INFERENCE IN HIGH-DIMENSIONAL LINEAR MODELS COURSE NOTES

RICHARD LOCKHART

Contents

1. Introduction 3
1.1. Motivating Analysis of Riboflavin Data 3
1.2. Some inference and modelling issues 11
2. Model selection by the LASSO 12
2.1. Scaling, intercepts 14
2.2. Asymptotic Tests following Lockhart et al. [2014] 16
2.3. Tests for the selected variable 18
2.4. Toy example: orthogonal design, global null hypothesis true 22
2.5. General design, global null hypothesis true 25
2.6. Extensions and criticism 30
3. Conditional Inference 35
3.1. Global null test 35
3.2. Corresponding confidence intervals 37
3.3. Forward Stepwise Algorithm, General Step 38
3.4. Extra ideas 41
References 43

Version of 12 February 2017.

Course schedule

Note: almost certain to change as time goes by
Jan 23 Introduction: framing of issues in high dimensional inference; an example data set; some primitive inference methods; discussion of scientific contexts.

Jan 30 LASSO for model selection before inference; Unconditional limit theory for LASSO path; Lockhart et al. [2014]

Feb 6 Lockhart et al. [2014], continued.
Feb 13 Conditional inference given selection; Tibshirani et al. [2016].
Feb 20 POSI, Berk et al. [2013]; Limits ; Leeb and Ptscher [2006].
Feb 27 Debiasing: Bühlmann, van de Geer, Meinshausen
Mar 6 Javanmard, Montanari
Mar 13 Synthesis: comparison, strengths, weaknesses, my view of open issues

1. Introduction

These notes are to a accompany a series of 8 , hopefully, lectures on the general subject of inference in high dimensional linear models. They will develop over the course of Lent Term 2017. The basic data structure will be as follows. We have measurements Y_{1}, \ldots, Y_{n} of some quantity which I will call the response. Associated with Y_{i} we have measurements $X_{i 1}, \ldots, X_{i p}$ of some other quantities which I will probably call covariates, predictors, or features; any use I may happen to make of the last of these terms will be, or at least seem to be, forced. The high dimensional part will concern situations where p is large - typically larger than n but in any case substantial compared to n.

Some questions of interest to me include:

- In what scientific contexts is it important to provide inference for the parameters in a linear model?
- When we do model selection followed by inference how do we select a target of inference?
- How much trade-off must there be between model selection and inference?
- To what extent does large sample theory provide useful guidance in these problems?
- Do we want conditional or unconditional inference?
1.1. Motivating Analysis of Riboflavin Data. I am going to use some data described in Bühlmann et al. [2014] to illustrate the sort of problem I intend to talk about for the next 8 lectures. In the example the response variable, Y, is the (base 2 logarithm of) production of riboflavin by a bacterium called Bacillus subtilis. The covariates are logarithms of normalized expression levels for $p=4088$ protein coding genes. A total of $n=71$ bacterial samples were analyzed.

The idea is that some small number of genes control the production of riboflavin. The expression data measures the extent to which a gene is 'switched-on'; for a gene which influences the production of riboflavin there ought to be a correlation how switched-on the gene is and the actual production of riboflavin.

I am going to pretend that we have a sample of n independent and identically distributed vectors $\left(Y_{i}, X_{i 1}, \ldots, X_{i p}\right)$. I will start with the basic question of whether or not there is any relationship between any of the genes and riboflavin. We will need some notation.

As usual we will stack the responses into a 71 dimensional vector \boldsymbol{Y} and the covariate values into a 71×4088 matrix, denoted \boldsymbol{X} with $j^{\text {th }}$ column \boldsymbol{X}_{j}. We will write $X_{i j}$ for the $i j^{\text {th }}$ entry and \boldsymbol{X}_{A} for the submatrix of \boldsymbol{X} with columns whose indices j belong to $A \subset\{1, \ldots, p\}$.

Global null hypothesis: We begin by considering the hypothesis, H_{0}, that Y is independent of the set of covariates. I will replace that strong null hypothesis with the weaker null hypothesis of pairwise independence. For each j we have a test statistic T_{j} for the null hypothesis, H_{j}, that Y is independent of X_{j}, the $j^{\text {th }}$ covariate. Then we test the global hypothesis that H_{j} is true for every j. If we reject this hypothesis then of course we reject the original hypothesis of independence but there do exist (exotic) joint laws for Y and the set of covariates under which Y is independent of each subset of fewer than k (with $k<p$) of the covariates but not independent of all p. As in virtually all testing problems there is no uniformly most powerful test so we must choose where to focus our test which alternatives we want good power for.

Even if we accept this strategy there are many tests of bivariate independence to choose from. I am simply going to use the ordinary Pearson correlation coefficient r_{j} between Y and the $j^{\text {th }}$ covariate. Figure 1.1 is a plot of r_{j} against the index j running from 1 to 4088. I have highlighted with big red dots those points with $\left|r_{j}\right|>0.6$ - just a round number chosen so that there would not be too many dots. Notice that 4 of the red dots are very close together.

Now I turn these 4088 correlations into a single test statistic by taking $\max _{i}\left\{\left|r_{i}\right|\right\}$. I computed a P-value by a variety of methods: Bonferroni correction of 1 at a time P-values from t-statistics; parametric bootstrap, taking the covariates as fixed and generating Gaussian Y s; nonparametric bootstrap, resampling Y s with replacement independently of the covariates; permutation test, where I randomly permute the Y s before computing the correlations.

The largest absolute value of a t statistic is 5.4325 for variable 1278 which has the name YXLD_at. All the methods I tried attached very small P-values to this test statistic as a test of the hypothesis that all 4088 correlation coefficients are 0. For the 3 simulation methods I generated 50,000 new values of Y by each method and recomputed the maximal absolute correlation. I never saw any statistic values as large at 5.4325 . The parametric bootstrap and bootstrap methods each produced

Figure 1. Plot of the correlation of the i th covariate with Y against the index i for the riboflavin data.

a largest absolute t statistic around 5.13 while the permutation test managed a 5.24.

The uncorrected P-value for the t statistic for variable 1278 would be 7.8×10^{-7}; after correction by multiplying by 4088 I get $P=0.0032$ suggesting pretty strongly that at least one of these covariates is related to Y. But the Bonferroni correction is really quite conservative here. There are lots of strong correlations among the t-statistics because there are some very strong correlations among the covariates. Figure 1.1 shows all the pairwise scatterplots among the top 6 variables.

Remark: An exact P-value is a random variable p which has, under some null hypothesis, a Uniform[0,1] distribution. I call p a conservative P-value if $P(p \leq$ $u) \leq u$ for all $u \in[0,1]$ and the inequality is strict for some u. If p_{1}, \ldots, p_{m} are

Figure 2. Pairwise scatterplots of Y and the 6 covariates whose estimated correlation coefficients with Y are more than 0.6 in absolute value

any m exact P-values (with any joint law whatsoever) then

$$
P\left(\exists j: m p_{j} \leq u\right)=P\left(m \min _{1 \leq j \leq m}\left\{p_{j}\right\} \leq u\right) \leq \sum_{j=1}^{k} P\left(p_{j} \leq u / m\right)=m u / m=u
$$

SO

$$
p_{\text {Bon }}=m \min _{1 \leq j \leq m}\left\{p_{j}\right\}
$$

is a conservative P-value. Of course if each p_{j} is conservative then the conclusion still holds; the first equality just becomes an inequality.

The proof just uses the Bonferroni inequality

$$
P\left(\bigcup_{i=1}^{m}\left\{p_{j} \leq u / m\right\}\right) \leq \sum_{i=1}^{m} P\left(p_{j} \leq u / m\right)
$$

If the events indicated have substantial overlaps (say because some p_{j} are strongly correlated with others) then the right hand side can be much larger than the left; we say Bonferroni can be very conservative.

Some commentary after seeing these plots and these statistics.

Comment 1: There is no reasonable way the response is independent of the predictors.

Comment 2: I find it hard to believe that we are confident that variable 1278 is the correct gene; distinguishing it from variable 1279 would appear to be very hard.

Here is a small easy study. Consider regressing \boldsymbol{Y} on two columns $\boldsymbol{U}, \boldsymbol{V}$ with $\boldsymbol{U}^{\top} \boldsymbol{U}=\boldsymbol{V}^{\top} \boldsymbol{V}=1$ and $\boldsymbol{U}^{\top} \boldsymbol{V}=1-\epsilon$. Generate the Y_{i} independently from a normal distribution with mean βU_{i} and variance 1. Thus the true model is

$$
\boldsymbol{Y}=\boldsymbol{U} \beta+\epsilon
$$

with $N(0,1)$ errors. We will consider fitting three regression models

$$
\begin{aligned}
& Y_{i}=\alpha_{1} U_{i}+\epsilon_{i}, \\
& Y_{i}=\alpha_{2} V_{i}+\epsilon_{i}
\end{aligned}
$$

and

$$
\boldsymbol{Y}=\boldsymbol{U} \beta_{1}+\boldsymbol{V} \beta_{2}+\epsilon
$$

The middle model is wrong in the sense that the errors in that model do not have mean 0:

$$
\mathrm{E}\left(Y_{i}\right)=\beta U_{i}=\alpha V_{i}
$$

is not true for any choice of α; if it were our conditions would guarantee $\boldsymbol{U}^{\top} \boldsymbol{V}=$ ± 1.

When we regress \boldsymbol{Y} on \boldsymbol{U} without an intercept we get a fitted slope $\hat{\alpha}_{1}=\boldsymbol{U}^{\top} \boldsymbol{Y}$ with mean β and variance 1 while if we regress \boldsymbol{Y} on \boldsymbol{V} without an intercept we get fitted slope $\hat{\alpha}_{2}=\boldsymbol{V}^{\top} \boldsymbol{Y}$ with mean $(1-\epsilon) \beta$. The covariance between these two
estimates is

$$
\operatorname{Cov}\left(\boldsymbol{U}^{\top} \boldsymbol{Y}, \boldsymbol{Y}^{\top} \boldsymbol{U}\right)=\boldsymbol{U}^{\top} \boldsymbol{V}=1-\epsilon
$$

Since \boldsymbol{Y} has a multivariate normal distribution the pair ($\hat{\alpha}_{1}, \hat{\alpha}_{2}$) has a bivariate normal distribution with the given means and variance-covariance.

Now consider the sort of selection algorithm I am suggesting above where we pick the covariate with the highest absolute correlation with \boldsymbol{Y} as our preferred predictor. This is what I am doing when I pick out variable 1278. In the example I get the right variable if $\left|\hat{\alpha}_{1}\right|>\left|\hat{\alpha}_{2}\right|$ so I will compute this probability in the limit as $\epsilon \rightarrow 0$. I will prove this probability is $1 / 2$.

The probability I want is

$$
\begin{aligned}
\pi_{\epsilon} \equiv & P\left(0<\hat{\alpha}_{2}<\hat{\alpha}_{1}\right)+P\left(0<-\hat{\alpha}_{2}<-\hat{\alpha}_{1}\right) \\
& +P\left(0<-\hat{\alpha}_{2}<\hat{\alpha}_{1}\right)+P\left(0<\hat{\alpha}_{2}<-\hat{\alpha}_{1}\right) .
\end{aligned}
$$

Let

$$
\hat{\delta}=\frac{\hat{\alpha}_{1}-\hat{\alpha}_{2}}{\sqrt{2 \epsilon}}
$$

Then the joint distribution of $\hat{\delta}$ and $\hat{\alpha}_{2}$ is bivariate normal with mean vector $(\beta \sqrt{\epsilon / 2}, \beta(1-\epsilon)$, both variances equal to 1 , and covariance $-\sqrt{\epsilon / 2}$. As $\epsilon \rightarrow 0$ this joint distribution then converges to bivariate normal with identity covariance and means 0 and β. Rewrite the events of interest in terms of $\hat{\alpha}_{2}$ and δ to get

$$
\begin{aligned}
\pi_{\epsilon}=P & \left(\hat{\alpha}_{2}>0, \delta>0\right)+P\left(\hat{\alpha}_{2}<0, \delta<0\right) \\
& +P\left(0<-\hat{\alpha}_{2}<\hat{\alpha}_{2}+\sqrt{2 \epsilon} \delta\right)+P\left(0<\hat{\alpha}_{2}<-\sqrt{2 \epsilon} \delta-\hat{\alpha}_{2}\right) .
\end{aligned}
$$

In the limit the first two probabilities involve intersections of independent events so the first two terms converge to

$$
\frac{1}{2} P(N(\beta, 1)>0)+\frac{1}{2} P(N(\beta, 1)<0)=\frac{1}{2}
$$

In the limit $\epsilon \rightarrow 0$ the other two terms become

$$
P\left(0<-\hat{\alpha}_{2}<\hat{\alpha}_{2}\right)+P\left(0<\hat{\alpha}_{2}<-\hat{\alpha}_{2}\right)=0
$$

because the events indicated are empty. So $\lim _{\epsilon \rightarrow 0} \pi_{\epsilon}=1 / 2$.

