STAT 830
 Likelihood Asymptotics

Richard Lockhart

Simon Fraser University
STAT 830 - Fall 2013

Purposes of These Notes

- Discuss the behaviour of mles in large samples.
- Show log-likelihood is nearly quadratic.
- Emphasize local rather than global behaviour.
- Give sequence of examples.

Large Sample Theory

- Study approximate behaviour of $\hat{\theta}$ by studying the function U.
- Notice U is sum of independent random variables.

Theorem

If Y_{1}, Y_{2}, \ldots are iid with mean μ then

$$
\frac{\sum Y_{i}}{n} \rightarrow \mu
$$

- Law of large numbers. Strong law

$$
P\left(\lim \frac{\sum Y_{i}}{n}=\mu\right)=1
$$

and the weak law that

$$
\lim P\left(\left|\frac{\sum Y_{i}}{n}-\mu\right|>\epsilon\right)=0
$$

- For iid Y_{i} the stronger conclusion holds; for our heuristics ignore differences between these notions.

Score function at true value of θ

- Now suppose θ_{0} is true value of θ.
- Then

$$
U(\theta) / n \rightarrow \mu(\theta)
$$

where

$$
\begin{aligned}
\mu(\theta) & =E_{\theta_{0}}\left[\frac{\partial \log f}{\partial \theta}\left(X_{i}, \theta\right)\right] \\
& =\int \frac{\partial \log f}{\partial \theta}(x, \theta) f\left(x, \theta_{0}\right) d x
\end{aligned}
$$

Normal example

- Example: $N(\mu, 1)$ data:

$$
U(\mu) / n=\sum\left(X_{i}-\mu\right) / n=\bar{X}-\mu
$$

- If the true mean is μ_{0} then $\bar{X} \rightarrow \mu_{0}$ and

$$
U(\mu) / n \rightarrow \mu_{0}-\mu
$$

- Consider $\mu<\mu_{0}$: derivative of $\ell(\mu)$ is likely to be positive so that ℓ increases as μ increases.
- For $\mu>\mu_{0}$: derivative is probably negative and so ℓ tends to be decreasing for $\mu>0$.
- Hence: ℓ is likely to be maximized close to μ_{0}.

Same ideas in more general case

- Study rv

$$
\log \left[f\left(X_{i}, \theta\right) / f\left(X_{i}, \theta_{0}\right)\right]
$$

- You know the inequality

$$
E(X)^{2} \leq E\left(X^{2}\right)
$$

(difference is $\operatorname{Var}(X) \geq 0$.)

- Generalization: Jensen's inequality: for g a convex function $\left(g^{\prime \prime} \geq 0\right.$ roughly) then

$$
g(E(X)) \leq E(g(X))
$$

- Inequality above has $g(x)=x^{2}$.
- Use $g(x)=-\log (x)$: convex because $g^{\prime \prime}(x)=x^{-2}>0$. We get

$$
-\log \left(E_{\theta_{0}}\left[f\left(X_{i}, \theta\right) / f\left(X_{i}, \theta_{0}\right)\right] \leq E_{\theta_{0}}\left[-\log \left\{f\left(X_{i}, \theta\right) / f\left(X_{i}, \theta_{0}\right)\right\}\right]\right.
$$

- But

$$
\begin{aligned}
E_{\theta_{0}}\left[\frac{f\left(X_{i}, \theta\right)}{f\left(X_{i}, \theta_{0}\right)}\right] & =\int \frac{f(x, \theta)}{f\left(x, \theta_{0}\right)} f\left(x, \theta_{0}\right) d x \\
& =\int f(x, \theta) d x \\
& =1
\end{aligned}
$$

- Reassemble the inequality and this calculation to get

$$
E_{\theta_{0}}\left[\log \left\{f\left(X_{i}, \theta\right) / f\left(X_{i}, \theta_{0}\right)\right\}\right] \leq 0
$$

- Fact: inequality is strict unless the θ and θ_{0} densities are actually the same.
- Let $\mu(\theta)<0$ be this expected value.
- Then for each θ we find

$$
\frac{\ell(\theta)-\ell\left(\theta_{0}\right)}{n}=\frac{\sum \log \left[f\left(X_{i}, \theta\right) / f\left(X_{i}, \theta_{0}\right)\right]}{n} \rightarrow \mu(\theta)
$$

