Inference after model selection in high dimensional linear regression Lecture 2

Richard Lockhart, Simon Fraser University

University of Cambridge: Mini-course, Lent term, 2017

January 23, 2017

Outline

- Finish (quickly) illustrative example.
- Review LASSO / LARS path.
- Discuss testing hypotheses generated by data analysis often after model selection.
- ▶ Large sample approach version of extreme value theory.

Basic Lasso Tactic

- ▶ Balance Error SS against size of parameter vector β .
- Minimize

$$J(\beta) \equiv \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|^2 + \text{Penalty}(\beta).$$

Class includes Ridge regression, SCAD, and others. LASSO:

$$J_{\lambda}(\beta) = \frac{1}{2} \|\mathbf{Y} - \mathbf{X}\beta\|^{2} + \lambda \sum_{i} |\beta_{i}|$$
$$= \frac{1}{2} \mathbf{Y}^{T} \mathbf{Y} + \frac{1}{2} \beta^{T} \mathbf{X}^{T} \mathbf{X}\beta - \mathbf{U}^{T} \beta + \lambda \sum_{i} |\beta_{i}|$$

▶ Minimum depends only on **Y** only via $\mathbf{U} = \mathbf{X}^T \mathbf{Y}$.

Scaling, intercepts

- ▶ Don't shrink the intercept: Y and columns of X centred.
- You can't (shouldn't) add apples to oranges.
- ▶ The penalty does unless we standardize somehow.
- \triangleright Scale **X** so that **X**^T**X** is a correlation matrix.
- ▶ Notice β effectively grows with n, like \sqrt{n} .

Choosing λ

Lots of ways to do that; not our focus.

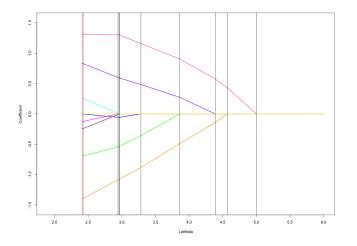
Choosing λ

- Lots of ways to do that; not our focus.
- ▶ Start λ out very large.
- ▶ For all large λ all components of $\hat{\beta}(\lambda) = 0$.
- ▶ Shrink λ gradually till one variable enters model.
- ▶ At critical value (knot) of λ , say λ_1 , variable J_1 enters model.
- ▶ For λ slightly smaller than λ_1 only $\hat{\beta}_{J_1}$ is non-zero.

Choosing λ

- Lots of ways to do that; not our focus.
- ▶ Start λ out very large.
- ▶ For all large λ all components of $\hat{\beta}(\lambda) = 0$.
- ▶ Shrink λ gradually till one variable enters model.
- ▶ At critical value (knot) of λ , say λ_1 , variable J_1 enters model.
- ▶ For λ slightly smaller than λ_1 only $\hat{\beta}_{J_1}$ is non-zero.
- Do we need this variable in our model?

LASSO path plot



- We test the hypothesis $\beta = 0$.
- ▶ Related to the *random* hypothesis $\beta_{J_1} = 0$?
- Bigger difference when we get to next variable.
- As we shrink λ new variables enter at knots

$$\lambda_1 > \lambda_2 > \cdots$$
.

- ▶ *i*th variable entering is J_i with sign $S_i \in \{\pm 1\}$.
- As λ goes from λ_i to λ_{i+1} , $\hat{\beta}_{J_i}(\lambda)$ grows (linearly).
- Measure improvement of fit by change in covariance between predictor $(\mathbf{X}\hat{\beta}(\lambda))$ and \mathbf{Y} between λ_i and λ_{i+1} scaled by estimate of the error variance σ^2 .

