INFERENCE IN HIGH-DIMENSIONAL LINEAR MODELS
COURSE NOTES

RICHARD LOCKHART

CONTENTS

1. Introduction

1.1. Motivating Analysis of Riboflavin Data
1.2.  Targets of inference

2. Model selection by the LASSO

References

Version of 24 January 2017.

10
10
11



RICHARD LOCKHART

Course schedule

Note: almost certain to change as time goes by

Jan 23 Introduction: framing of issues in high dimensional inference;
an example data set; some primitive inference methods;
discussion of scientific contexts.

Jan 30 LASSO for model selection before inference; Unconditional
limit theory for LASSO path; [2014]

Feb 6  Conditional inference given selection; Tibshirani et al (2016)
Feb 13 POSI: conservative inference schemes; Berk et al

Feb 20 Limits ; Leeb and Potscher

Feb 27 Debiasing: Biihlmann, van de Geer, Meinshausen

Mar 6  Javanmard, Montanari

Mar 13 Synthesis: comparison, strengths, weaknesses, my view of open
issues
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1. INTRODUCTION

These notes are to a accompany a series of 8, hopefully, lectures on the general
subject of inference in high dimensional linear models. They will develop over
the course of Lent Term 2017. The basic data structure will be as follows. We
have measurements Yi,...,Y, of some quantity which I will call the response.
Associated with Y; we have measurements X;,..., X, of some other quantities
which I will probably call covariates, predictors, or features; any use I may happen
to make of the last of these terms will be, or at least seem to be, forced. The high
dimensional part will concern situations where p is large — typically larger than n
but in any case substantial compared to n.

Some questions of interest to me include:

e In what scientific contexts is it important to provide inference for the pa-
rameters in a linear model?

e When we do model selection followed by inference how do we select a target
of inference?

e How much trade-off must there be between model selection and inference?

e To what extent does large sample theory provide useful guidance in these
problems?

e Do we want conditional or unconditional inference?

1.1. Motivating Analysis of Riboflavin Data. I am going to use some data
described in [ | to illustrate the sort of problem I intend to
talk about for the next 8 lectures. In the example the response variable, Y, is
the (base 2 logarithm of) production of riboflavin by a bacterium called Bacillus
subtilis. The covariates are logarithms of normalized expression levels for p = 4088
protein coding genes. A total of n = 71 bacterial samples were analyzed.

The idea is that some small number of genes control the production of riboflavin.
The expression data measures the extent to which a gene is ‘switched-on’; for a
gene which influences the production of riboflavin there ought to be a correlation
how switched-on the gene is and the actual production of riboflavin.

I am going to pretend that we have a sample of n independent and identically
distributed vectors (Y;, Xj1, ..., X;,). I will start with the basic question of whether
or not there is any relationship between any of the genes and riboflavin. We will
need some notation.

As usual we will stack the covariate values into a 71 x 4088 matrix, denoted X
with j™ column X ;. We will write X;; for the i entry and X4 for the submatrix
of X with columns whose indices j belong to A C {1,...,p}.

Global null hypothesis: We begin by considering the hypothesis, Hy, that Y
is independent of the set of covariates. I will replace that strong null hypothesis
with the weaker null hypothesis of of pairwise independence. For each j we have
a test statistic 7} for the null hypothesis, H;, that Y is independent of Xj;, the

j™ covariate. Then we test the global hypothesis that H; is true for every j.
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If we reject this hypothesis then of course we reject the original hypothesis of
independence but there do exist (exotic) joint laws for Y and the set of covariates
under which Y is independent each subset of fewer than k (with £ < p) of the
covariates but not independent of all p. As in virtually all testing problems there
is no uniformly most powerful test so we must choose where to focus our test —
which alternatives we want good power for.