Remark: if we regress \boldsymbol{Y} on both \boldsymbol{U} and \boldsymbol{V} we get $\tilde{\beta}_{1}, \tilde{\beta}_{2}$ with a bivariate normal distribution with mean $\beta, 0$ and variance covariance matrix

$$
\frac{1}{2 \epsilon-\epsilon^{2}}\left[\begin{array}{cc}
1 & -(1-\epsilon) \\
-(1-\epsilon) & 1
\end{array}\right]
$$

which is, of course, huge for small ϵ. Both variances are effectively $1 /(2 \epsilon)$ and the correlation converges to -1 .

For the data at hand think of \boldsymbol{U} as column 1278 and \boldsymbol{V} as column 1279. Take β to be the slope of \boldsymbol{Y} regressed on variable 1278 (ignoring the selection problems these lectures are actually about) and simulate new vectors \boldsymbol{Y} as described above. The correlation between \boldsymbol{U} and \boldsymbol{V} is 0.9845 so $\epsilon=0.0155$. For these settings it is easy to check that the probability that the correlation with variable 1279 will be larger in absolute value than the correlation with variable 1278 is close to $1 / 2$. In other words - for the data at hand the argument above is applicable.

When I discuss extreme value theory I hope I will deal more clearly with the probability of this event intersected with the event that the variable 1278 produces the largest correlation. For the moment I will just say the answer is essentially $1 / 2$ under the (false, I believe) hypothesis that variable 1278 is the only variable needed to predict Y. NOTE: quite a different picture emerges if we allow for selection and take a substantially smaller value of β. More about this later.

Comment 3: I also don't believe that there is clear evidence about the number of non-zero predictors.

Bühlmann et al. [2014] use a variety of methods on the Riboflavin data. One finds no important predictors. One finds exactly variable 4003. One marginal screening method (roughly trying to find which predictors have unadjusted correlations with Y which could not credibly be 0) finds 53 genes when controlling the family wise (Type I) error rate at 0.05 . Another, controlling the False Discovery Rate at 10% finds 375 genes. The differences between these methods reflect, principally, the different error rates each is trying to control.

More than one variable needed?

The central difficulty surrounding hypothesis testing arrives at this stage. We are now sure that at least one variable is related to the production of riboflavin. I want to test the hypothesis that none of the others is, adjusted for the one we have
found. But describing the problem that way assumes more than I have achieved. The P-value I computed does not attach to the hypothesis that $\beta_{1278}=0$. Instead I have rejected the null hypothesis that all β_{j} are 0 and that is far from implying that $\beta_{1278} \neq 0$. The multi-sample splitting method of Bühlmann et al. [2014] splits the data set at random, selects a model based on one half, then uses the other half to test the hypotheses $H_{0 j}: \beta_{j}=0$ for each variable included in the model. Then it computes a Bonferroni adjusted P-value for that split. The process is repeated and the P values are aggregated (carefully) to control the family wise error rate

$$
P(\text { Any true null hypothesis is rejected }) \leq 0.05 \text {. }
$$

Bühlmann et al. [2014] indicate that they found exactly 1 significant variable this way. Using multi.split from the R package hdi I find: \# 4003.

So taking note of the obvious difficulty I go on to ask: is variable 1278 enough? Is variable \# 4003 enough? I need a model. I want to test the hypothesis that given X_{1278} the response Y is independent of all the other X_{j}. Again I will replace that with the hypothesis that each other X_{j} is conditionally uncorrelated with Y given X_{1278}. But this requires me to be able to condition on X_{1278} and I don't know how to do that without assumptions. So finally I assume that (Y, X_{1}, \ldots, X_{p}) have a multivariate normal distribution. I regress each X_{j} on X_{1278} and compute the residuals. I do the same for Y. Now I have a new data set with say Y^{*} and X_{j}^{*} and compute 4087 correlation coefficients (or equivalently $4087 t$-statistics). I get P values by bootstrapping the Y^{*} or permuting the Y^{*}. Ignoring estimation error the resampled Y^{*} variable is independent of the X^{*} variables. I find the correlation is maximized for X_{4002} and the associated P-values are estimated at 0.00052 for the bootstrap and 0.00077 for the permutation scheme. Notice that I get the variable right next door to X_{4003}. These two variables are strongly correlated and although the unadjusted correlation of X_{4003} with Y is slightly larger than that of X_{4002} with Y, this ordering is reversed after adjusting for X_{1278}.

I repeated the exercise removing the effects of X_{1278} and X_{4002} on Y and on all the other X_{j} and was no longer able to reject the null that all the remaining β_{j} are 0 . Of course, not rejecting a null is a far cry from asserting its truth. I also repeated the second step of this exercise starting with variable X_{4003} (the one picked by multi-split). Again I found another variable was needed. The most likely candidate was X_{1278}.

My take is that there is reasonably strong evidence for the existence of more than 1 important predictor but:

- I would certainly do follow up experimental work with these genes and all those highly correlated with them.
- I think the evidence that 1278 and 4002 are the important predictors is very weak. But I suspect that one of 1278 and the things it is strongly correlated to, together with 4003 or the things it is strongly connected to, are needed. I don't know much about procedures which automatically produce groups or clusters of covariates where you try to control, for each cluster, the error rate of the statement "at least one of the variables in this cluster has a non-zero coefficient in the full model". I think procedures of that sort might be quite desirable.
- We have no clear idea what the evidence is about the size of the effects.
- Suppose I wanted to summarize my results by fitting some linear model of Y on some or all of the X_{j}. Should I offer confidence intervals for $4088 \beta_{j}$ in a regression of Y on all 4088 predictors? Should I regress Y on some subset of the 4088 - say just $\{1278,4002\}$ and give confidence intervals for the slopes in that regression?
- I am not sure the β_{j} are of any real scientific interest given the preprocessing of the gene expression data.

More or less the end of what I said in Lecture 1.

1.2. Some inference and modelling issues. I hope the example has shown that there are some important issues to face up to. We are going to focus on a regression model of the form

$$
\begin{equation*}
\boldsymbol{Y}=\beta_{0}+\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon} \tag{1}
\end{equation*}
$$

where we assume that conditional on \boldsymbol{X} the entries in $\boldsymbol{\epsilon}$ are independent and identically distributed with mean 0 and variance σ^{2}. This situation arises in at least two ways:
(1) The entries in the design matrix \boldsymbol{X} are actually controlled by an experimenter / data collector. In compressed sensing applications, for instance, these entries code up some expansion of some 'image' in terms of some set
of basis functions like wavelets or whatever. (I am not going to deal explicitly with any such problem but will talk about at least one deterministic design.)
(2) The vectors $\left(Y_{i}, X_{i 1}, \ldots, X_{i p}\right)$ are independent and identically distributed and the conditional expectation of Y_{i} given the rest is linear with homoscedastic errors. Essentially: the data are jointly multivariate normal and we have an iid sample of size n. In this case our analysis will be conditional on the design in the beginning at least.
The preliminary analysis I did above was focused on the second of these ideas. But I want to point out two things.

First is nature of the response. Here are the first few sorted values of 10000×2^{Y}.

```
> cat(10000*sort(2^y))
```

1013132630313132333535
You see that there is considerable discreteness in Y itself and this may be worth remembering when we start to throw around assumptions like they were candy.

Second the rows of the data matrix riboflavin in R have names: the first three observations are called
b_Fbat107PT24.CEL
b_Fbat107PT30.CEL
b_Fbat107PT48.CEL
I hope the names don't mean the rows shouldn't be thought of as an iid sample (and apologize for the double negative).

2. Model selection by the LASSO

Traditionally we fit the model

$$
\boldsymbol{Y}=\beta_{0} \mathbf{1}+\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

(where $\mathbf{1}$ is a vector with all entries equal to 1) by ordinary least squares minimizing the Error Sum of Squares

$$
\left\|\boldsymbol{Y}-\boldsymbol{X}^{*} \boldsymbol{\beta}^{*}\right\|^{2}
$$

where \boldsymbol{X}^{*} is the matrix with a column of 1 s followed by \boldsymbol{X} and $\boldsymbol{\beta}^{*}$ is the concatenation of β_{0} and $\boldsymbol{\beta}$. This smooth function of $\boldsymbol{\beta}^{*}$ has gradient

$$
-2\left\{\boldsymbol{X}^{* \top} \boldsymbol{X}^{*} \boldsymbol{\beta}^{*}-\boldsymbol{X}^{* \top} \boldsymbol{Y}\right\}
$$

and is minimized at the least squares estimates

$$
\hat{\boldsymbol{\beta}}^{*}=\left\{\boldsymbol{X}^{* \top} \boldsymbol{X}^{*}\right\}^{-1} \boldsymbol{X}^{*^{\top}} \boldsymbol{Y}
$$

When p exceeds $n-1$ however the matrix $\boldsymbol{X}^{* \top} \boldsymbol{X}^{*}$ must be singular and this method fails. We focus on situations where p is large from now on.

In general $\boldsymbol{X}^{*} \boldsymbol{\beta}$ is a vector in the column space of \boldsymbol{X}^{*}; any vector in that column space can be realized in this way. When $\boldsymbol{X}^{* \top} \boldsymbol{X}^{*}$ is singular there is nevertheless a unique vector $\hat{\boldsymbol{v}}$ in the column space of \boldsymbol{X}^{*} minimizing

$$
\|\boldsymbol{Y}-\boldsymbol{v}\|^{2}
$$

over all \boldsymbol{v} in the column space of \boldsymbol{X}^{*}. But there is not a unique vector β for which $\boldsymbol{v}=\boldsymbol{X} \boldsymbol{\beta}$.

One way to describe the problem is to say that the map

$$
\boldsymbol{\beta} \rightarrow\|\boldsymbol{Y}-\boldsymbol{X} \boldsymbol{\beta}\|^{2}
$$

is convex (its second derivative matrix is non-negative definite) but not strictly convex. If the rank of \boldsymbol{X} is less than the number of columns of \boldsymbol{X} then the null space of \boldsymbol{X} is non-empty; there is a non-trivial subspace of vectors $\boldsymbol{\theta}$ with $\boldsymbol{X} \boldsymbol{\theta}=\mathbf{0}$. For any such θ and any $\boldsymbol{\beta}$ we see that

$$
t \rightarrow\|\boldsymbol{Y}-\boldsymbol{X}(\boldsymbol{\beta}+t \boldsymbol{\theta})\|^{2}
$$

is constant.
It turns out, however, that there are many (possibly ad hoc in flavour) ways to modify the error sum of squares criterion to restore strict convexity, or at least uniqueness of solutions, (except perhaps for truly pathological design matrices). The general form of a penalized error sum of squares is

$$
J(\beta) \equiv \frac{1}{2}\|\boldsymbol{Y}-\boldsymbol{X} \beta\|^{2}+\operatorname{Penalty}(\beta)
$$

Procedures in this class includes Ridge regression where the penalty is

$$
\lambda \sum_{i} \beta_{i}^{2}
$$

Smoothly Clipped Absolute Deviation (SCAD) which I won't define and others. I am going to focus on Least Absolute Shrinkage and Selection Operator (LASSO) because it is the only one I know even a little about.

For a given $\lambda>0$ the LASSO estimate of $\boldsymbol{\beta}$ is $\hat{\boldsymbol{\beta}}_{\lambda}$ minimizing the penalized error sum of squares:

$$
\begin{aligned}
J_{\lambda}(\beta) & =\frac{1}{2}\|\boldsymbol{Y}-\boldsymbol{X} \beta\|^{2}+\lambda \sum_{i}\left|\beta_{i}\right| \\
& =\frac{1}{2} \boldsymbol{Y}^{\top} \boldsymbol{Y}+\frac{1}{2} \beta^{\top} \boldsymbol{X}^{\top} \boldsymbol{X} \beta-\boldsymbol{U}^{\top} \beta+\lambda \sum_{i}\left|\beta_{i}\right|
\end{aligned}
$$

Notice that this function (and so its minimizer) depends on the data \boldsymbol{Y} only via $\boldsymbol{U}=\boldsymbol{X}^{\top} \boldsymbol{Y}$.

