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Course schedule

Note: almost certain to change as time goes by

Jan 23 Introduction: framing of issues in high dimensional inference;
an example data set; some primitive inference methods;
discussion of scientific contexts.

Jan 30 LASSO for model selection before inference; Unconditional
limit theory for LASSO path; Lockhart et al. [2014]

Feb 6 Lockhart et al. [2014], continued.

Feb 13 Conditional inference given selection; Tibshirani et al. [2016].

Feb 20 Finish conditional inference; start debiasing/desparsifying;
Zhang and Zhang [2014].

Feb 27 Debiasing/desparsifying; van de Geer et al. [2014], Javanmard
and Montanari [2014b]

Mar 6 POSI, Berk et al. [2013]; Limits ; Leeb and Ptscher [2006]

Mar 13 Synthesis: comparison, strengths, weaknesses, my view of open
issues
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1. Introduction

These notes are to a accompany a series of 8, hopefully, lectures on the general

subject of inference in high dimensional linear models. They will develop over

the course of Lent Term 2017. The basic data structure will be as follows. We

have measurements Y1, . . . , Yn of some quantity which I will call the response.

Associated with Yi we have measurements Xi1, . . . , Xip of some other quantities

which I will probably call covariates, predictors, or features; any use I may happen

to make of the last of these terms will be, or at least seem to be, forced. The high

dimensional part will concern situations where p is large – typically larger than n

but in any case substantial compared to n.

Some questions of interest to me include:

• In what scientific contexts is it important to provide inference for the pa-

rameters in a linear model?

• When we do model selection followed by inference how do we select a target

of inference?

• How much trade-off must there be between model selection and inference?

• To what extent does large sample theory provide useful guidance in these

problems?

• Do we want conditional or unconditional inference?

1.1. Motivating Analysis of Riboflavin Data. I am going to use some data

described in Bühlmann et al. [2014] to illustrate the sort of problem I intend to

talk about for the next 8 lectures. In the example the response variable, Y , is

the (base 2 logarithm of) production of riboflavin by a bacterium called Bacillus

subtilis. The covariates are logarithms of normalized expression levels for p = 4088

protein coding genes. A total of n = 71 bacterial samples were analyzed.

The idea is that some small number of genes control the production of riboflavin.

The expression data measures the extent to which a gene is ‘switched-on’; for a

gene which influences the production of riboflavin there ought to be a correlation

how switched-on the gene is and the actual production of riboflavin.

I am going to pretend that we have a sample of n independent and identically

distributed vectors (Yi, Xi1, . . . , Xip). I will start with the basic question of whether

or not there is any relationship between any of the genes and riboflavin. We will

need some notation.
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As usual we will stack the responses into a 71 dimensional vector Y and the

covariate values into a 71× 4088 matrix, denoted X with jth column Xj. We will

write Xij for the ijth entry and XA for the submatrix of X with columns whose

indices j belong to A ⊂ {1, . . . , p}.

Global null hypothesis: We begin by considering the hypothesis, H0, that Y

is independent of the set of covariates. I will replace that strong null hypothesis

with the weaker null hypothesis of pairwise independence. For each j we have

a test statistic Tj for the null hypothesis, Hj, that Y is independent of Xj, the

jth covariate. Then we test the global hypothesis that Hj is true for every j.

If we reject this hypothesis then of course we reject the original hypothesis of

independence but there do exist (exotic) joint laws for Y and the set of covariates

under which Y is independent of each subset of fewer than k (with k < p) of the

covariates but not independent of all p. As in virtually all testing problems there

is no uniformly most powerful test so we must choose where to focus our test —

which alternatives we want good power for.

Even if we accept this strategy there are many tests of bivariate independence to

choose from. I am simply going to use the ordinary Pearson correlation coefficient

rj between Y and the jth covariate. Figure 1.1 is a plot of rj against the index

j running from 1 to 4088. I have highlighted with big red dots those points with

|rj| > 0.6 — just a round number chosen so that there would not be too many

dots. Notice that 4 of the red dots are very close together.