Why we need to worry

- ▶ Regress log riboflavin production on variables 1278, 4003, 1516, 2564, 1588; first 5 variables in.
- Overall *F* test: $P = 2.2 \times 10^{-16}$.
- ▶ Individual *t*-test *P*-values: 4×10^{-5} , 5×10^{-6} , 4×10^{-3} , 1×10^{-4} and 0.34.
- But, of course, this is cherry picking.
- Our test statistic is

$$T_1 = \frac{\lambda_1(\lambda_1 - \lambda_2)}{\hat{\sigma}^2} = 24 \text{ or } 2.55.$$

▶ Our *P*-value is either 3.7×10^{-11} or 0.078.

Why we need to worry

- ► Regress log riboflavin production on variables 1278, 4003, 1516, 2564, 1588; first 5 variables in.
- Overall *F* test: $P = 2.2 \times 10^{-16}$.
- ▶ Individual *t*-test *P*-values: 4×10^{-5} , 5×10^{-6} , 4×10^{-3} , 1×10^{-4} and 0.34.
- But, of course, this is cherry picking.
- Our test statistic is

$$T_1 = \frac{\lambda_1(\lambda_1 - \lambda_2)}{\hat{\sigma}^2} = 24 \text{ or } 2.55.$$

- ▶ Our *P*-value is either 3.7×10^{-11} or 0.078.
- **E**stimation of σ is crucial and hard, I think.

More specifically: KKT conditions

Fix some $\lambda > 0$. The estimate $\hat{\beta}_{\lambda}$ is the vector β^* if:

$$eta_{j}^{*}
eq 0 \Rightarrow \left. \frac{\partial J(eta)}{\partial eta_{i}} \right|_{eta = eta^{*}} = 0 \text{ and}$$
 $eta_{j}^{*} = 0 \Rightarrow \left. \frac{\partial J(eta -)}{\partial eta_{i}} \right|_{eta = eta^{*}} \leq 0 \text{ and}$
 $eta_{j}^{*} = 0 \Rightarrow \left. \frac{\partial J(eta +)}{\partial eta_{i}} \right|_{eta = eta^{*}} \geq 0.$

Here $\beta \pm$ indicate a right (+) / left (-) partial derivatives.

The two derivatives differ, when $\beta_i^* = 0$ by 2λ .

What are these conditions

- ▶ At β^* these derivatives take one of three forms depending on the value of β_i^* .
- ▶ For $\beta_i^* > 0$ the derivative is

$$(X^T X \beta^*)_j - U_j + \lambda = X_j^T X \beta^* - U_j + \lambda$$

▶ For $\beta_i^* < 0$ the derivative is

$$X_j^T X \beta^* - U_j - \lambda$$

• At $\beta_i^* = 0$ above are the right and left derivatives.

More

- ▶ Compactly. Let S_i be the sign of β_i^* and $A = \{i : \beta_i^* \neq 0\}$
- Then

$$X\beta^* = X_A \beta_A^*$$

and

$$X_A^T X_A \beta_A^* = X_A^T Y - S_A \lambda.$$

▶ Simplest case: $\beta^* = 0$ means that for all j we have

$$-U_j - \lambda \leq 0$$
 and $-U_j + \lambda \geq 0$

or

$$|U_i| \leq \lambda$$
.

The first and second knots

lacktriangle Except in pathological situations there is a unique $j=J_1$ such that

$$|U_{J_1}|=\max_{j}\{|U_j|\}.$$

▶ For that to fail we would have to have a pair $i \neq j$ with

$$|X_i^T Y| - |X_j^T Y| = \left| (X_i \pm X_j)^T Y \right| = 0$$

which won't happen for absolutely continuous errors unless there is a choice of signs making

$$X_i \pm X_j = 0$$

▶ We assume this silly design out of existence; general position.