I am not going to discuss uniqueness of the value of β which minimizes J_{λ}. The issue is studied carefully in Tibshirani [2013].
2.1. Scaling, intercepts. I think most scientists would regard this definition with suspicion. The columns of \boldsymbol{X} are different co-variates and in most regression problems different columns will be measured in different units. Suppose for instance that Y is weight in kilograms of a person, X_{1} is height in centimetres, and X_{2} is age in years. If we wrote down the (silly) model

$$
Y_{i}=\alpha+\beta_{1} X_{1 i}+\beta_{2} X_{2 i}+\epsilon_{i}
$$

then Y_{i}, α, and ϵ_{i} must all be measured in kilograms. The term $\beta_{1} X_{1 i}$ will be in kilograms as well provided β_{1} is in kilograms per centimetre. Similarly β_{2} has units kilograms per year. The error sum of squares has units kilograms squared. But the penalty term adds kilograms per year to kilograms per centimetre and multiplies by λ so we are adding apples to oranges; you should not do that. If the intercept α is included in the penalty then that term has units kilogram multiplied by the units of Y.

There are some natural ways out:

- Sometimes (like the riboflavin example) all the columns of \boldsymbol{X} other than the column of 1 s are measured in the same units. In this case the β all have units given by units of Y divided by units of an X and λ must have units of X times units of Y.
- In the penalty multiply any β_{i} by an estimate of scale for the variable X_{i}; then λ has units of Y.
- Don't shrink the intercept. This is most easily handled by estimating α by \bar{Y}, the mean of the responses and then centering \boldsymbol{Y} and each column of \boldsymbol{X} by subtracting means.
- Scale \boldsymbol{X} (after centering) so that $\boldsymbol{R} \equiv \boldsymbol{X}^{\top} \boldsymbol{X}$ has a constant on the diagonal. I will make sure that constant is 1 so that \boldsymbol{R} is a correlation matrix. Another common choice is to make the constant n so that \boldsymbol{R} / n is a correlation matrix.
- Finally people have suggested replacing the error sum of squares with its square root giving rise to the square root LASSO; see Belloni et al. [2011]. If the X variables are all in the same units then the units of λ are inverse units of X. If we have standardized the X s, making them unitless then λ is also unitless. This is the potential advantage of the square root lasso; it offers the possibility of picking λ depending only on n and p and not on details of \boldsymbol{X}, perhaps.

When people work with the iid sampling model they often use a slightly different formulation. Like us they centre the columns of \boldsymbol{X}. But then they divide the error sum of squares by the sample size n and minimize

$$
\frac{1}{n}\|\boldsymbol{Y}-\boldsymbol{X} \beta\|^{2}+\gamma \sum\left|\beta_{i}\right| .
$$

This means that γ corresponds to $2 \lambda / n$ in my scaling above. In the iid sampling context the matrix $\boldsymbol{X}^{\top} \boldsymbol{X}$ grows like n because with p fixed

$$
\lim _{n \rightarrow \infty} \frac{1}{n} \boldsymbol{X}^{\top} \boldsymbol{X}=\operatorname{Var}(X)
$$

the population variance-covariance matrix of the covariates. If we have shave been normalized to have length n then the limit is the correlation matrix of X. If we apply our scaling so that $\boldsymbol{X}^{\top} \boldsymbol{X}$ has 1 on the diagonal then we have effectively divided each column by the standard deviation of that covariate multiplied by \sqrt{n}. This means that the corresponding entry in β has been multiplied by the same quantity. Thus in our formulation β effectively grows with n, like \sqrt{n}.

Assumption summary: From now on until I say otherwise I assume that \boldsymbol{Y} and the columns of \boldsymbol{X} have been centred and the columns of \boldsymbol{X} have been standardized to have unit length. Thus $\boldsymbol{X}^{\top} \boldsymbol{X}$ has each diagonal entry equal to 1 ; it is a correlation matrix.
2.2. Asymptotic Tests following Lockhart et al. [2014]. In order to actually use the LASSO, or any other penalized method, you have to specify λ. Many suggestions have been made but I am not going to discuss any of them. Instead I am going to describe a technique which considers the way the estimates depend on λ. That is, I am going to think about the fit as a function of λ. I will start out with λ very large and show you that for all sufficiently large λ the estimated vector $\hat{\boldsymbol{\beta}}_{\lambda}$ is $\mathbf{0}$. I am going to compute the infimum of that set of λ values explicitly, show that the estimate is continuous and piecewise linear in λ and show you how to compute sequentially the places where there are corners.

Here is a brief summary of our strategy which introduces some notation:

- Start λ out very large.
- For all large λ all components of $\hat{\beta}(\lambda)=0$.
- Shrink λ gradually till one variable enters model.
- At critical value (knot) of λ, which I will denote by λ_{1}, variable J_{1} enters our model; that is, its estimate becomes non-zero. (This value is a random variable of course.)
- For λ slightly smaller than λ_{1} only $\hat{\beta}_{J_{1}}$ is non-zero.
- As we shrink λ new variables enter (or possibly leave) at knots

$$
\lambda_{1}>\lambda_{2}>\cdots .
$$

- i th variable entering is J_{i} with sign $S_{i} \in\{ \pm 1\}$; this notation will become unsatisfactory when we look carefully at variables which leave the model.
- As λ goes from λ_{i} to $\lambda_{i+1}, \hat{\beta}_{J_{i}}(\lambda)$ grows (linearly).

For the riboflavin data after centring the columns of \boldsymbol{X} and standardizing each column to have unit length we find the first 10 knots, $\lambda_{1}, \ldots, \lambda_{10}$ and corresponding index numbers and sign are as in Table 2.2. In Figure 2.2 I plot the estimates of the 9 coefficients involved against λ between $\lambda=\lambda_{10}$ and $\lambda=6$. For $\lambda<\lambda_{10}$ the picture becomes quite complex; for $\lambda>\lambda_{1}$ we are just plotting 0 . At $\lambda=\lambda_{10}$ the LASSO estimate of β_{1588} becomes 0 and that variable leaves the model Between λ_{10} and $\lambda_{11}=2.213$ there are only 9 non-zero estimated slopes. At $\lambda_{11}=2.213$ variable 1297 is added.

Now I show you in Figure 2.2 a frame from a movie. It shows the values of the 10 entries for $\hat{\beta}_{\lambda j}$ for j as in Table 2.2 plotted against $\lambda \in\left[\lambda_{10}, 6\right]$. The movie itself, which simply steps λ down from the right by small increments is available

Table 1. For the riboflavin data this table shows the first 10 knots on the LASSO path. At each of the first 9 knots the active set is enlarge by the addition of the Variable indicated. At $\lambda_{10}=2.409$ variable 1588 leaves the model.

Knot	Knot value	Variable	What happened
λ_{1}	5.000214	1278	Added
λ_{2}	4.567995	4003	Added
λ_{3}	4.387905	1516	Added
λ_{4}	3.863533	2564	Added
λ_{5}	3.285314	1588	Added
λ_{6}	2.963925	624	Added
λ_{7}	2.960060	1312	Added
λ_{8}	2.942163	1502	Added
λ_{9}	2.424337	1639	Added
λ_{10}	2.408743	1588	Deleted

here. At each knot in the table you see the value of the corresponding estimated coefficient is 0 to the right and changes linearly to the left. The slopes of all these lines change each time a variable enters a model; this is natural because now we are adjusting the slopes of each variable on a different set of covariates.

One important point is what happens with variable 1588. That variable enters the model at knot λ_{5}. At knot 6 or 7 the estimate for this coefficient switches from moving away from 0 (as λ decreases) to moving towards 0 . Indeed at knot 10 this estimate hits 0 . No variable enters at λ_{10}.

We will use the following jargon. The term active set refers to the set of j for which the j th coefficient is not 0 . We will speak of the true active set as $A_{0} \equiv\left\{j: \beta_{0 j} \neq 0\right\}$ where the subscript 0 indicates the true parameter vector. For a given value of λ we will have an estimated active set

$$
\hat{A}_{\lambda}=\left\{j: \hat{\beta}_{\lambda j} \neq 0\right\} .
$$

For clarity here are some examples. For $\lambda \geq \lambda_{1}$ we have $\hat{A}_{\lambda}=\emptyset$. For $\lambda_{2} \leq \lambda<\lambda_{1}$ we have $\hat{A}_{\lambda}=\{1278\}$. Finally for $\lambda_{11} \leq \lambda<\lambda_{10}$ the estimated active set consists of all the variables in Table 2.2 except 1588 .
2.3. Tests for the selected variable. I now want to discuss our strategy for answering the question: Do we need these variables in our model? I begin by considering a test of the hypothesis $\boldsymbol{\beta}=\mathbf{0}$. We will want to understand, however, the relation between this classical hypothesis and the random hypothesis $\beta_{J_{1}}=0$. Our strategy is to measure the improvement of the fit when we add variable J_{1} to the model using the change in covariance between the predictor $\boldsymbol{X} \hat{\boldsymbol{\beta}}(\lambda)$ and \boldsymbol{Y} as λ varies between λ_{1} and λ_{2}. This change scales with ϵ so we will scale the change in covariance by an estimate of the error variance σ^{2}. Lockhart et al. [2014] mostly consider a fictitious universe in which σ is known.

An aside on the nature of the model selection problem

We cannot simply look at the t statistic in the fit of Y against X_{1278} or at corresponding F tests when we consider more variables. Suppose we regress log riboflavin production on variables $1278,4003,1516,2564,1588$; these are the first 5 variables which come into the model in Table 2.2. The usual overall F test gives a P-value of $P=2.2 \times 10^{-16}$. Individual t-test P-values: $4 \times 10^{-5}, 5 \times 10^{-6}$, $4 \times 10^{-3}, 1 \times 10^{-4}$ and 0.34 .

We have already seen, however, the impact of cherry picking and discussed adjusted P-values. There are $9.5 \times 10^{1} 5$ possible regressions of Y on 5 of our 4088 covariates. So the Bonferroni corrected overall F-test P-value is 1 (the product $2.2 \times 10^{-16} \times 9.5 \times 10^{15}>1$, that is).

The test statistic from Lockhart et al. [2014] for the first variable is

$$
T_{1}=\frac{\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)}{\hat{\sigma}^{2}}=24 \text { or } 2.55
$$

The word "or" reflects uncertainty about how to estimate σ^{2}. For the two choices we usually suggest we get a P-value which is either 3.7×10^{-11} or 0.078 . That is a big range. Estimation of σ is crucial and hard, I think. I now turn to the details of our suggestion.

I am going to work my way through the Karush-Kuhn-Tucker conditions for the LASSO fit. My presentation will be elementary because our objective function J_{λ} is nearly differentiable and it is easy to say where it is not. Thus I will just discuss the components of the gradient vector. At values of $\boldsymbol{\beta}$ for which some component of the gradient is not defined I will just write down left and right derivatives.

Fix some $\lambda>0$. The estimate $\hat{\boldsymbol{\beta}}_{\lambda}$ is the vector $\boldsymbol{\beta}^{*}$ if:

$$
\begin{aligned}
& \beta_{j}^{*} \neq\left. 0 \Rightarrow \quad \frac{\partial J(\boldsymbol{\beta})}{\partial \beta_{i}}\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}^{*}}=0 \text { and } \\
& \beta_{j}^{*}=\left.0 \Rightarrow \quad \frac{\partial J(\boldsymbol{\beta}-)}{\partial \beta_{i}}\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}^{*}} \leq 0 \text { and } \\
& \beta_{j}^{*}=\left.0 \Rightarrow \quad \frac{\partial J(\boldsymbol{\beta}+)}{\partial \beta_{i}}\right|_{\boldsymbol{\beta}=\boldsymbol{\beta}^{*}} \geq 0
\end{aligned}
$$

Here $\boldsymbol{\beta} \pm$ indicate a right $(+)$ or left (-) partial derivative. The right and left derivatives differ, when $\beta_{j}^{*}=0$, by 2λ.

What are these Karush-Kuhn-Tucker conditions? As before \boldsymbol{X}_{A} denotes the submatrix of \boldsymbol{X} with columns whose indices are in A and \boldsymbol{X}_{j} denotes the j th column of \boldsymbol{X}.