Now I turn these 4088 correlations into a single test statistic by taking maxi{|ri|}.
I computed a P -value by a variety of methods: Bonferroni correction of 1 at a

time P -values from t-statistics; parametric bootstrap, taking the covariates as

fixed and generating Gaussian Y s; nonparametric bootstrap, resampling Y s with

replacement independently of the covariates; permutation test, where I randomly

permute the Y s before computing the correlations.

The largest absolute value of a t statistic is 5.4325 for variable 1278 which has the

name YXLD at. All the methods I tried attached very small P -values to this test

statistic as a test of the hypothesis that all 4088 correlation coefficients are 0. For

the 3 simulation methods I generated 50,000 new values of Y by each method and

recomputed the maximal absolute correlation. I never saw any statistic values as

large at 5.4325. The parametric bootstrap and bootstrap methods each produced
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Figure 1. Plot of the correlation of the ith covariate with Y against
the index i from 1 to p = 4088 for the riboflavin data. Red dots
indicate correlations larger than 0.6 in absolute value.
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a largest absolute t statistic around 5.13 while the permutation test managed a

5.24.

The uncorrected P -value for the t statistic for variable 1278 would be 7.8×10−7;

after correction by multiplying by 4088 I get P = 0.0032 suggesting pretty strongly

that at least one of these covariates is related to Y . But the Bonferroni correction

is really quite conservative here. There are lots of strong correlations among the

t-statistics because there are some very strong correlations among the covariates.

Figure 1.1 shows all the pairwise scatterplots among the top 6 variables.

Remark: An exact P -value is a random variable p which has, under some null

hypothesis, a Uniform[0,1] distribution. I call p a conservative P -value if P (p ≤
u) ≤ u for all u ∈ [0, 1] and the inequality is strict for some u. If p1, . . . , pm are
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Figure 2. Pairwise scatterplots of Y and the 6 covariates whose es-
timated correlation coefficients with Y are more than 0.6 in absolute
value.
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any m exact P -values (with any joint law whatsoever) then

P (∃j : mpj ≤ u) = P

(
m min

1≤j≤m
{pj} ≤ u

)
≤

k∑
j=1

P (pj ≤ u/m) = mu/m = u

so

pBon = m min
1≤j≤m

{pj}
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is a conservative P -value. Of course if each pj is conservative then the conclusion

still holds; the first equality just becomes an inequality.

The proof just uses the Bonferroni inequality

P

(
m⋃
i=1

{pj ≤ u/m}

)
≤

m∑
i=1

P (pj ≤ u/m)

If the events indicated have substantial overlaps (say because some pj are strongly

correlated with others) then the right hand side can be much larger than the left;

we say Bonferroni can be very conservative.

Some commentary after seeing these plots and these statistics.

Comment 1: There is no reasonable way the response is independent of the

predictors.

Comment 2: I find it hard to believe that we are confident that variable 1278

is the correct gene; distinguishing it from variable 1279 would appear to be very

hard.

Here is a small easy study. Consider regressing Y on two columns U ,V with

U>U = V >V = 1 and U>V = 1 − ε. Generate the Yi independently from a

normal distribution with mean βUi and variance 1. Thus the true model is

Y = Uβ + ε

with N(0, 1) errors. We will consider fitting three regression models

Yi = α1Ui + εi,

Yi = α2Vi + εi,

and

Y = Uβ1 + V β2 + ε

The middle model is wrong in the sense that the errors in that model do not have

mean 0:

E(Yi) = βUi = αVi

is not true for any choice of α; if it were our conditions would guarantee U>V =

±1.

When we regress Y on U without an intercept we get a fitted slope α̂1 = U>Y

with mean β and variance 1 while if we regress Y on V without an intercept we
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get fitted slope α̂2 = V >Y with mean (1− ε)β. The covariance between these two

estimates is

Cov(U>Y ,Y >U) = U>V = 1− ε.

Since Y has a multivariate normal distribution the pair (α̂1, α̂2) has a bivariate

normal distribution with the given means and variance-covariance.

Now consider the sort of selection algorithm I am suggesting above where we

pick the covariate with the highest absolute correlation with Y as our preferred

predictor. This is what I am doing when I pick out variable 1278. In the example

I get the right variable if |α̂1| > |α̂2| so I will compute this probability in the limit

as ε→ 0. I will prove this probability is 1/2.