- This proves likelihood probably higher at θ_{0} than at any other single θ.
- Idea can often be stretched to prove that the mle is consistent; need uniform convergence in θ.
- Definition A sequence $\hat{\theta}_{n}$ of estimators of θ is consistent if $\hat{\theta}_{n}$ converges weakly (or strongly) to θ.
- Proto theorem: In regular problems the mle $\hat{\theta}$ is consistent.
- More precise statements of possible conclusions.
- Use notation

$$
N(\epsilon)=\left\{\theta:\left|\theta-\theta_{0}\right| \leq \epsilon\right\} .
$$

- Suppose: $\hat{\theta}_{n}$ is global maximizer of ℓ.
- $\hat{\theta}_{n, \delta}$ maximizes ℓ over $N(\delta)=\left\{\left|\theta-\theta_{0}\right| \leq \delta\right\}$.

$$
\begin{gathered}
A_{\epsilon}=\left\{\left|\hat{\theta}_{n}-\theta_{0}\right| \leq \epsilon\right\} \\
B_{\delta, \epsilon}=\left\{\left|\hat{\theta}_{n, \delta}-\theta_{0}\right| \leq \epsilon\right\} \\
C_{L}=\left\{\exists!\theta \in N\left(L / n^{1 / 2}\right): U(\theta)=0, U^{\prime}(\theta)<0\right\}
\end{gathered}
$$

Some precision

Theorem

(1) Under (unspecified) conditions I $P\left(A_{\epsilon}\right) \rightarrow 1$ for each $\epsilon>0$.
(2) Under conditions II there is a $\delta>0$ such that for all $\epsilon>0$ we have $P\left(B_{\delta, \epsilon}\right) \rightarrow 1$.
(3) Under conditions III for all $\delta>0$ there is an L so large and an n_{0} so large that for all $n \geq n_{0}, P\left(C_{L}\right)>1-\delta$.
(9) Under conditions III there is a sequence L_{n} tending to ∞ so slowly that $P\left(C_{L_{n}}\right) \rightarrow 1$.

Point: conditions get weaker as conclusions get weaker. Many possible conditions in literature. See book by Zacks for some precise conditions.

Asymptotic Normality

- Study shape of log likelihood near the true value of θ.
- Assume $\hat{\theta}$ is a root of the likelihood equations close to θ_{0}.
- Taylor expansion (1 dimensional parameter θ):

$$
\begin{aligned}
U(\hat{\theta})= & 0 \\
= & U\left(\theta_{0}\right)+U^{\prime}\left(\theta_{0}\right)\left(\hat{\theta}-\theta_{0}\right) \\
& +U^{\prime \prime}(\tilde{\theta})\left(\hat{\theta}-\theta_{0}\right)^{2} / 2
\end{aligned}
$$

for some $\tilde{\theta}$ between θ_{0} and $\hat{\theta}$.

- WARNING: This form of the remainder in Taylor's theorem is not valid for multivariate θ.

Asymptotic normality continued

- Derivatives of U are sums of n terms.
- So each derivative should be proportional to n in size.
- Second derivative is multiplied by the square of the small number $\hat{\theta}-\theta_{0}$ so should be negligible compared to the first derivative term.
- Ignoring second derivative term get

$$
-U^{\prime}\left(\theta_{0}\right)\left(\hat{\theta}-\theta_{0}\right) \approx U\left(\theta_{0}\right)
$$

- Now look at terms U and U^{\prime}.

Asymptotic normality continued

- Normal case:

$$
U\left(\theta_{0}\right)=\sum\left(X_{i}-\mu_{0}\right)
$$

has a normal distribution with mean 0 and variance n (SD \sqrt{n}).

