Lost Moments: The Effect of Pre-processing on Environmental Data

Luke Bornn

Department of Statistics, Simon Fraser University

w/ Hannah Director (Harvard -> LANL -> UW) May 13, 2015

Outline

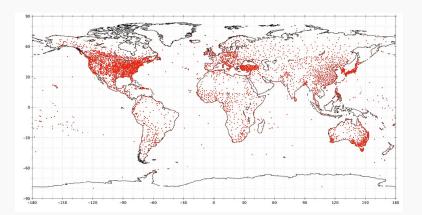
Getting Back to the Data

Understanding the Effects of Gridding

Adjusting for Gridding

Extremes

Conclusion

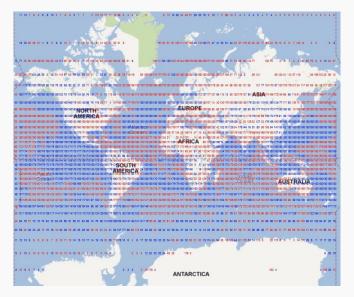

► Historical climate data is fraught with changing measurement methods and inconsistent spatial and temporal coverage

- ► Historical climate data is fraught with changing measurement methods and inconsistent spatial and temporal coverage
- ► To compensate, measurements within a geographic area are often averaged to create an aggregated, gridded data set

- ▶ Historical climate data is fraught with changing measurement methods and inconsistent spatial and temporal coverage
- ► To compensate, measurements within a geographic area are often averaged to create an aggregated, gridded data set
- ▶ While aggregation generally preserves the mean, the distribution of the raw measurements is drastically changed

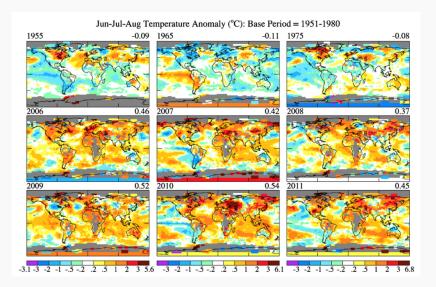
- ▶ Historical climate data is fraught with changing measurement methods and inconsistent spatial and temporal coverage
- ► To compensate, measurements within a geographic area are often averaged to create an aggregated, gridded data set
- ▶ While aggregation generally preserves the mean, the distribution of the raw measurements is drastically changed
- ► Failure to distinguish between raw/gridded data can significantly affect the scientific validity and real world impact of an analysis

Raw Climate Data

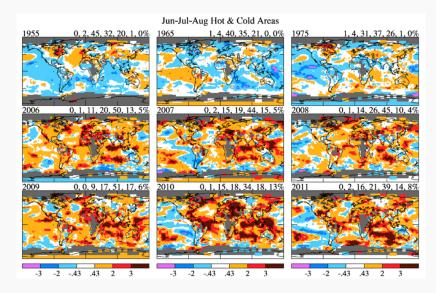


Source: http://employee.heartland.edu/rmuench/tempdata.htm

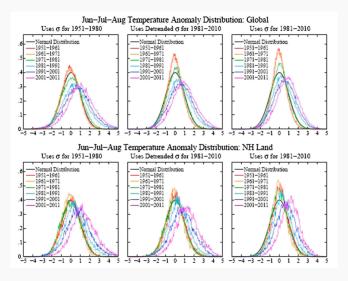
Luke Bornn (SFU) Lost Moments


Gridded Climate Data

Getting Back to the Data



Source: https://sunshinehours.files.wordpress.com/2012/09/hadcrut3_gridded_180.jpg


An Example

Hansen, Sato and Ruedy (PNAS 2012), Figure 1

Hansen, Sato and Ruedy (PNAS 2012), Figure 3

Hansen, Sato and Ruedy (PNAS 2012), Figure 4

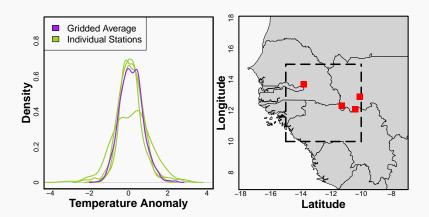
- ▶ As a follow-up comment, Rhines and Huybers (PNAS 2012) argue that it is critical to consider
 - normalizations
 - trends
 - reduction in surface station density

- ▶ As a follow-up comment, Rhines and Huybers (PNAS 2012) argue that it is critical to consider
 - normalizations
 - trends
 - reduction in surface station density
- ▶ Between 1951-1980 and 1981-2010, there is a 35% decrease in number of stations reporting monthly averages