The probability I want is

πε ≡P (0 < α̂2 < α̂1) + P (0 < −α̂2 < −α̂1)

+ P (0 < −α̂2 < α̂1) + P (0 < α̂2 < −α̂1).

Let

δ̂ =
α̂1 − α̂2√

2ε

Then the joint distribution of δ̂ and α̂2 is bivariate normal with mean vector

(β
√
ε/2, β(1 − ε), both variances equal to 1, and covariance −

√
ε/2. As ε → 0

this joint distribution then converges to bivariate normal with identity covariance

and means 0 and β. Rewrite the events of interest in terms of α̂2 and δ to get

πε =P (α̂2 > 0, δ > 0) + P (α̂2 < 0, δ < 0)

+ P (0 < −α̂2 < α̂2 +
√

2εδ) + P (0 < α̂2 < −
√

2εδ − α̂2).

In the limit the first two probabilities involve intersections of independent events

so the first two terms converge to

1

2
P (N(β, 1) > 0) +

1

2
P (N(β, 1) < 0) =

1

2
.

In the limit ε→ 0 the other two terms become

P (0 < −α̂2 < α̂2) + P (0 < α̂2 < −α̂2) = 0

because the events indicated are empty. So limε→0 πε = 1/2.
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Remark: if we regress Y on both U and V we get β̃1, β̃2 with a bivariate normal

distribution with mean β, 0 and variance covariance matrix

1

2ε− ε2

[
1 −(1− ε)

−(1− ε) 1

]
which is, of course, huge for small ε. Both variances are effectively 1/(2ε) and the

correlation converges to −1.

For the data at hand think of U as column 1278 and V as column 1279. Take

β to be the slope of Y regressed on variable 1278 (ignoring the selection problems

these lectures are actually about) and simulate new vectors Y as described above.

The correlation between U and V is 0.9845 so ε = 0.0155. For these settings it is

easy to check that the probability that the correlation with variable 1279 will be

larger in absolute value than the correlation with variable 1278 is close to 1/2. In

other words – for the data at hand the argument above is applicable.

When I discuss extreme value theory I hope I will deal more clearly with the

probability of this event intersected with the event that the variable 1278 produces

the largest correlation. For the moment I will just say the answer is essentially

1/2 under the (false, I believe) hypothesis that variable 1278 is the only variable

needed to predict Y . NOTE: quite a different picture emerges if we allow for

selection and take a substantially smaller value of β. More about this later.

Comment 3: I also don’t believe that there is clear evidence about the number

of non-zero predictors.

Bühlmann et al. [2014] use a variety of methods on the Riboflavin data. One

finds no important predictors. One finds exactly variable 4003. One marginal

screening method (roughly trying to find which predictors have unadjusted cor-

relations with Y which could not credibly be 0) finds 53 genes when controlling

the family wise (Type I) error rate at 0.05. Another, controlling the False Discov-

ery Rate at 10% finds 375 genes. The differences between these methods reflect,

principally, the different error rates each is trying to control.

More than one variable needed?

The central difficulty surrounding hypothesis testing arrives at this stage. We

are now sure that at least one variable is related to the production of riboflavin. I

want to test the hypothesis that none of the others is, adjusted for the one we have
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found. But describing the problem that way assumes more than I have achieved.

The P -value I computed does not attach to the hypothesis that β1278 = 0. Instead

I have rejected the null hypothesis that all βj are 0 and that is far from implying

that β1278 6= 0. The multi-sample splitting method of Bühlmann et al. [2014] splits

the data set at random, selects a model based on one half, then uses the other half

to test the hypotheses H0j : βj = 0 for each variable included in the model. Then

it computes a Bonferroni adjusted P -value for that split. The process is repeated

and the P values are aggregated (carefully) to control the family wise error rate

P (Any true null hypothesis is rejected) ≤ 0.05.

Bühlmann et al. [2014] indicate that they found exactly 1 significant variable this

way. Using multi.split from the R package hdi I find variable #4003.

So taking note of the obvious difficulty I go on to ask: is variable #1278 enough?