- Derivative is

$$
U^{\prime}(\mu)=-n
$$

- Next derivative $U^{\prime \prime}$ is 0 .
- Notice: both U and U^{\prime} are sums of iid random variables.
- Let

$$
U_{i}=\frac{\partial \log f}{\partial \theta}\left(X_{i}, \theta_{0}\right)
$$

and

$$
V_{i}=-\frac{\partial^{2} \log f}{\partial \theta^{2}}\left(X_{i}, \theta\right)
$$

- In general, $U\left(\theta_{0}\right)=\sum U_{i}$ has mean 0 and approximately a normal distribution.
- Here is how we check that:

$$
\begin{aligned}
E_{\theta_{0}}\left(U\left(\theta_{0}\right)\right) & =n E_{\theta_{0}}\left(U_{1}\right) \\
& =n \int \frac{\partial \log \left(f\left(x, \theta_{0}\right)\right)}{\partial \theta} f\left(x, \theta_{0}\right) d x \\
& =n \int \frac{\partial f\left(x, \theta_{0}\right) / \partial \theta}{f\left(x, \theta_{0}\right)} f\left(x, \theta_{0}\right) d x \\
& =n \int \frac{\partial f}{\partial \theta}\left(x, \theta_{0}\right) d x \\
& =\left.n \frac{\partial}{\partial \theta} \int f(x, \theta) d x\right|_{\theta=\theta_{0}} \\
& =n \frac{\partial}{\partial \theta} 1 \\
& =0
\end{aligned}
$$

- Notice: interchanged order of differentiation and integration at one point.
- This step is usually justified by applying the dominated convergence theorem to the definition of the derivative.
- Differentiate identity just proved:

$$
\int \frac{\partial \log f}{\partial \theta}(x, \theta) f(x, \theta) d x=0
$$

- Take derivative of both sides wrt θ; pull derivative under integral sign:

$$
\int \frac{\partial}{\partial \theta}\left[\frac{\partial \log f}{\partial \theta}(x, \theta) f(x, \theta)\right] d x=0
$$

- Do the derivative and get

$$
\begin{aligned}
-\int \frac{\partial^{2} \log (f)}{\partial \theta^{2}} f(x, \theta) d x & =\int \frac{\partial \log f}{\partial \theta}(x, \theta) \frac{\partial f}{\partial \theta}(x, \theta) d x \\
& =\int\left[\frac{\partial \log f}{\partial \theta}(x, \theta)\right]^{2} f(x, \theta) d x
\end{aligned}
$$

- Definition: The Fisher Information is

$$
I(\theta)=-E_{\theta}\left(U^{\prime}(\theta)\right)=n E_{\theta_{0}}\left(V_{1}\right)
$$

- We refer to $\mathcal{I}\left(\theta_{0}\right)=E_{\theta_{0}}\left(V_{1}\right)$ as the information in 1 observation.
- The idea is that I is a measure of how curved the log likelihood tends to be at the true value of θ.
- Big curvature means precise estimates.
- Our identity above is

$$
I(\theta)=\operatorname{Var}_{\theta}(U(\theta))=n \mathcal{I}(\theta)
$$

- Now we return to our Taylor expansion approximation

$$
-U^{\prime}\left(\theta_{0}\right)\left(\hat{\theta}-\theta_{0}\right) \approx U\left(\theta_{0}\right)
$$

and study the two appearances of U.

- Have shown $U=\sum U_{i}$ is a sum of iid mean 0 random variables.
- The central limit theorem thus proves that

$$
n^{-1 / 2} U\left(\theta_{0}\right) \Rightarrow N\left(0, \sigma^{2}\right)
$$

where $\sigma^{2}=\operatorname{Var}\left(U_{i}\right)=E\left(V_{i}\right)=\mathcal{I}(\theta)$.

- Next observe that

$$
-U^{\prime}(\theta)=\sum V_{i}
$$

where again

$$
V_{i}=-\frac{\partial U_{i}}{\partial \theta}
$$

- The law of large numbers can be applied to show

$$
-U^{\prime}\left(\theta_{0}\right) / n \rightarrow E_{\theta_{0}}\left[V_{1}\right]=\mathcal{I}\left(\theta_{0}\right)
$$

- Now manipulate our Taylor expansion as follows

$$
n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \approx\left[\frac{\sum V_{i}}{n}\right]^{-1} \frac{\sum U_{i}}{\sqrt{n}}
$$

- Apply Slutsky's Theorem to conclude that the right hand side of this converges in distribution to $N\left(0, \sigma^{2} / \mathcal{I}(\theta)^{2}\right)$ which simplifies, because of the identities, to $N\{0,1 / \mathcal{I}(\theta)\}$.