At $\boldsymbol{\beta}^{*}$ these derivatives take one of three forms depending on the value of β_{j}^{*}.

- For $\beta_{j}^{*}>0$ the derivative is

$$
\left(\boldsymbol{X}^{\top} \boldsymbol{X} \boldsymbol{\beta}^{*}\right)_{j}-U_{j}+\lambda=\boldsymbol{X}_{j}^{\top} \boldsymbol{X} \boldsymbol{\beta}^{*}-U_{j}+\lambda
$$

- For $\beta_{j}^{*}<0$ the derivative is

$$
\boldsymbol{X}_{j}^{\top} \boldsymbol{X} \boldsymbol{\beta}^{*}-U_{j}-\lambda
$$

- At $\beta_{j}^{*}=0$ the formulas above are the right and left derivatives.

Compactly, let S_{i} be the sign of β_{j}^{*} and $A=\left\{i: \beta_{j}^{*} \neq 0\right\}$ and \boldsymbol{S}_{A} the vector of S_{i} for $i \in A$. Then

$$
\boldsymbol{X} \boldsymbol{\beta}^{*}=\boldsymbol{X}_{A} \boldsymbol{\beta}_{A}^{*}
$$

and

$$
\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A} \boldsymbol{\beta}_{A}^{*}=\boldsymbol{X}_{A}^{\top} \boldsymbol{Y}-\boldsymbol{S}_{A} \lambda
$$

Consider now the simplest case. When is $\boldsymbol{\beta}^{*}=0$? For this value we must have that for all j

$$
-U_{j}-\lambda \leq 0 \text { and }-U_{j}+\lambda \geq 0
$$

or

$$
\left|U_{j}\right| \leq \lambda
$$

Thus

$$
\lambda_{1}=\max _{j}\left\{\left|U_{j}\right|\right\} .
$$

Now I turn my attention to finding λ_{2}. First I claim that except in pathological situations there is a unique $j=J_{1}$ such that

$$
\left|U_{J_{1}}\right|=\max _{j}\left\{\left|U_{j}\right|\right\} .
$$

For that to fail we would have to have a pair $i \neq j$ with

$$
\left|\boldsymbol{X}_{i}^{\top} \boldsymbol{Y}\right|-\left|\boldsymbol{X}_{j}^{\top} \boldsymbol{Y}\right|=\left|\left(\boldsymbol{X}_{i} \pm \boldsymbol{X}_{j}\right)^{\top} \boldsymbol{Y}\right|=0
$$

which won't happen for absolutely continuous errors unless there is a choice of signs making

$$
\boldsymbol{X}_{i} \pm \boldsymbol{X}_{j}=0
$$

If the matrix \boldsymbol{X} has columns in general position then does not happen for any pair $i \neq j$; the technical meaning of general position is discussed in Tibshirani [2013]. In general it means that for no $k<n$ can you write a column of \boldsymbol{X} or its negative as a convex combination of k other columns (permitting you to change the sign of those other columns). A design matrix with two identical columns or one column exactly equal to minus the other is a very doubtful design.

More or less the end of what I said in Lecture 2 From here on the notes have not been updated

Recall $\lambda_{1}=\max _{i}\left\{\left|U_{i}\right|\right\}$. Use J_{1} for the maximizing index and S_{1} for the sign of $U_{J_{1}}$. For $\lambda>\lambda_{1}$ we have shown that $\hat{\boldsymbol{\beta}}_{\lambda}=0$. I claim there is a $\lambda_{2}<\lambda_{1}$ such that
for all $\lambda_{2} \leq \lambda \lambda_{1}$ we have

$$
\hat{\beta}_{\lambda, j}= \begin{cases}0 & j \neq J_{1} \\ U_{J_{1}}-S_{1} \lambda & j=J_{1}\end{cases}
$$

Proof:

We will check to see that this $\boldsymbol{\beta}^{*}$ satisfies the conditions. Remember that

$$
\lambda_{1}=\max _{i}\left\{\left|U_{i}\right|\right\}=S_{1} U_{J_{1}}
$$

For $\lambda<\lambda_{1}$ we see that $U_{J_{1}}-S_{1} \lambda \neq 0$ so the relevant KKT condition is given by $A=\left\{J_{1}\right\}$ and the equation

$$
\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A} \boldsymbol{\beta}_{A}-U_{J_{1}}+S_{1} \lambda=0
$$

Since $\boldsymbol{X}^{\top} \boldsymbol{X}$ is a correlation matrix and A has only a single column this reduces to e $\left(U_{J_{1}}-S_{1} \lambda\right)-U_{J_{1}}+S_{1} \lambda=0$ which is trivial.

For $j \neq J_{1}$ KKT condition is

$$
\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(U_{1}-S_{1} \lambda\right)-U_{j}-\lambda<0<\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A} \boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A} \boldsymbol{\beta}_{A}-U_{j}+\lambda
$$

Write $\rho_{j k}$ for the $j k^{\text {th }}$ entry in $\boldsymbol{X}^{\top} \boldsymbol{X}$; the choice of the letter ρ is to remind you that $\boldsymbol{X}^{\top} \boldsymbol{X}$ is a correlation matrix and every off diagonal entry lies in $[-1,1]$. Note that

$$
\operatorname{Cov}\left(U_{j}, U_{K}\right)=\operatorname{Corr}\left(U_{j}, U_{k}\right)=\rho_{j k}
$$

Then the left and right derivatives are on opposite sides of 0 if

$$
-\lambda\left(1+\rho_{j J_{1}} S_{1}\right) \leq U_{j}-\rho_{j J_{1}} U_{J_{1}} \leq \lambda\left(1-\rho_{j J_{1}} S_{1}\right)
$$

I want to divide through by the quantities multiplying λ but I don't want to divide by 0 and I want to remember that if I divide by a negative number the direction of the inequalities would change. Since $\left|\rho_{j J_{1}}\right| \leq 1$ we can divide by 0 only if $\rho_{j J_{1}} \in\{-1,1\}$. But that would mean that columns j and J_{1} were perfectly correlated and, in view of our scaling, contradict our general position assumption. Notice two that $\left|S_{1} \rho_{j J_{1}}\right|<1$ so we will not be dividing by a negative number. We learn that if, for each $j \neq J_{1}$ we have

$$
\max \left\{\frac{U_{j}-\rho_{j J_{1}} U_{J_{1}}}{1-\rho_{j J_{1}} S_{1}}, \frac{-\left(U_{j}-\rho_{j J_{1}} U_{J_{1}}\right)}{1+\rho_{j J_{1}} S_{1}}\right\}<\lambda
$$

then $\hat{\beta}_{\lambda j}=0$ for $j \neq J_{1}$. Thus if

$$
\lambda_{2} \equiv \max _{j \neq J_{1}, s \in\{-1,1\}}\left\{\frac{s\left(U_{j}-\rho_{j J_{1}} U_{J_{1}}\right)}{1-s \rho_{j J_{1}} S_{1}}\right\}<\lambda<\lambda_{1}
$$

then, as claimed,

$$
\hat{\beta}_{\lambda j}= \begin{cases}0 & j \neq J_{1} \\ U_{J_{1}}-\lambda S_{1} & j=J_{1}\end{cases}
$$

Use J_{2} for the maximizing value of j and S_{2} for the choice of s in the definition of λ_{2}. Notice that S_{2} will be the sign of the term $U_{j}-\rho_{j J_{1}} U_{J_{1}}$ in the numerator. Notice too that this quantity is the residual when U_{j} is regressed on $U_{J_{1}}$ (and J_{1} is treated as non-random).

Now I describe the tests of Lockhart et al. [2014]. They compared the fits at λ_{1} and λ_{2} to get a test of the global null $\boldsymbol{\beta}=0$. At $\lambda=\lambda_{1}$ the fitted predictor is 0 and the covariance with Y is 0 . At $\lambda=\lambda_{2}$ the fitted predictor is $X \hat{\boldsymbol{\beta}}_{\lambda_{2}}$ (which is column J_{1} of \boldsymbol{X} multiplied by $\hat{\beta}_{\lambda_{2} J_{1}}$) and the "covariance" is

$$
\boldsymbol{Y}^{\top} \boldsymbol{X} \hat{\beta}_{\lambda_{2}}
$$

The change in covariance then becomes

$$
\begin{aligned}
\boldsymbol{Y}^{\top} \boldsymbol{X} \hat{\beta}_{\lambda_{2}} & =U_{J_{1}} \hat{\beta}_{\lambda_{2} J_{1}} \\
& =U_{J_{1}}\left(U_{J_{1}}-\lambda_{2} S_{1}\right) \\
& =U_{J_{1}}^{2}-\lambda_{2}\left|U_{J_{1}}\right| \\
& =\lambda_{1}^{2}-\lambda_{1} \lambda_{2} \\
& =\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)
\end{aligned}
$$

This has to be scaled for the scale of Y so our test statistic is

$$
T=\frac{\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)}{\sigma^{2}}
$$

I will discuss estimation of σ later.
2.4. Toy example: orthogonal design, global null hypothesis true. Approximate theory usually depends on limits. When I was a child we did limit theory by fixing the parameter vector $\boldsymbol{\beta}$ and so also fixing p. Then we would take a limit as $n \rightarrow \infty$ and tell the story that we were describing what would happen if we continued collecting data. Here, however, our focus is on big p. I will start
with an example which can be worked out in considerable detail using extreme value theory. So now consider an orthogonal design where $\boldsymbol{X}^{\top} \boldsymbol{X}=\mathbf{I}$. Fix $\sigma=1$ known. Under these assumptions the entries U_{1}, \ldots, U_{p} of \boldsymbol{U} are iid $\mathrm{N}(0,1)$. Our statistic for $i=1$ boils down to

$$
\left|U_{[1]}\right|\left(\left|U_{[1]}\right|-\left|U_{[2]}\right|\right) ;
$$

where the square brackets in the subscript denote descending order of absolute values. Thus we are studying extreme order statistics and this is an extreme value problem.

What does extreme value theory tell us? Suppose X_{1}, \ldots, X_{n} are iid with continuous cdf F. The cdf of $X_{(n)}=\max \left\{X_{i} ; 1 \leq i \leq n\right\}$ is $F^{n}(x)$ and the cdf of

$$
\frac{X_{(n)}-a_{n}}{b_{n}}
$$

is

$$
F^{n}\left(a_{n}+b_{n} x\right)
$$

If this sequence of distribution functions converges to a distribution $G(x)$ then the Fisher-Tippett theorem whose final form is due to Gnedenko says that G must be, up to a location-scale transformation one of three possibilities: Weibull, Pareto or Gumbel. In the case at hand F is the cumulative distribution function of a χ_{1} random variable (the square root of a χ_{1}^{2} variate or the absolute value of a standard normal variate). That is

$$
F(x)=\max \{2 \Phi(x)-1,0\} .
$$

For this distribution the choices

$$
a_{n}=\sqrt{2 \log n}
$$

and

$$
b_{n}=a_{n}-\frac{\log \log n+\log \pi}{2 a_{n}}
$$

work and the limit distribution is the standard Gumbel law

$$
G(x)=\exp (-\exp (-x))
$$

Weissman [1978] extends these conclusion to the joint law of the k largest order statistics via a Poisson process approximation. Let $N(x)$ be the number of X_{i} which are at least x. Then $N(x)$ has a $\operatorname{Binomial}(n, 1-F(x))$ distribution and
$N\left(a_{n}+b_{n} x\right)$ has a $\operatorname{Binomial}\left(n, 1-F\left(a_{n}+b_{n} x\right)\right)$ distribution. The condition

$$
F^{n}\left(a_{n}+b_{n} x\right) \rightarrow G(x)
$$

for all x is equivalent to

$$
\begin{equation*}
n\left(1-F\left(a_{n}+b_{n} x\right)\right) \rightarrow G(x) \tag{2}
\end{equation*}
$$

for all x and then the sequence of counting processes M_{n} defined by

$$
M_{n}[x, \infty)=N\left(a_{n}+b_{n} x\right)
$$

converges weakly to a Poisson process with intensity $G^{\prime}(x)$. That is, whenever $x_{1}<\cdots<x_{k}$ we have
$M_{n}\left[x_{1}, x_{2}\right), \ldots, M_{n}\left[x_{k-1}, x_{k}\right), M_{n}\left[x_{k}, \infty\right) \Rightarrow M\left[x_{1}, x_{2}\right), \ldots, M\left[x_{k-1}, x_{k}\right), M\left[x_{k}, \infty\right)$
where M is an inhomogeneous Poisson Process on the line with intensity $G^{\prime}(x)$. The canonical theoretical choice is $1-F\left(b_{n}\right)=1 / n$ and $a_{n}=n f\left(b_{n}\right)$ but there are many asymptotically equivalent choices. To be explicit I will choose

$$
a_{n}=\sqrt{2 \log n}
$$

and

$$
b_{n}=a_{n}-\frac{\log \log n+\log \pi}{2 a_{n}}
$$

With these choices it is easy to check that (2) holds. Now fix k and real numbers

$$
w_{k}<\cdots<w_{1}
$$

and consider the event

$$
w_{k} \leq a_{n}\left(\left|U_{[k]}\right|-b_{n}\right)<w_{k-1} \leq a_{n}\left(\left|U_{[k-1]}\right|-b_{n}\right)<\cdots<w_{1} \leq a_{n}\left(\left|U_{[1]}\right|-b_{n}\right) .
$$

