since log(µi ) = βxi ,

U(β) =
∑

(Yixi − xiµi) =
∑

xi (Yi − µi ).

Notice again that the score has mean 0 when you plug in the true
parameter value.

Key observation: no need to believe Yi has Poisson distribution to
make solving equation U = 0 sensible.

Suppose only that log(E (Yi )) = xiβ.

Then we have assumed that Eβ(U(β)) = 0.

Key condition to prove existence of consistent root of likelihood
equations; here needed, roughly, to prove equation U(β) = 0 has
consistent root β̂.
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Ignoring higher order terms in a Taylor expansion will give

V (β)(β̂ − β) ≈ U(β)

where V = −U ′.

In mle case had identities relating expectation of V to variance of U.

In general here we have

Var(U) =
∑

x2i Var(Yi) .

If Yi is Poisson with mean µi (and so Var(Yi ) = µi ) this is

Var(U) =
∑

x2i µi .

Moreover we have
Vi = x2i µi

and so
V (β) =

∑

x2i µi .
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The central limit theorem (the Lyapunov kind) will show that U(β)
has an approximate normal distribution with variance
σ2U =

∑

x2i Var(Yi ) and so

β̂ − β ≈ N(0, σ2U/(
∑

x2i µi)
2)

If Var(Yi) = µi , as it is for the Poisson case, the asymptotic variance
simplifies to 1/

∑

x2i µi .
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Other estimating equations

If wi is any set of deterministic weights (possibly depending on µi )
then could define

U(β) =
∑

wi (Yi − µi).

Can still conclude that U = 0 probably has a consistent root which
has an asymptotic normal distribution.

Idea widely used:

Example: Generalized Estimating Equations, Zeger and Liang.

Abbreviation: GEE.

Called by econometricians Generalized Method of Moments.

Definition: An estimating equation is unbiased if

Eθ(U(θ)) = 0
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Unbiased estimating equations

Theorem

Suppose θ̂ is a consistent root of the unbiased estimating equation

U(θ) = 0.

Let V = −U ′. Suppose there is a sequence of constants B(θ) such that

V (θ)/B(θ) → 1

and let
A(θ) = Varθ(U(θ)) and C (θ) = B(θ)A−1(θ)B(θ).

Then

√

C (θ0)(θ̂ − θ0) ⇒ N(0, 1)
√

C (θ̂)(θ̂ − θ0) ⇒ N(0, 1)
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Extras

Other ways to estimate A, B and C lead to same conclusions.

There are multivariate extensions using matrix square roots.
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