Is variable #4003 enough? I need a model. I want to test the hypothesis that given

X1278 the response Y is independent of all the other Xj. Again I will replace that

with the hypothesis that each other Xj is conditionally uncorrelated with Y given

X1278. But this requires me to be able to condition on X1278 and I don’t know

how to do that without assumptions. So finally I assume that (Y,X1, . . . , Xp) have

a multivariate normal distribution. I regress each Xj on X1278 and compute the

residuals. I do the same for Y . Now I have a new data set with say Y ∗ and X∗j and

compute 4087 correlation coefficients (or equivalently 4087 t-statistics). I get P

values by bootstrapping the Y ∗ or permuting the Y ∗. Ignoring estimation error the

resampled Y ∗ variable is independent of the X∗ variables. I find the correlation is

maximized for X4002 and the associated P -values are estimated at 0.00052 for the

bootstrap and 0.00077 for the permutation scheme. Notice that I get the variable

right next door to X4003. These two variables are strongly correlated and although

the unadjusted correlation of X4003 with Y is slightly larger than that of X4002

with Y , this ordering is reversed after adjusting for X1278.

I repeated the exercise removing the effects of X1278 and X4002 on Y and on

all the other Xj and was no longer able to reject the null that all the remaining

βj are 0. Of course, not rejecting a null is a far cry from asserting its truth. I

also repeated the second step of this exercise starting with variable X4003 (the one

picked by multi-split). Again I found another variable was needed. The most

likely candidate was X1278.
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My take is that there is reasonably strong evidence for the existence of more

than 1 important predictor but:

• I would certainly do follow up experimental work with these genes and all

those highly correlated with them.

• I think the evidence that 1278 and 4002 are the important predictors is

very weak. But I suspect that one of 1278 and the things it is strongly

correlated to, together with 4003 or the things it is strongly connected

to, are needed. I don’t know much about procedures which automatically

produce groups or clusters of covariates where you try to control, for each

cluster, the error rate of the statement “at least one of the variables in this

cluster has a non-zero coefficient in the full model”. I think procedures of

that sort might be quite desirable.

• We have no clear idea what the evidence is about the size of the effects.

• Suppose I wanted to summarize my results by fitting some linear model of

Y on some or all of the Xj. Should I offer confidence intervals for 4088 βj

in a regression of Y on all 4088 predictors? Should I regress Y on some

subset of the 4088 – say just {1278, 4002} and give confidence intervals for

the slopes in that regression?

• I am not sure the βj are of any real scientific interest given the pre-

processing of the gene expression data.

More or less the end of what I said in Lecture 1.

1.2. Some inference and modelling issues. I hope the example has shown

that there are some important issues to face up to. We are going to focus on a

regression model of the form

(1) Y = β0 +Xβ + ε

where we assume that conditional on X the entries in ε are independent and

identically distributed with mean 0 and variance σ2. This situation arises in at

least two ways:

(1) The entries in the design matrix X are actually controlled by an experi-

menter / data collector. In compressed sensing applications, for instance,

these entries code up some expansion of some ‘image’ in terms of some set
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of basis functions like wavelets or whatever. (I am not going to deal explic-

itly with any such problem but will talk about at least one deterministic

design.)

(2) The vectors (Yi, Xi1, . . . , Xip) are independent and identically distributed

and the conditional expectation of Yi given the rest is linear with ho-

moscedastic errors. Essentially: the data are jointly multivariate normal

and we have an iid sample of size n. In this case our analysis will be

conditional on the design in the beginning at least.

The preliminary analysis I did above was focused on the second of these ideas.

But I want to point out two things.

First is nature of the response. Here are the first few sorted values of 10000×2Y .

> cat(10000*sort(2^y))

10 13 13 26 30 31 31 32 33 35 35

You see that there is considerable discreteness in Y itself and this may be worth

remembering when we start to throw around assumptions like they were candy.

Second the rows of the data matrix riboflavin in R have names: the first three

observations are called

b_Fbat107PT24.CEL

b_Fbat107PT30.CEL

b_Fbat107PT48.CEL

I hope the names don’t mean the rows shouldn’t be thought of as an iid sample

(and apologize for the double negative).