Summary

- In regular families: assuming $\hat{\theta}=\hat{\theta}_{n}$ is a consistent root of $U(\theta)=0$.
- $n^{-1 / 2} U\left(\theta_{0}\right) \Rightarrow \operatorname{MVN}(0, \mathcal{I})$ where

$$
\mathcal{I}_{i j}=\mathrm{E}_{\theta_{0}}\left\{V_{1, i j}\left(\theta_{0}\right)\right\}
$$

and

$$
V_{k, i j}(\theta)=-\frac{\partial^{2} \log f\left(X_{k}, \theta\right)}{\partial \theta_{i} \partial \theta_{j}}
$$

- If $\mathbf{V}_{k}(\theta)$ is the matrix $\left[V_{k, i j}\right]$ then

$$
\frac{\sum_{k=1}^{n} \mathbf{V}_{k}\left(\theta_{0}\right)}{n} \rightarrow \mathcal{I}
$$

- If $\mathbf{V}(\theta)=\sum_{k} \mathbf{V}_{k}(\theta)$ then

$$
\left\{\mathbf{V}\left(\theta_{0}\right) / n\right\} n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right)-n^{-1 / 2} U\left(\theta_{0}\right) \rightarrow 0
$$

in probability as $n \rightarrow \infty$.

Summary Continued

- Also

$$
\{\mathbf{V}(\hat{\theta}) / n\} n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right)-n^{-1 / 2} U\left(\theta_{0}\right) \rightarrow 0
$$

in probability as $n \rightarrow \infty$.

- $n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right)-\left\{\mathcal{I}\left(\theta_{0}\right)\right\}^{-1} U\left(\theta_{0}\right) \rightarrow 0$ in probability as $n \rightarrow \infty$.
- $n^{1 / 2}\left(\hat{\theta}-\theta_{0}\right) \Rightarrow \operatorname{MVN}\left(0, \mathcal{I}^{-1}\right)$.
- In general (not just iid cases)

$$
\begin{aligned}
\sqrt{I\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right) & \Rightarrow N(0,1) \\
\sqrt{I(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) & \Rightarrow N(0,1) \\
\sqrt{V\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right) & \Rightarrow N(0,1) \\
\sqrt{V(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) & \Rightarrow N(0,1)
\end{aligned}
$$

where $V=-\ell^{\prime \prime}$ is the so-called observed information, the negative second derivative of the log-likelihood.

- Note: If the square roots are replaced by matrix square roots we c let θ be vector valued and get $M V N(0, I)$ as the limit law.
- Why all these different forms?
- Use limit laws to test hypotheses and compute confidence intervals.
- Test $H_{0}: \theta=\theta_{0}$ using one of the 4 quantities as test statistic.
- Find confidence intervals using quantities as pivots.
- E.g.: second and fourth limits lead to confidence intervals

$$
\hat{\theta} \pm z_{\alpha / 2} / \sqrt{I(\hat{\theta})}
$$

and

$$
\hat{\theta} \pm z_{\alpha / 2} / \sqrt{V(\hat{\theta})}
$$

respectively.

- The other two are more complicated.
- For iid $N\left(0, \sigma^{2}\right)$ data we have

$$
V(\sigma)=\frac{3 \sum X_{i}^{2}}{\sigma^{4}}-\frac{n}{\sigma^{2}}
$$

and

$$
I(\sigma)=\frac{2 n}{\sigma^{2}}
$$

- The first line above then justifies confidence intervals for σ computed by finding all those σ for which

$$
\left|\frac{\sqrt{2 n}(\hat{\sigma}-\sigma)}{\sigma}\right| \leq z_{\alpha / 2}
$$

- Similar interval can be derived from 3rd expression, though this is much more complicated.
- Usual summary: mle is consistent and asymptotically normal with asymptotic variance which is the inverse of the Fisher information.

Problems with maximum likelihood

(1) Many parameters lead to poor approximations. MLEs can be far from right answer.
(2) See homework for Neyman Scott example where MLE is not consistent.
(3) Multiple roots of the likelihood equations: you must choose the right root.
(1) Start with different, consistent, estimator; apply iterative scheme like Newton Raphson to likelihood equations to find MLE.
(3) Not many steps of NR generally required if starting point is a reasonable estimate.