- ▶ As a follow-up comment, Rhines and Huybers (PNAS 2012) argue that it is critical to consider
 - normalizations
 - trends
 - reduction in surface station density
- ▶ Between 1951-1980 and 1981-2010, there is a 35% decrease in number of stations reporting monthly averages
- ▶ Rhines and Huybers (PNAS 2012) assume a 1 °C variance within grid box, homogeneity, normality, and independence between stations
- ► Their conclusion is that after these adjustments, there is no obvious increase in variance

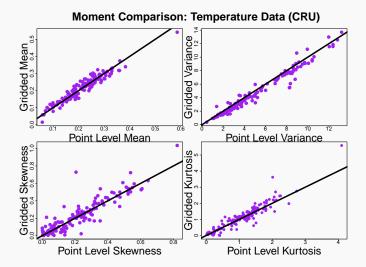
► Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):

- ► Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990


- Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990
 - ► Each station's time series is reported along with a mean for each $5^{\circ} \times 5^{\circ}$ grid box.

- Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990
 - ► Each station's time series is reported along with a mean for each $5^{\circ} \times 5^{\circ}$ grid box.
- Global Historical Climate Network (GHCN) Monthly Total Precipitation Data (1950-2010):

- Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990
 - ► Each station's time series is reported along with a mean for each $5^{\circ} \times 5^{\circ}$ grid box.
- Global Historical Climate Network (GHCN) Monthly Total Precipitation Data (1950-2010):
 - ► Total monthly precipitation measured at stations in North America and the former Soviet Union


- Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990
 - ▶ Each station's time series is reported along with a mean for each $5^{\circ} \times 5^{\circ}$ grid box.
- ► Global Historical Climate Network (GHCN) Monthly Total Precipitation Data (1950-2010):
 - Total monthly precipitation measured at stations in North America and the former Soviet Union
 - \blacktriangleright We averaged station data to form a $5^{\circ} \times 5^{\circ}$ spatially gridded product

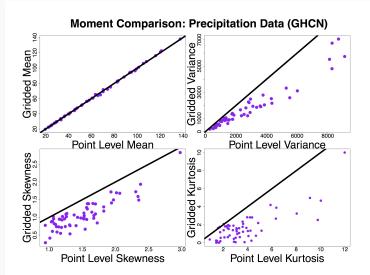

- Climate Research Unit (CRU) Monthly Temperature Anomaly Data (1950-2010):
 - ► Temperatures are expressed as monthly anomalies from a base period of 1961-1990
 - ► Each station's time series is reported along with a mean for each $5^{\circ} \times 5^{\circ}$ grid box.
- Global Historical Climate Network (GHCN) Monthly Total Precipitation Data (1950-2010):
 - ► Total monthly precipitation measured at stations in North America and the former Soviet Union
 - We averaged station data to form a $5^{\circ} \times 5^{\circ}$ spatially gridded product
- ▶ Stations missing greater than 10% of measurements were omitted to ensure a relatively constant sample size

Table : Mathematical definitions of the first four moments where X_i represents a single observation and \overline{X} represents the mean of a group of observations and the relationships between these individual and averaged values.

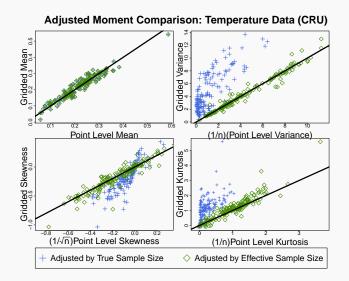
Moment	Def'n	Cumulant	Relationship
Mean (μ)	$\mathbb{E}(X)$	κ_1	$\mathbb{E}(\overline{X}) = \mathbb{E}(X_i)$
Variance (σ^2)	$\mathbb{E}[(X-\mu)^2]$	κ_2	$\mathbb{V}ar(\overline{X}) = \frac{1}{n}\mathbb{V}ar(X_i)$
Skewness (γ_1)	$\mathbb{E}[(\frac{X-\mu}{\sigma})^3]$	$\frac{\kappa_3}{\kappa_2^{3/2}}$	$\mathbb{S}kew(\overline{X}) = \frac{1}{\sqrt{n}}\mathbb{S}kew(X_i)$
Kurtosis (γ_2)	$\frac{\mathbb{E}[(X-\mu)^4]}{(\mathbb{E}[(X-\mu)^2])^2}$	$\frac{\kappa_4}{\kappa_2^2}$	$\mathbb{K}urt(\overline{X}) = \frac{1}{n}\mathbb{K}urt(X_i)$