Even if we accept this rationale there are many tests of bivariate independence to
choose from. I am simply going to use the ordinary Pearson correlation coefficient
r; between Y and the j™ covariate. Here is a plot of r; against the index j running
from 1 to 4088. I have highlighted with big red dots those points with |r;| > 0.6
— just a round number chosen so that there would not be too many dots. Notice
that 4 of the red dots are very close together.
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Now I turn these 4088 correlations into a single test statistic by taking max;{|r;|}.
I computed a P-value by a variety of methods: Bonferroni correction of 1 at a
time P-values from t-statistics; parametric bootstrap, taking the covariates as
fixed and generating Gaussian Y's; nonparametric bootstrap, resampling Y's with
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replacement independently of the covariates; permutation test, where I randomly
permute the Y's before computing the correlations.

The largest absolute value of a ¢ statistic is 5.4325 for variable 1278 which has the
name YXLD_at. All the methods I tried attached very small P-values to this test
statistic as a test of the hypothesis that all 4088 correlation coefficients are 0. For
the 3 simulation methods I generated 50,000 new values of Y by each method and
recomputed the maximal absolute correlation. I never saw any statistic values as
large at 5.4325. The parametric bootstrap and bootstrap methods each produced
a largest absolute t statistic around 5.13 while the permutation test managed a
5.24.

The uncorrected P-value for the ¢ statistic for variable 1278 would be 7.8 x 10~7;
after correction by multiplying by 4088 I get P = 0.0032 suggesting pretty strongly
that at least one of these covariates is related to Y. But the Bonferroni correction
is really quite conservative here. There are lots of strong correlations among the
t-statistics because there are some very strong correlations among the covariates.
Here are all the pairwise scatterplots among the top 6 variables.

Remark: An exact P-value is a random variable p which has, under some null
hypothesis, a Uniform[0,1] distribution. I call p a conservative P-value if P(p <<
u) < u for all w € [0,1] and the inequality is strict for some u. If py,...,p,, are
any m exact P-values (with any joint law whatsoever) then

Ead

P(3j5 :mp; <u)=P(m 1I<n1<1q {p;} <w) Z ; <u/m)=mu/m=u

SO

PBon = M 1g}l<nm{p] }

is a conservative P-value. Of course if each p; is conservative then the conclusion
still holds; the first equality just becomes an inequality.
The proof just uses the Bonferroni inequality

PUL{p; < u/m}) < ZP({pj <u/m})

If the events indicated have substantial overlaps (say because some p; are strongly
correlated with others) then the right hand side can be much larger than the left;
we say Bonferroni can be very conservative.
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Some commentary after seeing these plots and these statistics.

e There is no reasonable way the response is independent of the predictors.
e [ find it hard to believe that we are confident that variable 1278 is the
correct gene; distinguishing it from variable 1279 would appear to be very
hard.
Here is a small easy study. Consider regressing Y on two columns U, V'
with UTU = VIV =1 and UTV =1 — e. Generate the Y; independently
from a normal distribution with mean SU; and variance 1. Thus the true

model is
Y=Up+¢
with N(0,1) errors. We will consider fitting three regression models
Yi=aU; + ¢,
Y=V +¢,
and

Y:Uﬁl—i‘Vﬁg—i‘E
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The middle model is wrong in the sense that the errors in that model do
not have mean 0:

E(Y;) = BU; = aV;
is not true for any choice of «; if it were our conditions would guarantee
UV = +£1.

When we regress Y on U without an intercept we get a fitted slope
&1 = UTY with mean 3 and variance 1 while if we regress Y on V without
an intercept we get fitted slope & = V'Y with mean (1 — €)3. The
covariance between these two estimates is

Cov(UY,Y'U)=U"V =1-e

Since Y has a multivariate normal distribution the pair (&1, &) has a bi-
variate normal distribution with the given means and variance-covariance.

Now consider the sort of selection algorithm I am suggesting above where
we pick the covariate with the highest absolute correlation with Y as our
preferred predictor. This is what [ am doing when I pick out variable 1278.
In the example I get the right variable if |&; > |é2| so I will compute this
probability in the limit as € — 0. I will prove this probability is 1/2.