This is the event

$$
M\left[w_{k}, w_{k-1}\right) \geq 1, M\left[w_{k-1}, w_{k-2}\right)=1, \ldots, M\left[w_{1}, \infty\right)=1 .
$$

The Poisson approximation to the probability of this event, which is valid for each integer k fixed, is used by Weissman [1978] to deduce that

$$
a_{n}\left(\left|U_{[1]}\right|-b_{n}\right), a_{n}\left(\left|U_{[2]}\right|-b_{n}\right), \ldots, a_{n}\left(\left|U_{[k]}\right|-b_{n}\right)
$$

converges in distribution to (W_{1}, \ldots, W_{k}) with joint density

$$
\exp \left(-w_{1}-\cdots-w_{k}-e^{-w_{k}}\right) 1\left(w_{k}<\cdots<w_{1}\right) .
$$

(Notice that the probability of the first even can be computed from the joint cdf of the k variables in question. That joint cdf then is seen to converge to a limit whose density I have just given.)

This conclusion has several implications. Notice that $b_{n} / a_{n} \rightarrow 1$ as $n \rightarrow \infty$. Then

$$
a_{n}\left(\left|U_{[1]}\right|-\left|U_{[2]}\right|\right) \Longrightarrow \text { Exponential(1). }
$$

Moreover dividing the convergent quantities by a_{n} shows that $\left|U_{[1]}\right| / a_{n} \rightarrow 1$ so

$$
\left|U_{[1]}\right|\left(\left|U_{[1]}\right|-\left|U_{[2]}\right|\right) \Longrightarrow \text { Exponential(1). }
$$

Indeed under the global null with Gaussian errors

$$
U_{[1]} \mid\left(\left|U_{[1]}\right|-\left|U_{[2]}\right|\right), \ldots, U_{[k]}\left(U_{[k]}-U_{[k+1]}\right)
$$

converges in law to

$$
E_{1}, E_{2} / 2, \ldots, E_{k} / k
$$

where the E_{i} are iid standard exponential.
2.5. General design, global null hypothesis true. We now turn to the problem of a general $\boldsymbol{X}^{\top} \boldsymbol{X}$ (subject still to being a correlation matrix). I want to show that for $x \geq 0$ we have (again for $\sigma=1$)

$$
\lim _{n \rightarrow \infty} P\left(\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)>x\right)=e^{-x}
$$

The key step is to partition this event according to the values of J_{1} and S_{1}. That is

$$
\left\{\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)>x\right\}=\bigcup_{1 \leq j \leq p, s_{1} \in\{-1,1\}}\left\{J_{1}=j, S_{1}=s_{1}, \lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)>x\right\}
$$

This is a disjoint union. On the event $J_{1}=j, S_{1}=s_{1}$ we have

$$
\lambda_{1}=s U_{j}
$$

and

$$
\lambda_{2}=\max _{k \neq j, s \in\{-1,1\}}\left\{\frac{s\left(U_{k}-\rho_{k j} U_{j}\right)}{1-s \rho_{k j} s_{1}}\right\}
$$

Notice that U_{j} is independent of the vector \boldsymbol{V}_{j} with entries

$$
V_{j k}=U_{k}-\rho_{k j} U_{j}
$$

for $k \neq j$ because all these variates are jointly normal and the covariance of U_{j} with $U_{k}-\rho_{k j} U_{j}$ is 0 .

Let F_{j} be the distribution of

$$
W_{j} \equiv \max _{k \neq j, s \in\{-1,1\}}\left\{\frac{s V_{j k}}{1-s \rho_{k j} s_{1}}\right\}
$$

(where I am hiding the dependence of F_{j} on s_{1} for convenience). Then:

$$
\begin{aligned}
P(T>x) & =\sum_{j, s_{1}} P\left(T>x, J_{1}=j, S_{1}=s_{1}\right) \\
& =\sum_{j, s_{1}} P\left(s_{1} U_{j}\left(s_{1} U_{j}-W_{j}\right)>x, J_{1}=j, S_{1}=s_{1}\right)
\end{aligned}
$$

Now I rewrite the event

$$
\left\{J_{1}=j, S_{1}=s_{1}\right\}=\cap_{k \neq j, s}\left\{s U_{k} \leq s_{1} U_{j}\right\}
$$

But if $s U_{k} \leq s_{1} U_{j}$ then

$$
s\left(U_{k}-\rho_{k j} U_{j}\right) \leq s_{1} U_{j}-s \rho_{k j} U_{j}=s_{1} U_{j}\left(1-s \rho_{k j} s_{1}\right)
$$

So

$$
\cap_{k \neq j, s}\left\{s U_{k} \leq s_{1} U_{j}\right\}=\left\{W_{j} \leq s_{1} U_{j}\right\}
$$

We get

$$
P(T>x)=\sum_{j, s_{1}} P\left(s_{1} U_{j}\left(s_{1} U_{j}-W_{j}\right)>x, s_{1} U_{j}>W_{j}\right)
$$

Since U_{j} and W_{j} are independent the conditional law of U_{j} given $W_{j}=w$ is standard normal. So

$$
P\left(s_{1} U_{j}\left(s_{1} U_{j}-W_{j}\right)>x, s_{1} U_{j}>W_{j}\right)=\int P(Z(Z-w)>x, Z>w) F_{j}(d w)
$$

The tail of the normal distribution is exponential in the following sense. Assume $Z \sim N(0,1)$ and $\mathrm{E}(Z)=0$ and let $\lambda \rightarrow \infty$. Then we can use Mill's ratio to prove

$$
\begin{equation*}
\lim _{\lambda \rightarrow \infty} P(Z(Z-\lambda)>x \mid Z>\lambda)=e^{-x} \text { for } x>0 \tag{3}
\end{equation*}
$$

In fact define

$$
u(x, \ell)=\frac{\ell+\sqrt{\ell^{2}+4 x}}{2}
$$

then

$$
P(Z(Z-\lambda)>x \mid Z>\lambda)=P(Z>u(x, \lambda) \mid Z>\lambda)=\frac{1-\Phi(u(x, \lambda))}{1-\Phi(\lambda)}
$$

The limit, as $\lambda \rightarrow \infty$, of this ratio is the same, by the Mill's ratio inequalities as the limit of

$$
\frac{\lambda \phi(u(x, \lambda))}{u(x, \lambda) \phi(\lambda)}
$$

Standard calculus techniques finish the proof of (3).
Let

$$
\Psi(\ell)=\sup _{\lambda \geq \ell}\left|P(Z(Z-\lambda)>x \mid Z>\lambda)-e^{-x}\right|
$$

and notice that $\Psi(\ell)$ decreases to 0 as ℓ increases. Then for any $\ell>0$ we have

$$
\begin{aligned}
\left|P(T>x)-e^{-x}\right| & =\left|\sum_{j, s_{1}} P\left(s_{1} U_{j}\left(s_{1} U_{j}-W_{j}\right)>x, s_{1} U_{j}>W_{j}\right)-e^{-x}\right| \\
& =\left|\sum_{j, s_{1}}\left\{P\left(s_{1} U_{j}\left(s_{1} U_{j}-W_{j}\right)>x, s_{1} U_{j}>W_{j}\right)-e^{-x} P\left(s_{1} U_{j}>W_{j}\right)\right\}\right| \\
& =\left|\sum_{j, s_{1}} \int P\left(s_{1} U_{j}>w\right)\left\{P(Z(Z-w)>x \mid Z>w)-e^{-x}\right\} F_{j}(d w)\right| \\
& \leq \sum_{j, s_{1}} F_{j}(\ell)+\Psi(\ell) \sum_{j, s_{1}} P\left(s_{1} U_{j}>W_{j}>\ell\right)
\end{aligned}
$$

The second term is bounded by $\Psi(\ell)$ which goes to 0 for any sequence $\ell=\ell_{n}$ tending to infinity with n. To get a theorem we assume that for each fixed ℓ that first term goes to 0 . That implies the existence of a sequence $\ell=\ell_{n}$ increasing to infinity for which the first term converges to 0 giving

$$
\left|P(T>x)-e^{-x}\right| \rightarrow 0
$$

Our theorem is

Theorem 1. Suppose that the W_{j} converge to ∞ in probability uniformly in the fairly strong sense that for each fixed w we have

$$
\mathrm{E}\left(\#\left\{j: W_{j} \leq w\right\}\right)=\sum_{j} P\left(W_{j} \leq w\right) \rightarrow 0 .
$$

Then

$$
\lim _{n, p \rightarrow \infty} P\left(\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)>x \sigma^{2}\right)=e^{-x}
$$

More or less the end of what I said in Lecture 3
 From here on the notes have not been updated

The condition looks hard to check but is actually rather mild. It really imposes a condition on the correlation structure of the U_{i}. Many LASSO results impose conditions on the correlations which require there to be no correlations too close to 1 . What is needed here, though, is that W_{j} is larger than the maximum of a large number of independent normal variables whose variance is bounded below by some $\delta>0$.

Theorem 2. Suppose there is $a \delta>0$ and for each p such that for each j there is a set of indices S_{p} of cardinality at least $d_{p}+1$ with $j \in S_{p}$ and such that for each $i \in S_{p}, i \neq j$ we have

$$
\operatorname{Var}\left(U_{i} \mid U_{k}, k \in S_{p}, k \neq i\right) \geq \delta^{2}
$$

If

$$
\frac{\log p}{d_{p}} \rightarrow 0
$$

then the condition

$$
\mathrm{E}\left(\#\left\{j: W_{j} \leq w\right\}\right)=\sum_{j} P\left(W_{j} \leq w\right) \rightarrow 0 .
$$

of the previous theorem holds.

Proof: We will find $\rho<1$ such that

$$
P\left(W_{j} \leq w\right) \leq \rho^{d_{p}}
$$

for all j. The desired conclusion then follows easily since the sum is at most $p \rho^{d_{p}}$.