Luke Bornn (SFU) Lost Moments

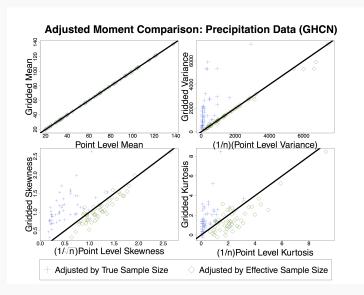
► Stations within a grid box with *n* samples contain less information then *n* truly independent stations because of intra-site correlation

- Stations within a grid box with n samples contain less information then *n* truly independent stations because of intra-site correlation
- Effective Sample Size (ESS) corrects for this:

$$n_{eff} = \frac{n^2}{\sum_{i=1}^{n} \sum_{j=1}^{n} Cor(x_i, x_j)}$$
(1)


Stations within a grid box with n samples contain less information then *n* truly independent stations because of intra-site correlation

Effective Sample Size (ESS) corrects for this:


$$n_{eff} = \frac{n^2}{\sum_{i=1}^{n} \sum_{j=1}^{n} Cor(x_i, x_j)}$$
(1)

 Correlation can be estimated from historical data and previous research on what affects intra-site correlation

Thinking about Correlation 2

Thinking about Correlation 2

Luke Bornn (SFU) Lost Moments

Extremes: A Simple Example

Extremes of the grid box average are not of practical interest, but estimates of extremes from individual station data are extremely noisy...

Extremes: A Simple Example

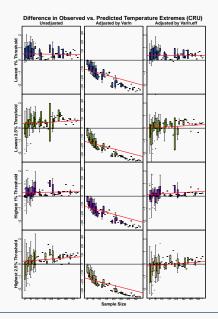
- Extremes of the grid box average are not of practical interest, but estimates of extremes from individual station data are extremely noisy...
- ▶ So, we adjust the empirical moments of the gridded data to point-level using factors of the effective sample size

Luke Bornn (SFU) Lost Moments

Extremes of the grid box average are not of practical interest, but estimates of extremes from individual station data are extremely

- No, we adjust the empirical moments of the gridded data to point-level using factors of the effective sample size
- ► These adjusted moments can be used to estimate the point-level distributional parameters and the corresponding distributions can be used to estimate what percent of the data is above or below
 - extreme thresholds underlying data

Extremes: A Conservative Adjustment

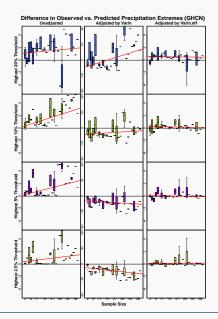

CRU Temperature Data (Observed - Predicted)

Variance	Thresholds:			
Adjustment	Lowest	Lowest	Highest	Highest
	2.5%	5%	2.5%	5%
Unadjusted	0.60	0.33	0.27	0.16
Adj. by var/n	-13.42	-17.09	-14.63	-17.62
Adj. by var/n.eff	0.47	-0.01	0.10	-0.21

Lost Moments

Extremes

Extremes: A Conservative Adjustment


Extremes: A Conservative Adjustment

GCHN Precipitation Data (Observed - Predicted)

Variance	Thresholds:			
Adjustment	Highest	Highest	Highest	Highest
	20%	10%	5%	2.5%
Unadjusted	1.48	2.00	1.62	1.11
Adj. by var/n	3.07	-1.96	-3.83	-4.22
Adj. by var/n.eff	0.38	0.16	0.17	0.21

Luke Bornn (SFU) Lost Moments

Extremes: A Conservative Adjustment

Conclusion

the Data

Conclusion

 Averaging fundamentally changes a measurement's distribution which matters for answering pertinent questions in climate science

Luke Bornn (SFU) Lost Moments

Conclusion

- ► Averaging fundamentally changes a measurement's distribution which matters for answering pertinent questions in climate science
- Reporting information on original sample sizes and intra-site correlation would make gridded products more interpretable and useful

Conclusion

Conclusion

- Averaging fundamentally changes a measurement's distribution which matters for answering pertinent questions in climate science
- Reporting information on original sample sizes and intra-site correlation would make gridded products more interpretable and useful
- Similar issues likely exist for gridded climate model outputs and addressing them may be an area of future work

Luke Bornn (SFU) Lost Moments