The probability I want is

WEEP(0<d2<d1)+P(O<—d2<—dl)
+P(O<—@2<d1)+P(0<d2<—dl).

Let
Q1 — Qg

V 2€
Then the joint distribution of 6 and G, is bivariate normal with mean
vector (81/€/2, B(1 —¢€), both variances equal to 1, and covariance —y/€/2.
As € — 0 this joint distribution then converges to bivariate normal with
identity covariance and means 0 and 3. Rewrite the events of interest in
terms of as and d to get

e =P(0 < Gg,0 > 0) + P(d2 < 0,6 < 0)
+ P(0 < —Gy < Gy + V260) + P(0 < dy < —V/260 — é).

In the limit the first two probabilities involve intersections of independent
events so the first two terms converge to

S:

%P(N(ﬁ, 1) > 0) + %P(N(ﬁ, 1) < 0) = %

In the limit € — 0 the other two terms become
P(0<—&2<d2)—|—P(0<d2<—dg):O

because the events indicated are empty. So lim, o7 = 1/2.
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Remark: if we regress Y on both U and V' we get 31, BQ with a bivariate
normal distribution with mean 3,0 and variance covariance matrix

1 1 —(1-¢
2¢ — €2 —(1—6) 1

which is, of course, huge for small e. Both variances are effectively 1/(2¢)
and the correlation converges to —1.

For the data at hand think of U as column 1278 and V' as column 1279.
Take 5 to be the slope of Y regressed on variable 1278 (ignoring the selec-
tion problems these lectures are actually about) and simulate new vectors
Y as described above. The correlation between U and V is 0.9845 so
e = 0.0155. For these settings it is easy to check that the probability that
the correlation with variable 1279 will be larger in absolute value than the
correlation with variable 1278 is close to 1/2. In other words — for the data
at hand the argument above is applicable.

When I discuss extreme value theory I hope I will deal more clearly with
the probability of this event intersected with the event that the variable
1278 produces the largest correlation. For the moment I will just say the
answer is essentially 1/2 under the (false, I believe) hypothesis that variable
1278 is the only variable needed to predict Y. NOTE: quite a different
picture emerges if we allow for selection and take a substantially smaller
value of 5. More about this later.

e [ also don’t believe that there is clear evidence about the number of non-
zero predictors.
[20141] uses a variety of methods on the Riboflavin data.
One finds no important predictors. One finds exactly variable 4003. One
marginal screening method (roughly trying to find which predictors have
unadjusted correlations with Y which could not credibly be 0) finds 53
genes when controlling the family wise (Type I) error rate at 0.05. Another,
controlling the False Discovery Rate at 10% finds 375 genes.

More or less the end of what I said in Lecture 1
From here on the notes have not been updated

More than one variable needed?

The central difficulty surrounding hypothesis testing arrives at this stage. We
are now sure that at least one variable is related to the production of riboflavin. I
want to test the hypothesis that none of the others is, adjusted for the one we have
found. But describing the problem that way assumes more than I have achieved.
The P-value I computed does not attach to the hypothesis that 1275 = 0. Instead
I have rejected the null hypothesis that all 3; are 0 and that is far from implying
that SBi278 # 0. The multi-sample splitting method of [ | splits
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the data set at random, selects a model based on one half, then uses the other half
to test the hypotheses Hy; : 3; = 0 for each variable included in the model. Then
it computes a Bonferroni adjusted P-value for that split. The process is repeated
and the P values are aggregated (carefully) to control the family wise error rate

P(Any true null hypothesis is rejected) < 0.05.

[ ] indicate that they found exactly 1 significant variable this
way. Using multi.split from the R package hdi I find: # 4003.