2. Model selection by the LASSO

Traditionally we fit the model

Y = β01 +Xβ + ε

(where 1 is a vector with all entries equal to 1) by ordinary least squares minimizing

the Error Sum of Squares

||Y −X∗β∗||2

where X∗ is the matrix with a column of 1s followed by X and β∗ is the concate-

nation of β0 and β. This smooth function of β∗ has gradient

−2
{
X∗>X∗β∗ −X∗>Y

}
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and is minimized at the least squares estimates

β̂∗ =
{
X∗>X∗

}−1
X∗>Y .

When p exceeds n − 1 however the matrix X∗>X∗ must be singular and this

method fails. We focus on situations where p is large from now on.

In generalX∗β is a vector in the column space ofX∗; any vector in that column

space can be realized in this way. When X∗>X∗ is singular there is nevertheless

a unique vector v̂ in the column space of X∗ minimizing

||Y − v||2

over all v in the column space of X∗. But there is not a unique vector β for which

v = Xβ.

One way to describe the problem is to say that the map

β → ||Y −Xβ||2

is convex (its second derivative matrix is non-negative definite) but not strictly

convex. If the rank of X is less than the number of columns of X then the null

space ofX is non-empty; there is a non-trivial subspace of vectors θ withXθ = 0.

For any such θ and any β we see that

t→ ||Y −X (β + tθ) ||2

is constant.

It turns out, however, that there are many (possibly ad hoc in flavour) ways to

modify the error sum of squares criterion to restore strict convexity, or at least

uniqueness of solutions, (except perhaps for truly pathological design matrices).

The general form of a penalized error sum of squares is

J(β) ≡ 1

2
‖Y −Xβ‖2 + Penalty(β).

Procedures in this class includes Ridge regression where the penalty is

λ
∑
i

β2
i

Smoothly Clipped Absolute Deviation (SCAD) which I won’t define and others. I

am going to focus on Least Absolute Shrinkage and Selection Operator (LASSO)

because it is the only one I know even a little about.
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For a given λ > 0 the LASSO estimate of β is β̂λ minimizing the penalized error

sum of squares:

Jλ(β) =
1

2
‖Y −Xβ‖2 + λ

∑
i

|βi|

=
1

2
Y >Y +

1

2
β>X>Xβ −U>β + λ

∑
i

|βi|

Notice that this function (and so its minimizer) depends on the data Y only via

U = X>Y .

I am not going to discuss uniqueness of the value of β which minimizes Jλ. The

issue is studied carefully in Tibshirani [2013].

2.1. Scaling, intercepts. I think most scientists would regard this definition with

suspicion. The columns of X are different co-variates and in most regression prob-

lems different columns will be measured in different units. Suppose for instance

that Y is weight in kilograms of a person, X1 is height in centimetres, and X2 is

age in years. If we wrote down the (silly) model

Yi = α + β1X1i + β2X2i + εi

then Yi, α, and εi must all be measured in kilograms. The term β1X1i will be in

kilograms as well provided β1 is in kilograms per centimetre. Similarly β2 has units

kilograms per year. The error sum of squares has units kilograms squared. But the

penalty term adds kilograms per year to kilograms per centimetre and multiplies

by λ so we are adding apples to oranges; you should not do that. If the intercept

α is included in the penalty then that term has units kilograms multiplied by the

units of Y .

There are some natural ways out:

• Sometimes (like the riboflavin example) all the columns of X other than

the column of 1s are measured in the same units. In this case the β all

have units given by units of Y divided by units of an X and λ must have

units of X times units of Y .

• In the penalty multiply any βi by an estimate of scale for the variable Xi;

then λ has units of Y .
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• Don’t shrink the intercept. This is most easily handled by estimating α by

Ȳ , the mean of the responses and then centring Y and each column of X

by subtracting means.

• ScaleX (after centring) so thatR ≡X>X has a constant on the diagonal.

I will make sure that constant is 1 so that R is a correlation matrix. An-

other common choice is to make the constant n so that R/n is a correlation

matrix.

• People have suggested replacing the error sum of squares with its square

root giving rise to the square root LASSO which minimizes

1

2
‖Y −Xβ‖+ λ

∑
i

|βi|;

see Belloni et al. [2011]. If the X variables are all in the same units then

the units of λ are units of X. If we have standardized the Xs, making

them unitless then λ is also unitless. This is the potential advantage of the

square root lasso; it offers the possibility of picking λ depending only on n

and p and not on details of X, perhaps.