Fix j and let S_{p} be the corresponding set of indices. Then

$$
\begin{aligned}
W_{j} & =\max _{k \neq j, s \in\{-1,1\}}\left\{\frac{s\left(U_{k}-\rho_{k j} U_{j}\right)}{1-s \rho_{k j} s_{1}}\right\} \\
& \geq \max _{k \neq j}\left\{\frac{\left|U_{k}-\rho_{k j} U_{j}\right|}{2}\right\} \\
& \geq \max _{k \in S_{p}, k \neq j}\left|V_{k}\right|
\end{aligned}
$$

where V_{k} is temporary shorthand for $\left(U_{k}-\rho_{k j} U_{j}\right) / 2$. There are $m \equiv\left|S_{p}\right|$ different V_{k} with $m \geq d_{p}$ and I will simplify the notation by labelling them as V_{1}, \ldots, V_{m}. I now want to bound

$$
\begin{aligned}
P\left(W_{j} \leq w\right) & \leq P\left(\left|V_{1}\right| \leq w, \ldots,\left|V_{m}\right| \leq w\right) \\
& =P\left(\left|V_{1}\right| \leq w, \ldots,\left|V_{m-1}\right| \leq w\right) P\left(\left|V_{m}\right| \leq w,\left|\left|V_{1}\right| \leq w, \ldots,\left|V_{m-1}\right| \leq w\right)\right.
\end{aligned}
$$

First I note that if G is a $N\left(\mu, \sigma^{2}\right)$ random variable then

$$
P(|G| \leq w) \leq P(|G-\mu| \leq w)=\Phi(w / \sigma)-\Phi(-w / \sigma)
$$

For each k the variables $\left(U_{j}, V_{1}, \ldots, V_{k}\right)$ are multivariate normal so that the conditional law of V_{k} given U_{j} and V_{1}, \ldots, V_{k-1} is normal with variance

$$
\begin{aligned}
\operatorname{Var}\left(U_{k} \mid U_{j}, V_{1}, \ldots, V_{k-1}\right) & =\operatorname{Var}\left(U_{k} \mid U_{j}, U_{1}, \ldots, U_{k-1}\right) \\
& \geq \operatorname{Var}\left(U_{k} \mid U_{i}, i \in S, i \neq k\right) \\
& \geq \delta^{2}
\end{aligned}
$$

The first equality arises because $U_{j}, V_{1}, \ldots, V_{k-1}$ is one to one with $U_{j}, U_{1}, \ldots, U_{k-1}$. (Notationally, of course, I am temporarily labelling the entries in U so that $j>k$.) The inequality on the next line arises because adding variables to a conditioning set always decreases the variance. Remember

$$
\operatorname{Var}(A \mid C)=\mathrm{E}(\operatorname{Var}(A \mid B, C) \mid C)+\operatorname{Var}(\mathrm{E}(A \mid B, C) \mid C) \geq \mathrm{E}(\operatorname{Var}(A \mid B, C) \mid C)
$$

For jointly Gaussian variates that inner conditional variance is not random, of course so we get

$$
\operatorname{Var}(A \mid C) \geq \operatorname{Var}(A \mid B, C)
$$

It follows that

$$
P\left(\left|V_{k}\right| \leq w \mid V_{1}, \ldots, V_{k}\right) \geq \rho \equiv \Phi(w / \delta)-\Phi(-w / \delta)
$$

Then

$$
\begin{aligned}
P\left(\left|V_{m}\right| \leq w\right. & \| V_{1}\left|\leq w, \ldots,\left|V_{m-1}\right| \leq w\right) \\
& =\mathrm{E}\left[P\left(\left|V_{k}\right| \leq w \mid V_{1}, \ldots, V_{k}\right) 1\left(V_{1}\left|\leq w, \ldots,\left|V_{m-1}\right| \leq w\right)\right]\right. \\
& \leq \rho P\left(V_{1}\left|\leq w, \ldots,\left|V_{m-1}\right| \leq w\right)\right.
\end{aligned}
$$

We find inductively that

$$
P\left(W_{j} \leq w\right) \leq P\left(\left|V_{1}\right| \leq w\right) \rho^{m} \leq \rho^{d_{p}} .
$$

In the last inequality we used $P\left(\left|V_{1}\right| \leq w\right) \leq \rho$ which may be checked by conditioning on U_{j}.

One of our findings is that this is a better approximation than usual extreme value theory. I won't talk about it in class but here is some commentary.

There are two natural ways to plot the quality of this approximation. The first, in Figure 2.5, plots the approximate P-value

$$
P(Z(Z-\lambda)>v \mid Z>\lambda) \approx e^{-v}
$$

against the exact P-value

$$
P(Z(Z-\lambda)>v \mid Z>\lambda)=P(Z>u(v, \lambda) \mid Z>\lambda)=\frac{1-\Phi\{u(v, \lambda)\}}{1-\Phi(\lambda)}
$$

for the values $\lambda=2,3,4,5,6$. It will be seen that the plots lie very close to the line $y=x$. A less favourable view focuses on the quality of the approximation when the P-value is low. In Figure 2.5 I plot the ratio

$$
\frac{e^{-v}}{P(Z>u(v, \lambda) \mid Z>\lambda)}
$$

against $P(Z>u(v, \lambda) \mid Z>\lambda)$ for the same set of λ values. It may be worth saying that $\lambda=6$ is very very far in the normal tail; we are conditioning on an event of probability 2×10^{-9}.
2.6. Extensions and criticism. Lockhart et al. [2014] extend the ideas to try to handle the case where there is some true active set A_{0}. They imagine following the LASSO (LARS) path down to the k th knot and assume that a variable, say variable J_{k} joins the active set at λ_{k}. Suppose A_{k-1} is the active set not including this variable and A_{k} is $A_{k-1} \cup\left\{J_{k}\right\}$. They try to test the null hypothesis that the active set A_{k-1} includes A_{0}. The active set A_{k-1} is random so there is some

Figure 3. Plot of approximate approximate tail probability $P(Z(Z-\lambda)>x \mid Z>\lambda) \approx \exp (-x)$ against the true tail probability $P(Z(Z-\lambda)>x \mid Z>\lambda)=P(Z>u(x, \lambda) \mid Z>\lambda)$ where Z is standard normal for values of $\lambda \in\{2,3,4,5,6\}$

controversy over whether you can call it a hypothesis if the null hypothesis tested is random.

The test statistic compares two fitted values but now I have to be more careful. Earlier I said we compared two fits at λ_{1} and at λ_{2} but this was only right for the first knot because one of the fits was the same at λ_{1} as it was at λ_{2} (the fit with no predictors at all). In general we actually compare two fits at the next knot, λ_{k+1}. One fit uses the LASSO at λ_{k+1} and gives the fitted vector

$$
X \hat{\boldsymbol{\beta}}_{\lambda_{k+1}}=\boldsymbol{X}_{A_{k}} \text { bbeta }_{\lambda_{k+1}, A_{k}}
$$

Figure 4. Ratio, as a function of x, of approximate tail probabilities $P(Z(Z-\lambda)>x \mid Z>\lambda) \approx \exp (-x)$ divided by true tail probabilities $P(Z(Z-\lambda)>x \mid Z>\lambda)=P(u(Z, \lambda)>x)$ where Z is standard normal and λ is $2,3,4,5$, and 6 .

That fit uses the larger set of predictors including J_{k}. The other fit uses only the predictors in A_{k-1} but fits the LASSO at λ_{k+1} using this restricted set of predictors. Define $\tilde{\boldsymbol{\beta}}_{\lambda, A}$ to minimize

$$
J_{\lambda, A}\left(\boldsymbol{\beta}_{A}\right)=\frac{1}{2}\left\|\boldsymbol{Y}-\boldsymbol{X}_{A} \boldsymbol{\beta}_{A}\right\|+\lambda \sum_{j \in A}\left|\beta_{j}\right| .
$$

The test statistic is again the change in scaled covariance

$$
T \equiv \frac{\boldsymbol{Y}^{\top} \boldsymbol{X}_{A_{k}} \hat{\beta}_{\lambda_{k+1}, A_{k}}-\boldsymbol{Y}^{\top} \boldsymbol{X}_{A_{k-1}} \tilde{\beta}_{\lambda_{k+1}, A_{k-1}}}{\hat{\sigma}^{2}}
$$

Notice that in the global null hypothesis the active set A_{k-1} is actually empty so the fitted value is 0 whether I fit at λ_{1} or at λ_{2}. Other choices seem possible, of course, but we did not fully analyse them all. For instance we could compare, as I suggested earlier the fit using A_{k-1} at λ_{k} to the fit using A_{k} at λ_{k+1}. I remark that the fit at λ_{k} can be made including J_{k} (as indicated in the formula) or not since the variable being added at λ_{k} has coefficient 0 at that exact λ value. The theorem is that T is stochastically smaller than a standard exponential variable under that null hypothesis and some strong assumptions. The most important of these assumptions is that A_{k-1} is nearly deterministic - there is a set A^{*} of indices which includes A_{0} and has $P\left(A_{k-1}=A^{*}\right) \rightarrow 1$ as $n, p \rightarrow \infty$. In the LASSO literature literature there are many papers giving conditions under which the first k variables in the model are exactly the k truly active variables; these conditions would be sufficient for the theory here.

The conclusions are weaker than in the general case. Several problems arise:

- When I was computing λ_{2} I began with the assertion that for all the coefficients $\beta_{j}, j \neq J_{1}$ to be 0 the left and right derivatives of the penalty with respect to each such j had to be on opposite sides of 0 at the estimate. Suppose I have computed knots $\lambda_{1}>\cdots>\lambda_{k}$ and that A is the active set for λ just less than λ_{k}. For j not in the active set the inequalities mentioned are
$\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1}\left(\boldsymbol{U}_{A}-\lambda S_{A}\right)-U_{j}-\lambda \leq 0 \leq \boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1}\left(\boldsymbol{U}_{A}-\lambda S_{A}\right)-U_{j}+\lambda$.
I then rewrite them as
$-\lambda\left(1+\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} S_{A}\right) \leq U_{j}-\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} \boldsymbol{U}_{A} \leq \lambda\left(1-\boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} S_{A}\right)$
If G_{1}, G_{2} are jointly Gaussian with mean 0 and partitioned covariance matrix

$$
\boldsymbol{\Sigma}=\left[\begin{array}{ll}
\boldsymbol{\Sigma}_{11} & \boldsymbol{\Sigma}_{12} \\
\boldsymbol{\Sigma}_{21} & \boldsymbol{\Sigma}_{22}
\end{array}\right]
$$

then the (true) residual, $G_{1}-\mathrm{E}\left(G_{1} \mid G_{2}\right)$ when G_{1} is regressed on G_{2} is

$$
G_{1}-\boldsymbol{\Sigma}_{12} \boldsymbol{\Sigma}_{22}^{-1} G_{2}
$$

with variance

$$
\Sigma_{11}-\Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
$$

So you see that the central term in the chain of inequalities is just such a residual. When I was studying the global null hypothesis I divided through by the coefficient of λ on each side of this equation to get a lower bound for λ. In general, however, the term

$$
1 \pm \boldsymbol{X}_{j}^{\top} \boldsymbol{X}_{A}\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} S_{A}
$$

could be negative for one of the two sign choices. Dividing through gives an upper bound for λ, not a lower bound. This complication is dealt with at length in Lockhart et al. [2014] but it will be seen that it is assumed out of existence in the large sample theory given there.

- When computing the next knot, λ_{k+1} it may happen, as in the Riboflavin data set at knot 10 , that rather than adding a variable, a variable must be deleted. If A_{k} is the active set for λ just smaller than λ_{k} then the estimated coefficients at such a λ are

$$
\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1}\left(\boldsymbol{U}_{A}-\lambda \boldsymbol{S}_{A}\right)=\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} \boldsymbol{U}_{A}-\lambda\left(\boldsymbol{X}_{A}^{\top} \boldsymbol{X}_{A}\right)^{-1} \boldsymbol{S}_{A}
$$

It is possible that for some index $j \in A$ the j th component of the first term has the opposite sign to the j th component. In this case that component of the estimate is moving towards 0 , not away, as λ shrinks. The estimate is linear in λ so set it equal to 0 and solve. Now for each j in the active set you have computed a value, say $\lambda_{j}^{\text {del }}$ at which the coefficient would be 0 . If this is more than λ_{k} ignore it. Let $\lambda^{\text {del }}$ be the maximum of all those $\lambda_{j}^{\text {del }}$ which are less than λ_{k}. The theory in the paper makes a very strong assumption that prevents (with probability tending to 1) any deletion before two more additions to A under the null hypothesis.

- The estimate $\tilde{\beta}_{A}$ considers only variables in A and not, in particular, the variable J_{k} which joined at λ_{k}. Because J_{k} is not included in the active set, when computing $\tilde{\beta}_{A}$ it could happen that one of the coefficients in the LASSO solution using only the variables in A hits 0 in the interval $\lambda_{k+1}<\lambda<\lambda_{k}$. Again the paper makes the assumption that the chance this happens is negligible in the limit
- The actual test statistic takes the form

$$
\frac{C \lambda_{k}\left(\lambda_{k}-\lambda_{k+1}\right)}{\hat{\sigma}^{2}}
$$

The number C is computable from the values of J_{k}, S_{k}, and the design matrix \boldsymbol{X} (using only the columns in the active set after adding J_{k}). Conditional on these values the variable $\sqrt{C} \lambda_{k}$ is standard normal but the statistic does not then have the conditional form $Z(Z-M)$ given $Z>M$ with Z standard normal. The result is that the statistic is actually stochastically smaller than exponential; this should be expected to result in diminished power.
In reading papers it is important to look for things that might be regarded as weaknesses. Lockhart et al. [2014] has a few, in my view:

- Its handling of estimation of σ is unconvincing.
- The paper illustrates the mechanics of computing P-values with this exponential distribution using some prostate cancer data in which $n=67$ and $p=8$. It is important to remember that the theory developed is making an approximation to the tails of a normal distribution. For the global null in this problem we are looking at the largest of 8 Gaussian's and making an extreme value computation. Our limit theory requires $p \rightarrow \infty$.
- The use of conservative limits is quite unattractive. Suppose you have a test statistic, T, which you pretend has an exponential distribution with mean 1 under some null hypothesis. If the distribution is exponential but the real mean is $1 / 2$ and we observe $T=2.5$ then our computed P-value using the standard exponential is 0.082 while if we use the correct exponential mean we get a P-value of 0.0067 . In such a case we would be giving away a lot of power.