So taking note of the obvious difficulty I go on: is variable 1278 enough? Is
variable # 4003 enough? I need a model. I want to test the hypothesis that given
X278 the response Y is independent of all the other X;. Again I will replace that
with the hypothesis that each other X; is conditionally uncorrelated with Y give
Xio73. But this requires me to be able to condition on Xjs73 and I don’t know
how to do that without assumptions. So finally I assume that (Y, X3,..., X,) have
a multivariate normal distribution. I regress each X; on X973 and compute the
residuals. T do the same for Y. Now I have a new data set with say Y* and X and
compute 4087 correlation coefficients (or equivalently 4087 t-statistics). I get P
values by bootstrapping the Y* or permuting the Y*. Ignoring estimation error the
resampled Y* variable is independent of the X* variables. I find the correlation is
maximized for X402 and the associated P-values are estimated at 0.00052 for the
bootstrap and 0.00077 for the permutation scheme. Notice that I get the variable
right next door to Xyp03. These two variables are strongly correlated and although
the unadjusted correlation of X493 with Y is marginally larger than that of X2
with Y, this ordering is reversed after eliminating Xs7s.

I repeated the exercise removing the effects of Xio75 and Xyp00 on Y and on
all the other X; and was no longer able to reject the null that all the remaining
B; are 0. Of course, not rejecting a null is a far cry from asserting its truth. I
also repeated the second step of this exercise starting with variable Xyg03 (the one
picked by multi-split). Again I found another variable was needed. The most
likely candidate was Xjors.

My take is that there is reasonably strong evidence for the existence of more
than 1 important predictor but:

e [ would certainly do follow up work with these genes and all those highly
correlated with them.

e [ think the evidence that 1278 and 4002 are the important predictors is
very weak. But I suspect that one of 1278 and the things it is strongly
correlated to, together with 4003 or the things it is strongly connected to,
are needed.

e We have no clear idea what the evidence is about the size of the effects.

e Suppose I wanted to summarize my results by fitting some linear model of
Y on some or all of the X;. Should I offer confidence intervals for 4088 ;
in a regression of Y on all 4088 predictors? Should I regress Y on some
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subset of the 4088 — say just {1278,4002} and give confidence intervals for
the slopes in that regression?

o [ am not sure the 3; are of any real scientific interest given the pre-
processing of the gene expression data.

1.2. Targets of inference. I hope the example has shown that there are some
important issues to face up to. We are going to focus on a regression model of the
form

(1) Y =0,+X8+e€

where we assume that conditional on X the entries in € are independent and
identically distributed with mean 0 and variance o2. This situation arises in at

least two ways:

(1) The entries in the design matrix X are actually controlled by an experi-
menter / data collector. In compressed sensing applications, for instance,
these entries code up some expansion of some ‘image’ in terms of some set
of basis functions like wavelets or whatever. (I am not going to deal explic-
itly with any such problem but will talk about at least one deterministic
design.)

(2) The vectors Y;, Xj1, ..., X;, are independent and identically distributed and
the conditional expectation of Y; given the rest is linear with homoscedastic
errors. Essentially: the data are jointly multivariate normal and we have
an iid sample of size n.

The preliminary analysis I did above was focused on the second of these ideas.
But I want to point out two things.
First is nature of the response. Here are the first few sorted values of 10000 x 2¥.
> cat(10000*sort (27y))
10 13 13 26 30 31 31 32 33 35 35
You see that there is considerable discreteness in Y itself and this may be worth
remembering when we start to throw around assumptions like they were candy.
Second the rows of the data matrix riboflavin in R have names: the first three
observations are called
b_Fbat107PT24.CEL
b_Fbat107PT30.CEL
b_Fbat107PT48.CEL

I hope the names don’t mean the rows shouldn’t be thought of as an iid sample.

2. MODEL SELECTION BY THE LASSO
Traditionally we fit the model
Y = ﬁo + Xﬁ + €

by ordinary least squares minimizing
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