The first and second knots: more

- $\blacktriangleright \text{ Set } \lambda_1 = \max_i \{|U_i|\}.$
- ▶ Use J_1 for the maximizing index and S_1 for the sign of U_{J_1} .
- For $\lambda > \lambda_1$ we have $\hat{\beta}_{\lambda} = 0$.
- ▶ For $\lambda = \lambda_1 \epsilon$, with $\epsilon > 0$ small enough:

$$\hat{\beta}_{\lambda,j} = 0$$
 for $j \neq J_1$

$$\hat{\beta}_{\lambda,J_1} = U_{J_1} - S_1\lambda$$

$$= U_{J_1} - S_1(S_1U_{J_1} - \epsilon)$$

$$= S_1\epsilon.$$

Proof

- ▶ Check to see that this β^* satisfies the conditions.
- lacktriangle We are saying $A=\{J_1\}$ and solving the equation

$$X_A^T X_A \beta_A - U_{J_1} + S_1 \lambda = 0$$

remembering that $\mathbf{X}^T\mathbf{X}$ is the identity.

▶ For $j \neq J_1$ the left and right derivatives are

$$X_j^T X_A \beta_A - U_j \pm \lambda$$

More Proof

- Write ρ_{jk} for the jk^{th} entry in X^TX .
- ► Note

$$Cov(U_j, U_K) = Corr(U_j, U_k) = \rho_{jk}.$$

▶ Left and right derivatives are on opposite sides of 0 if

$$\rho_{j}J_{1}(U_{J_{1}}-\lambda S_{1})-U_{j}-\lambda<0<\rho_{j}J_{1}(U_{J_{1}}-\lambda S_{1})-U_{j}+\lambda$$

which becomes

$$-\lambda(1+\rho_{jJ_1}S_1) \leq U_j - \rho_{jJ_1}U_{J_1} \leq \lambda(1-\rho_{jJ_1}S_1)$$

or

$$\max\left\{\frac{U_{j}-\rho_{jJ_{1}}U_{J_{1}}}{1-\rho_{jJ_{1}}S_{1}},\frac{-(U_{j}-\rho_{jJ_{1}}U_{J_{1}})}{1+\rho_{jJ_{1}}S_{1}}\right\}<\lambda$$

Conclusion of Proof

▶ So if

$$\lambda_2 \equiv \max_{j \neq J_1, s \in \{-1, 1\}} \left\{ \frac{s(U_j - \rho_j J_1 U_{J_1})}{1 - s \rho_j J_1 S_1} \right\} < \lambda < \lambda_1$$

then

$$\hat{eta}_{\lambda j} = egin{cases} 0 & j
eq J_1 \ U_{J_1} - \lambda S_1 & j = J_1. \end{cases}$$

- ▶ Lockhart et al. [2014] compared the fit at λ_1 and λ_2 to get a test of the global null $\beta = 0$.
- At $\lambda = \lambda_1$ the fitted predictor is 0 and the covariance with Y is 0
- At $\lambda = \lambda_2$ the fitted predictor is $X\hat{\beta}_{\lambda_2}$ the "covariance" is

$$Y^T X \hat{\beta}_{\lambda_2}$$

Simplification

$$Y^{T}X\hat{\beta}_{\lambda_{2}} = U_{J_{1}}\hat{\beta}_{\lambda_{2}J_{1}}$$

$$= U_{J_{1}}(U_{J_{1}} - \lambda_{2}S_{1})$$

$$= U_{J_{1}}^{2} - \lambda_{2}|U_{J_{1}}|$$

$$= \lambda_{1}^{2} - \lambda_{1}\lambda_{2}$$

$$= \lambda_{1}(\lambda_{1} - \lambda_{2})$$

This has to be scaled for the scale of Y so our test statistic is

$$T = \frac{\lambda_1(\lambda_1 - \lambda_2)}{\sigma^2}$$

I will discuss estimation of σ later.

Toy example: global null hypothesis true

- Approximate theory usually depends on limits.
- ▶ For *p* fixed that limit is normally $n \to \infty$.
- ▶ But our focus is on big *p*.
- ▶ Orthogonal design first. $\mathbf{X}^T \mathbf{X} = \mathbf{I}$.
- Fix $\sigma = 1$ known.
- ▶ Now $U_1, ..., U_p$ iid N(0,1).
- ▶ Our statistic for i = 1 boils down to

$$|U_{[1]}|(|U_{[1]}|-|U_{[2]}|);$$

subscript denotes descending order of absolute values.