Finding (good) preliminary Point Estimates

- Method of Moments
- Basic strategy: set sample moments equal to population moments and solve for the parameters.
- Definition: The $r^{\text {th }}$ sample moment (about the origin) is

$$
\frac{1}{n} \sum_{i=1}^{n} X_{i}^{r}
$$

- The $r^{\text {th }}$ population moment is

$$
\mathrm{E}\left(X^{r}\right)
$$

- (Central moments are

$$
\frac{1}{n} \sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{r}
$$

and

$$
\mathrm{E}\left[(X-\mu)^{r}\right]
$$

Method of moments continued

- If we have p parameters we can estimate the parameters $\theta_{1}, \ldots, \theta_{p}$ by solving the system of p equations:

$$
\begin{aligned}
& \mu_{1}=\bar{X} \\
& \mu_{2}^{\prime}=\overline{X^{2}}
\end{aligned}
$$

and so on to

$$
\mu_{p}^{\prime}=\overline{X^{p}}
$$

- Remember that population moments μ_{k}^{\prime} are formulas involving the parameters.

Gamma Example

- The Gamma (α, β) density is

$$
f(x ; \alpha, \beta)=\frac{1}{\beta \Gamma(\alpha)}\left(\frac{x}{\beta}\right)^{\alpha-1} \exp \left[-\frac{x}{\beta}\right] 1(x>0)
$$

and has

$$
\mu_{1}=\alpha \beta
$$

and

$$
\mu_{2}^{\prime}=\alpha(\alpha+1) \beta^{2}
$$

- This gives the equations

$$
\begin{aligned}
\alpha \beta & =\bar{X} \\
\alpha(\alpha+1) \beta^{2} & =\overline{X^{2}}
\end{aligned}
$$

or

$$
\begin{aligned}
\alpha \beta & =\bar{X} \\
\alpha \beta^{2} & =\overline{X^{2}}-\bar{X}^{2} .
\end{aligned}
$$

Gamma continued

- Divide the second equation by the first to find the method of moments estimate of β is

$$
\tilde{\beta}=\left(\overline{X^{2}}-\bar{X}^{2}\right) / \bar{X}
$$

- Then from the first equation get

$$
\tilde{\alpha}=\bar{X} / \tilde{\beta}=(\bar{X})^{2} /\left(\overline{X^{2}}-\bar{X}^{2}\right)
$$

- Method of moments equations much easier to solve than likelihood equations which involve digamma ftn

$$
\psi(\alpha)=\frac{d}{d \alpha} \log (\Gamma(\alpha))
$$

- Score function has components

$$
U_{\beta}=\frac{\sum X_{i}}{\beta^{2}}-n \alpha / \beta
$$

and

$$
U_{\alpha}=-n \psi(\alpha)+\sum \log \left(X_{i}\right)-n \log (\beta) .
$$

Gamma continued

- You can solve for β in terms of α to leave you trying to find a root of the equation

$$
-n \psi(\alpha)+\sum \log \left(X_{i}\right)-n \log \left(\sum X_{i} /(n \alpha)\right)=0
$$

- To use Newton Raphson on this you begin with the preliminary estimate $\hat{\alpha}_{1}=\tilde{\alpha}$ and then compute iteratively

$$
\hat{\alpha}_{k+1}=\frac{\overline{\log (X)}-\psi\left(\hat{\alpha}_{k}\right)-\log (\bar{X}) / \hat{\alpha}_{k}}{1 / \alpha-\psi^{\prime}\left(\hat{\alpha}_{k}\right)}
$$

until the sequence converges.

- Computation of ψ^{\prime}, the trigamma function, requires special software.
- Web sites like netlib and statlib are good sources for this sort of thing:

Estimating Equations

- Same large sample ideas arise whenever estimates derived by solving some equation.
- Example: large sample theory for Generalized Linear Models.
- Suppose Y_{i} is number of cancer cases in some group of people characterized by values x_{i} of some covariates.
- Think of x_{i} as containing variables like age, or a dummy for sex or average income or
- Possible parametric regression model: Y_{i} has a Poisson distribution with mean μ_{i} where the mean μ_{i} depends somehow on x_{i}.
- Typically assume $g\left(\mu_{i}\right)=\beta_{0}+x_{i} \beta$; g is link function.
- Often $g(\mu)=\log (\mu)$ and $x_{i} \beta$ is a matrix product: x_{i} row vector, β column vector.