3. Conditional Inference

The criticisms I enumerated of Lockhart et al. [2014] led to a number of papers from my collaborators. In particular they noticed the key point. We are approximating $P(Z(Z-M)>x \mid Z>M) \approx \exp (-x)$. But we can compute exactly $P(Z(Z-M)>x \mid Z>M, M=m)$ so if we could just condition on the value of M we would not need to rely on the exponential limit.

Tibshirani et al. [2016] implements this conditioning idea.
3.1. Global null test. Here is the simplest version. Consider a general design with the standardization as before; assume $\sigma=1$ is known. At $\lambda=\lambda_{1}$ variable J_{1}
is entered into the model with sign S_{1}. At $\lambda=\lambda_{2}<\lambda_{1}$ a second variable enters the model We begin with testing the global null hypothesis $\boldsymbol{\beta}=0$ using our test statistic

$$
T=\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right) .
$$

If we observe $T=t_{\text {obs }}$ then the P-value is naturally

$$
P_{H_{o}}\left(T>t_{\mathrm{obs}}\right)
$$

This probability was approximated above. We are treating \boldsymbol{X} as fixed (our model holds conditionally on \boldsymbol{X}) so the P-value depends on \boldsymbol{X} in principle and is hard to compute. We could, however, try to compute a conditional P-value

$$
p_{\text {cond }}=P_{H_{o}}\left(T>t_{\mathrm{obs}} \mid J_{1}=j_{1, \mathrm{obs}}, S_{1}=s_{1, \mathrm{obs}}\right)
$$

which is also hard. On the event $J_{1}=j_{1}, S_{1}=s_{1}$ however we have

$$
\lambda_{2}=\max _{j \neq j_{1}, s \in\{-1,1\}}\left\{\frac{s\left(U_{j}-\rho_{j j_{1}} U_{j_{1}}\right)}{1-s \rho_{j_{1} 1_{1}} s_{1}}\right\}
$$

which is independent of $U_{j_{1}}$. Thus when the null hypothesis $\boldsymbol{\beta}=0$ holds we have

$$
P\left(S_{1} U_{J_{1}}>z \mid J_{1}=j_{1}, S_{1}=s_{1}, \lambda_{2}=\ell\right)=P(Z>z \mid Z>\ell)
$$

where Z is standard normal. Write this as

$$
P\left(S_{1} U_{J_{1}}>z \mid J_{1}=j_{1}, S_{1}=s_{1}, \lambda_{2}=\ell\right)=\frac{1-\Phi(z)}{1-\Phi(\ell)}
$$

where Φ is the standard normal cumulative. So: given $\mid J_{1}=j_{1}, S_{1}=s_{1}, \lambda_{2}=\ell$ the random variable

$$
p=\frac{1-\Phi\left(s_{1} U_{j_{1}}\right)}{1-\Phi\left(\lambda_{2}\right)}=\frac{1-\Phi\left(\lambda_{1}\right)}{1-\Phi\left(\lambda_{2}\right)}
$$

has a uniform distribution on the unit interval. Since that conditional distribution is free of J_{1}, S_{1}, and λ_{2} we see that p is a valid unconditional P-value for our global null hypothesis.

Theorem 3. Suppose \boldsymbol{Y} is an n-dimensional response vector and \boldsymbol{X} is an $n \times p$ non-random design matrix. Assume that

$$
\boldsymbol{Y}=\boldsymbol{X} \boldsymbol{\beta}+\boldsymbol{\epsilon}
$$

where the entries in $\boldsymbol{\epsilon}$ are iid standard normal, the columns of \boldsymbol{X} have been centred and standardized and are in standard position. Under the null hypothesis the
quantity

$$
p=\frac{1-\Phi\left(\lambda_{1}\right)}{1-\Phi\left(\lambda_{2}\right)}
$$

has a Uniform[0,1] distribution.
The P-value p here is a test statistic which is its own P-value; a one sided test rejects at level α if $p<\alpha$. Tibshirani et al. [2016] call this a emphspacings test.

Notice the assumptions: centring, scaling and general position. This new procedure appears to be unrelated to the earlier test statistic $T=\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)$ but given $J_{1}=j_{1}, S_{1}=s_{1}$ and $\lambda_{2}=\ell$ the event $T>x$ is equivalent to $\lambda_{1}>u\left(\lambda_{2}, x\right)$ where as before

$$
u(x, \ell)=\frac{\ell+\sqrt{\ell^{2}+4 x}}{2}
$$

So a transformation of T by its conditional survival function is equivalent to a transformation of λ_{1} by its conditional survival function (given J_{1}, S_{1} and λ_{2}).

Also, when λ_{2} is large and p is not too close to 0 the right hand side must be well approximated by $\exp \left(-\lambda_{1}\left(\lambda_{1}-\lambda_{2}\right)\right)$, the P-value from the previous covariance test.
3.2. Corresponding confidence intervals. Now consider the question of confidence intervals. The idea is simple. Suppose only variable 1 has a non-zero coefficient. If we regress \boldsymbol{Y} on the "correct" covariate \boldsymbol{X}_{1} then the least squares estimate of β_{1} is simply $U_{1}=\boldsymbol{X}_{1}^{\top} \boldsymbol{Y}$ after our scaling. In the model selection world, however, we will likely only be interested in this estimate if we select variable 1 by the LASSO - that is, we find $J_{1}=1$. So now I will imagine doing the following. Run the LASSO for one step and find variable J_{1}. Assume that variable 1 is the only variable with a non-zero regression coefficient, $\beta_{1}=\mathrm{E}\left(U_{1}\right)=\mathrm{E}\left(\boldsymbol{X}_{1}^{\top} \boldsymbol{Y}\right)$.

When I actually run LASSO, however, I will get variable J_{1} entering with sign S_{1}. If I see $J_{1}=j_{1}$ I will be hoping that j_{1} is an active variable (in fact I rather hope it is the only active variable). Then I will want a confidence interval for $\beta_{j_{1}}$. If j_{1} were the unique active variable then I would be interested in the mean of $\boldsymbol{X}_{j_{1}}^{\top} \boldsymbol{Y}$ which would be β_{1}. So I imagine that having observed $J_{1}=j_{1}$ I will consider getting a confidence interval for $\mathrm{E}\left(\boldsymbol{X}_{j_{1}}^{\top} \boldsymbol{Y}\right)=\boldsymbol{X}_{j_{1}}^{\top} \mathrm{E}(\boldsymbol{Y})$.

In the situation I described where only variable 1 is active then the expected value of \boldsymbol{Y} is simply $\beta_{1} \boldsymbol{X}_{1}$ so I will look for a confidence interval for

$$
\boldsymbol{X}_{j_{1}}^{\top} \boldsymbol{X}_{1} \beta_{1}=\rho_{j_{1}, 1} \beta_{1} .
$$

This quantity is the regression of the true mean of \boldsymbol{Y} on $\boldsymbol{X}_{j_{1}}$. I acknowledge that some people will feel let-down. We are not getting a confidence interval for β_{1}. But if your model selection picked variable 12 there is no way you can maintain that you are interested in the coefficient of a variable you have eliminated from your model. Instead we just say - I am making the best linear approximation I can to predicting \boldsymbol{Y} from $\boldsymbol{X}_{j_{1}}$ by predicting its mean as well as I can.

Theorem 4. Suppose \boldsymbol{Y} is an n-dimensional response vector with independent normally distributed entries (given \boldsymbol{X}) with variance 1 (given \boldsymbol{X}) and $\mathrm{E}\left(Y_{i} \mid \boldsymbol{X}\right)=$ θ_{i}. Define $\psi_{j}=\boldsymbol{X}_{j} \boldsymbol{\theta}$. Assume that the columns of \boldsymbol{X} have been centred and standardized and are in standard position. Then

$$
\begin{aligned}
& P\left(\lambda_{1}>x \mid J_{1}=j_{1}, S_{1}=s_{1},\left\{U_{j}-\rho_{j j_{1}} U_{j_{1}} ; j \neq j_{1}\right\}\right)= \\
& \quad P\left(s_{1}\left(Z+\psi_{j}\right)>x \mid s_{1}\left(Z+\psi_{j}\right)>\ell\right)=\frac{1-\Phi\left(x-s_{1} \psi_{j}\right)}{1-\Phi\left(\ell-s_{1} \psi_{j}\right)}
\end{aligned}
$$

where $\ell=\lambda_{2}$ (computed from $\left\{U_{j}-\rho_{j_{1} j_{1}} U_{j_{1}} ; j \neq j_{1}\right\}$). Thus

$$
\frac{1-\Phi\left(\lambda_{1}-S_{1} \psi_{J_{1}}\right)}{1-\Phi\left(\lambda_{2}-S_{1} \psi_{J_{1}}\right)}
$$

is a pivot; it has a Uniform[0,1] distribution.
So if we solve the inequalities

$$
\frac{\alpha}{2} \leq \frac{1-\Phi\left(\lambda_{1}-S_{1} \psi_{J_{1}}\right)}{1-\Phi\left(\lambda_{2}-S_{1} \psi_{J_{1}}\right)} \leq 1-\frac{\alpha}{2}
$$

to get

$$
c_{L} \leq \psi_{J_{1}} \leq c_{U}
$$

then $\left(c_{L}, c_{U}\right)$ is a level $1-\alpha$ confidence interval for $\Psi_{J_{1}}$. Notice that the target of the interval is random. As a result you might feel it is not a confidence interval because $\Psi_{J_{1}}$ is not a parameter. But I argue it plays the role of a confidence interval in a perfectly natural way.
3.3. Forward Stepwise Algorithm, General Step. The forward stepwise method for variable selection selects variables to add to the model sequentially. It begins by regressing \boldsymbol{Y} on each column \boldsymbol{X}_{j} of \boldsymbol{X} and selecting variable $J_{1}=j_{1}$ if the that variable minimizes the Error Sum of Squares - or equivalently maximizes the Regression Sum of Squares, the squared length of the fitted vector. Then a
second variable J_{2} is added to minimize the Error Sum of Squares over all two variable models including variable J_{1}. This procedure continues. I will discuss this procedure under the condition that each model contains an intercept term.

The result is that I may assume that the columns of \boldsymbol{X} have been centred; remember fitted values depend only on the column space of the design matrix. Similarly fitted values and the ESS are unaffected if the columns of \boldsymbol{X} are rescaled so I will again take \boldsymbol{X} to be a correlation matrix.

If we regress \boldsymbol{Y} on \boldsymbol{X}_{j} the centred fitted vector is then

$$
\boldsymbol{X}_{j} \boldsymbol{X}_{j}^{\top} \boldsymbol{Y}=\boldsymbol{X}_{j} U_{j}
$$

The squared length of this vector is

$$
U_{j}^{2}=\left(\boldsymbol{X}_{j}^{\top} \boldsymbol{Y}\right)^{2}
$$

The variable $J_{1}=j_{1}$ maximizes this length if

$$
s_{1} U_{j_{1}}>s U_{k}
$$

for $s_{1}=\operatorname{sign}\left(U_{j_{1}}\right)$ and all $k \neq j_{1}$ and signs $s \in\{-1,1\}$. This is a set of $2(p-1)$ inequalities:

$$
\begin{gathered}
\left(s_{1} \boldsymbol{X}_{j_{1}}+\boldsymbol{X}_{1}\right)^{\top} \boldsymbol{Y}>0 \\
\left(s_{1} \boldsymbol{X}_{j_{1}}-\boldsymbol{X}_{1}\right)^{\top} \boldsymbol{Y}>0 \\
\vdots \\
\left(s_{1} \boldsymbol{X}_{j_{1}}-\boldsymbol{X}_{p}\right)^{\top} \boldsymbol{Y}>0
\end{gathered}
$$

where we omit the two rows where the second index would be j_{1}. Thus the event $J_{1}=j_{1}$ and $S_{1}=s_{1}$ is the event

$$
\Gamma_{1} \boldsymbol{Y} \geq 0
$$

where Γ_{1} is a $2 p-2 \times n$ matrix with rows $\left(s_{1} \boldsymbol{X}_{j_{1}} \pm \boldsymbol{X}_{k}\right)^{\top}$. The matrix Γ_{1} depends on j_{1} and s_{1} though the notation hides that. The matrix is not random.