So this is an extreme value problem.

What does extreme value theory tell us?

▶ For a_p and b_p both more or less $\sqrt{2 \log p}$ we have

$$a_p(|U_{[1]}|-b_p), a_p(|U_{[2]}|-b_p), \ldots, a_p(|U_{[K]}|-b_p)$$

has joint extreme value limit distribution; Weissman [1978].

• Weak limit W_1, \ldots, W_k has joint density

$$\exp\left(-w_1 - \cdots - w_k - e^{-w_k}\right) \mathbb{1}(w_k < \cdots < w_1)$$

In fact we may take

$$a_p = \sqrt{2 \log p}$$

and

$$b_p = a_p - \frac{\log\log p + \log \pi}{2a_p}.$$

Consequences

Implication:

$$a_p(|U_{[1]}|-|U_{[2]}|)\Longrightarrow \mathsf{Exponential}(1).$$

• And $|U_{[1]}|/a_p \rightarrow 1$ so

$$|U_{[1]}|(|U_{[1]}|-|U_{[2]}|)\Longrightarrow \mathsf{Exponential}(1).$$

Indeed under the global null with Gaussian errors

$$U_{[1]}|(|U_{[1]}|-|U_{[2]}|),\ldots,U_{[k]}(U_{[k]}-U_{[k+1]})$$

converges in law to

$$E_1, E_2/2, \ldots, E_k/k$$

where the E_i are iid standard exponential.

- ▶ Notice $U_{[1]}$ is NOT independent of $U_{[2]}$.
- ▶ But given $J_1 = j_1$, $U_{[2]}$ computed from the U_j with $j \neq j_1$.
- ▶ So conditional law of $U_{[1]}$ given $J_1 = j_1, S_1 = 1$ AND $U_{[2]}$ is Gaussian truncated to range

$$(|U_{[2]}|,\infty).$$

- This part remains true for general designs!
- So what is conditional law of

$$U_{j_1}(U_{j_1}-\lambda_2)$$

given other U_j and $J_1 = j_1$ and $S_1 = 1$?

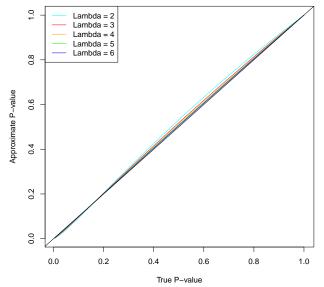
The tail of the normal distribution is exponential

- ▶ Assume $Z \sim N(0,1)$ and E(Z) = 0 and let $\lambda \to \infty$.
- ► Then

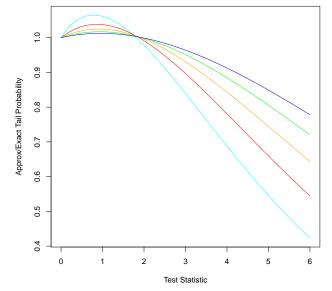
$$\lim_{\lambda \to \infty} P(Z(Z - \lambda) > x | Z > \lambda) = e^{-x} \text{ for } x > 0.$$

Much better approx than usual extreme value theory.

Exact versus Approximate – Optimistic version



Exact versus Approximate – Pessimistic version



References

Richard Lockhart, Jonathan Taylor, Ryan J. Tibshirani, and Robert Tibshirani. A significance test for the lasso. *Ann. Statist.*, 42(2): 413-468, 04 2014. doi: 10.1214/13-AOS1175. URL http://dx.doi.org/10.1214/13-AOS1175.

Ishay Weissman. Estimation of parameters and larger quantiles based on the k largest observations. Journal of the American Statistical Association, 73(364):812-815, 1978. ISSN 01621459. URL http://www.jstor.org/stable/2286285.