GLM: "Linear regression model with Poisson errors"

- Special case $\log \left(\mu_{i}\right)=\beta x_{i}$ where x_{i} is a scalar.
- The log likelihood is simply (ignoring irrelevant factorials)

$$
\ell(\beta)=\sum\left(Y_{i} \log \left(\mu_{i}\right)-\mu_{i}\right)
$$

- The score function is, since $\log \left(\mu_{i}\right)=\beta x_{i}$,

$$
U(\beta)=\sum\left(Y_{i} x_{i}-x_{i} \mu_{i}\right)=\sum x_{i}\left(Y_{i}-\mu_{i}\right)
$$

- Notice again that the score has mean 0 when you plug in the true parameter value.
- Key observation: no need to believe Y_{i} has Poisson distribution to make solving equation $U=0$ sensible.
- Suppose only that $\log \left(E\left(Y_{i}\right)\right)=x_{i} \beta$.
- Then we have assumed that $E_{\beta}(U(\beta))=0$.
- Key condition to prove existence of consistent root of likelihood equations; here needed, roughly, to prove equation $U(\beta)=0$ has consistent root $\hat{\beta}$.
- Ignoring higher order terms in a Taylor expansion will give

$$
V(\beta)(\hat{\beta}-\beta) \approx U(\beta)
$$

where $V=-U^{\prime}$.

- In mle case had identities relating expectation of V to variance of U.
- In general here we have

$$
\operatorname{Var}(U)=\sum x_{i}^{2} \operatorname{Var}\left(Y_{i}\right)
$$

- If Y_{i} is Poisson with mean μ_{i} (and so $\left.\operatorname{Var}\left(Y_{i}\right)=\mu_{i}\right)$ this is

$$
\operatorname{Var}(U)=\sum x_{i}^{2} \mu_{i}
$$

- Moreover we have

$$
V_{i}=x_{i}^{2} \mu_{i}
$$

and so

$$
V(\beta)=\sum x_{i}^{2} \mu_{i}
$$

- The central limit theorem (the Lyapunov kind) will show that $U(\beta)$ has an approximate normal distribution with variance $\sigma_{U}^{2}=\sum x_{i}^{2} \operatorname{Var}\left(Y_{i}\right)$ and so

$$
\hat{\beta}-\beta \approx N\left(0, \sigma_{U}^{2} /\left(\sum x_{i}^{2} \mu_{i}\right)^{2}\right)
$$

- If $\operatorname{Var}\left(Y_{i}\right)=\mu_{i}$, as it is for the Poisson case, the asymptotic variance simplifies to $1 / \sum x_{i}^{2} \mu_{i}$.

Other estimating equations

- If w_{i} is any set of deterministic weights (possibly depending on μ_{i}) then could define

$$
U(\beta)=\sum w_{i}\left(Y_{i}-\mu_{i}\right)
$$

- Can still conclude that $U=0$ probably has a consistent root which has an asymptotic normal distribution.
- Idea widely used:
- Example: Generalized Estimating Equations, Zeger and Liang.
- Abbreviation: GEE.
- Called by econometricians Generalized Method of Moments.

Definition: An estimating equation is unbiased if

$$
E_{\theta}(U(\theta))=0
$$

Unbiased estimating equations

Theorem
Suppose $\hat{\theta}$ is a consistent root of the unbiased estimating equation

$$
U(\theta)=0
$$

Let $V=-U^{\prime}$. Suppose there is a sequence of constants $B(\theta)$ such that

$$
V(\theta) / B(\theta) \rightarrow 1
$$

and let

$$
A(\theta)=\operatorname{Var}_{\theta}(U(\theta)) \text { and } C(\theta)=B(\theta) A^{-1}(\theta) B(\theta)
$$

Then

$$
\begin{gathered}
\sqrt{C\left(\theta_{0}\right)}\left(\hat{\theta}-\theta_{0}\right) \Rightarrow N(0,1) \\
\sqrt{C(\hat{\theta})}\left(\hat{\theta}-\theta_{0}\right) \Rightarrow N(0,1)
\end{gathered}
$$

Extras

- Other ways to estimate A, B and C lead to same conclusions.
- There are multivariate extensions using matrix square roots.