Now when we add a second variable to the model the new fitted vector for the model including the variable $J_{1}=j_{1}$ and some variable $k \neq j_{1}$ is the projection of \boldsymbol{Y} on the linear span of $\boldsymbol{X}_{j_{1}}$ and \boldsymbol{X}_{k}. This span is unaffected if we replace \boldsymbol{X}_{k} by
its standardized residual when we regress \boldsymbol{X}_{k} on $\boldsymbol{X}_{j_{1}}$; for clarity I replace \boldsymbol{X}_{k} by

$$
\boldsymbol{X}_{k}^{*}=\left(\boldsymbol{X}_{k}-\boldsymbol{X}_{k}^{\top} \boldsymbol{X}_{j_{1}} \boldsymbol{X}_{j_{1}}\right) / c
$$

and $c=\sqrt{1-\rho_{k, j_{1}}^{2}}$ is the length of the vector $\boldsymbol{X}_{k}-\boldsymbol{X}_{k}^{\top} \boldsymbol{X}_{j_{1}} \boldsymbol{X}_{j}$. The change in the Error Sum of Squares due to adding k is just the squared length of

$$
\boldsymbol{X}_{k}^{*} \boldsymbol{Y}
$$

Pick $J_{2}=j_{2}$ which maximizes this squared length and let $S_{2}=s_{2}$ be the sign of $\boldsymbol{X}_{j_{2}}^{*} \boldsymbol{Y}$. The condition that j_{2} is the maximizer with sign s_{2} is just

$$
s_{2} \frac{\left(\boldsymbol{X}_{j_{2}}-\boldsymbol{X}_{j_{2}}^{\top} \boldsymbol{X}_{j_{1}} \boldsymbol{X}_{j_{1}}\right)^{\top} \boldsymbol{Y}}{\sqrt{1-\rho_{j_{2}, j_{1}}^{2}}}>s \frac{\left(\boldsymbol{X}_{k}-\boldsymbol{X}_{k}^{\top} \boldsymbol{X}_{j_{1}} \boldsymbol{X}_{j_{1}}\right)^{\top} \boldsymbol{Y}}{\sqrt{1-\rho_{k, j_{1}}^{2}}}
$$

for all $k \notin\left\{j_{1}, j_{2}\right\}$ and $s \in\{-1,1\}$.
Again we may write the event $J_{1}=j_{1}, S_{1}=s_{1}, J_{2}=j_{2}, S_{2}=s_{2}$ in the form

$$
\Gamma_{2} \boldsymbol{Y}>0
$$

where the matrix Γ_{2} adds $2 p-4$ rows to Γ_{1}. This process may be continued to give explicit matrices Γ_{k} for which the event

$$
J_{1}=j_{1}, S_{1}=s_{1}, \ldots, J_{k}=j_{k}, S_{k}=s_{k}
$$

is exactly the event

$$
\Gamma_{k} \boldsymbol{Y}>0 .
$$

Definition: If Γ is a $q \times n$ matrix and \boldsymbol{u} is a q-vector then the

$$
\left\{\boldsymbol{x} \in \mathbb{R}^{q}: \Gamma \boldsymbol{x} \geq \boldsymbol{u}\right\}
$$

is a polytope which I am going to call a polyhedron. The inequality means that each entry in $\Gamma \boldsymbol{x}$ is at least as big as the corresponding entry in \boldsymbol{u}.

Theorem 5 (Polyhedral Lemma). Suppose \boldsymbol{Y} has a multivariate normal distribution in \mathbb{R}^{n} with mean $\boldsymbol{\theta}$ and covariance matrix $\boldsymbol{\Sigma}$. Suppose that $\boldsymbol{\Gamma}$ is some $q \times n$ matrix with jth row $\boldsymbol{\gamma}_{j}^{\top}$. Let \boldsymbol{v} be some n-vector. The covariance between $\boldsymbol{\Gamma} \boldsymbol{Y}$ and $\boldsymbol{v}^{\top} \boldsymbol{Y}$ is

$$
\Gamma \Sigma v
$$

Define

$$
\rho_{j}=\boldsymbol{\gamma}_{j}^{\top} \boldsymbol{\Sigma} \boldsymbol{v}\left(\boldsymbol{v}^{t} \boldsymbol{\Sigma} \boldsymbol{v}\right)^{-1}
$$

and

$$
\begin{aligned}
V^{+}(\boldsymbol{Y}) & =\max _{j: \rho_{j}>0}\left\{\frac{u_{j}-\left(\gamma_{j}^{\top} \boldsymbol{Y}-\rho_{j} \boldsymbol{v}^{\top} \boldsymbol{Y}\right)}{\rho_{j}}\right\} \\
V^{-}(\boldsymbol{Y}) & =\min _{j: \rho_{j}<0}\left\{\frac{u_{j}-\left(\gamma_{j}^{\top} \boldsymbol{Y}-\rho_{j} \boldsymbol{v}^{\top} \boldsymbol{Y}\right)}{\rho_{j}}\right\} \\
V^{0}(\boldsymbol{Y}) & =\min _{j: \rho_{j}>0}\left\{\gamma_{j}^{\top} \boldsymbol{Y}-\rho_{j} \boldsymbol{v}^{\top} \boldsymbol{Y}-u_{j}\right\}=\min _{j: \rho_{j}>0}\left\{\gamma_{j}^{\top} \boldsymbol{Y}-u_{j}\right\}
\end{aligned}
$$

Then $\boldsymbol{v}^{\top} \boldsymbol{Y}$ is independent of $\left(V^{+}(\boldsymbol{Y}), V^{-}(\boldsymbol{Y}), V^{0}(\boldsymbol{Y})\right)$ and the event $\boldsymbol{\Gamma} \boldsymbol{Y}>\boldsymbol{u}$ is the event

$$
V^{-}(\boldsymbol{Y})<\boldsymbol{v}^{\top} \boldsymbol{Y}<V^{+}(\boldsymbol{Y}), \quad V^{0}(\boldsymbol{Y})>0
$$

Proof: The independence is just a matter of computing covariances. The terms $\boldsymbol{\gamma}_{j}^{\top} \boldsymbol{Y}-\rho_{j} \boldsymbol{v}^{\top} \boldsymbol{Y}$ are the residuals when $\boldsymbol{v}^{\top} \boldsymbol{Y}$ is regressed on $\boldsymbol{\gamma}^{T} \boldsymbol{Y}$ so the covariances are 0 . The condition $\rho_{j}=0$ just amounts to saying $\boldsymbol{\gamma}_{j}^{\top} \boldsymbol{Y}$ has covariance 0 with $\boldsymbol{v}^{T} \boldsymbol{Y}$. The inequalities are elementary algebra. You should check back to the arguments surrounding the covariance test for the first variable in.

The polyhedral lemma tells you that the conditional distribution of $\boldsymbol{v}^{T} \boldsymbol{Y}$ given the event that \boldsymbol{Y} lands in the polyhedron given and the value of the residual when $\boldsymbol{v}^{\top} \boldsymbol{Y}$ is regressed on $\boldsymbol{\Gamma} \boldsymbol{Y}$ is normal between two limits. It shows you how to compute those limits. The independence means that the conditioning did not change the variance of $\boldsymbol{v}^{\top} \boldsymbol{Y}$ which is

$$
v^{\top} \Sigma v
$$

3.4. Extra ideas. Tibshirani et al. [2016] contains a number of other ideas.

- Whenever the polyhedral lemma applies you can get tests and confidence intervals for $\boldsymbol{v}^{\top} \theta$ using the Gaussian distribution with mean $\boldsymbol{v}^{\top} \theta$ conditioned to lie in the interval $\left[V^{-}, V^{+}\right]$.
- Sometimes the matrix Γ can be made smaller at the price of replacing the deterministic vector \boldsymbol{u} (which is often just full of 0 s) by a random vector \boldsymbol{U}; this vector should not be confused with the notation $\boldsymbol{U}=\boldsymbol{X}^{\top} \boldsymbol{Y}$ already in use. The simplification is acceptable is \boldsymbol{U} is also uncorrelated with $\boldsymbol{v}^{\top} \boldsymbol{Y}$;
typically that will happen when it is computed from the same vector of residuals.
- The paper details construction of the matrix Γ for LASSO and for LARS (like LASSO but no deletions are allowed - the LASSO and LARS paths coincide up to the first variable deletion for LASSO).
- The paper gives various approximate versions, for higher k, of the spacings test.
- You could also compute the conditional distribution of λ_{1} given only $J_{1}=j_{1}$ without condition on S_{1}. This conditions on \boldsymbol{Y} belonging to the union of two polytopes and the computations are harder.
- Sequential testing procedures are described but not studied in detail.
- There is a discussion by Larry Brown and Kory Johnson which expresses doubt that the methods have any value.
- The methods are implemented in selectedInference in R.
- Estimation of σ is again swept under the rug. The R package implements two methods. One uses an over estimate of σ which is just the sample standard deviation of \boldsymbol{Y}. This can be very conservative, of course. The other selects λ by cross-validation in the LASSO framework and then uses a suggestion for that context. In the RIboflavin example that estimate of σ is based on a fit to some 30 predictors. I feel, but cannot prove, that the estimate is too liberal - that is, too small - when I am thinking about whether or not to put in a single predictor or a second predictor. Of course the ordinary least squares estimate using the selected variable will be too liberal as well, typically.

The conditional inference method here accepts the model selection method as a good one and then tries simply to give confidence intervals for parameters of interest. Part of the difficulty lies in the fact that a good model selection procedure must use lots of the information in the data to select the model and have little left over for the fitting part. One might try to think about writing the log-likelihood in the form

$$
\log \{P(\hat{M}=M ; \boldsymbol{\beta})\}+\log \left\{f_{\boldsymbol{Y}}(y \mid \hat{M}=M ; \boldsymbol{\beta})\right\} .
$$

The Hessian of this is the total information about $\boldsymbol{\beta}$ and a strongly peaked first term would seem to rule out a strongly peaked second term.

References

A. Belloni, V. Chernozhukov, and L. Wang. Square-root lasso: pivotal recovery of sparse signals via conic programming. Biometrika, 98(4):791, 2011. doi: 10.1093/biomet/asr043. URL +http://dx.doi.org/10.1093/biomet/asr043. Richard Berk, Lawrence Brown, Andreas Buja, Kai Zhang, and Linda Zhao. Valid post-selection inference. Ann. Statist., 41(2):802-837, 04 2013. doi: 10.1214/ 12-AOS1077. URL http://dx.doi.org/10.1214/12-A0S1077.
Peter Bühlmann, Markus Kalisch, and Lukas Meier. High-dimensional statistics with a view toward applications in biology. Annual Review of Statistics and Its Application, 1(1):255-278, 2014. doi: 10.1146/ annurev-statistics-022513-115545. URL /brokenurl\#http://dx.doi.org/10. 1146/annurev-statistics-022513-115545.
Hannes Leeb and Benedikt M. Ptscher. Can one estimate the conditional distribution of post-model-selection estimators? Ann. Statist., 34(5):2554-2591, 10 2006. doi: 10.1214/009053606000000821. URL http://dx.doi.org/10.1214/ 009053606000000821.

Richard Lockhart, Jonathan Taylor, Ryan J. Tibshirani, and Robert Tibshirani. A significance test for the lasso. Ann. Statist., 42(2):413-468, 04 2014. doi: 10.1214/13-AOS1175. URL http://dx.doi.org/10.1214/13-AOS1175.

Ryan J. Tibshirani. The lasso problem and uniqueness. Electron. J. Statist., 7: 1456-1490, 2013. doi: 10.1214/13-EJS815. URL http://dx.doi.org/10.1214/ 13-EJS815.
Ryan J. Tibshirani, Jonathan Taylor, Richard Lockhart, and Robert Tibshirani. Exact post-selection inference for sequential regression procedures. Journal of the American Statistical Association, 111(514):600-620, 2016. doi: 10.1080/ 01621459.2015.1108848. URL http://dx.doi.org/10.1080/01621459.2015. 1108848.

Ishay Weissman. Estimation of parameters and larger quantiles based on the k largest observations. Journal of the American Statistical Association, 73(364): 812-815, 1978. ISSN 01621459. URL http://www. jstor.org/stable/2286285.