• The Scaled Lasso (see Antoniadis [2010], Sun and Zhang [2010], and Sun

and Zhang [2012]) estimates σ as well as β by minimizing

‖Y −Xβ‖2

2nσ
+
σ

2
+ λ

∑
i

|βi|

over both σ and β. For any given β we can compute the minimizer σ̃(β)

via

σ̃2(β) =
‖Y −Xβ‖2

n
.

Plugging in this value of σ we get the profile function

‖Y −Xβ‖
n

+ λ
∑
i

|βi|

which is the square root LASSO objective function (up to the scaling factor

n in the denominator). The comments on units of measurement I gave for

the Square Root LASSO apply here too.

When people work with the iid sampling model they often use a slightly different

formulation. Like us they centre the columns of X. But then they divide the error



16 RICHARD LOCKHART

sum of squares by the sample size n and minimize

1

n
‖Y −Xβ‖2 + γ

∑
|βi|.

This means that γ corresponds to 2λ/n in my scaling above. In the iid sampling

context the matrix X>X grows like n because with p fixed

lim
n→∞

1

n
X>X = Var(X),

the population variance-covariance matrix of the covariates. If we have shave been

normalized to have length n then the limit is the correlation matrix of X. If we

apply our scaling so that X>X has 1 on the diagonal then we have effectively

divided each column by the standard deviation of that covariate multiplied by
√
n. This means that the corresponding entry in β has been multiplied by the

same quantity. Thus in our formulation β effectively grows with n, like
√
n.

Assumption summary: From now on until I say otherwise I assume that Y and

the columns ofX have been centred and the columns ofX have been standardized

to have unit length. Thus X>X has each diagonal entry equal to 1; it is a

correlation matrix.

2.2. Asymptotic Tests following Lockhart et al. [2014]. In order to actually

use the LASSO, or any other penalized method, you have to specify λ. Many

suggestions have been made but I am not going to discuss any of them. Instead

I am going to describe a technique which considers the way the estimates depend

on λ. That is, I am going to think about the fit as a function of λ. I will start out

with λ very large and show you that for all sufficiently large λ the estimated vector

β̂λ is 0. I am going to compute the infimum of that set of λ values explicitly, show

that the estimate is continuous and piecewise linear in λ and show you how to

compute sequentially the places where there are corners.

Here is a brief summary of our strategy which introduces some notation:

• Start λ out very large.

• For all large λ all components of β̂(λ) = 0.

• Shrink λ gradually till one variable enters model.

• At critical value (knot) of λ, which I will denote by λ1, variable J1 enters

our model; that is, its estimate becomes non-zero. (This value is a random

variable of course.)



INFERENCE IN HIGH-DIMENSIONAL LINEAR MODELS COURSE NOTES 17

Table 1. For the riboflavin data this table shows the first 10 knots
on the LASSO path. At each of the first 9 knots the active set is
enlarge by the addition of the variable indicated. At λ10 = 2.409
variable 1588 leaves the model.

Knot Knot value Variable What happened
λ1 5.000214 1278 Added
λ2 4.567995 4003 Added
λ3 4.387905 1516 Added
λ4 3.863533 2564 Added
λ5 3.285314 1588 Added
λ6 2.963925 624 Added
λ7 2.960060 1312 Added
λ8 2.942163 1502 Added
λ9 2.424337 1639 Added
λ10 2.408743 1588 Deleted

• For λ slightly smaller than λ1 only β̂J1 is non-zero.

• As we shrink λ new variables enter (or possibly leave) at knots

λ1 > λ2 > · · · .

• ith variable entering is Ji with sign Si ∈ {±1}; this notation will become

unsatisfactory when we look carefully at variables which leave the model.

• As λ goes from λi to λi+1, β̂Ji(λ) grows (linearly).

For the riboflavin data after centring the columns of X and standardizing each

column to have unit length we find the first 10 knots, λ1, . . . , λ10 and corresponding

index numbers and sign are as in Table 2.2. In Figure 2.2 I plot the estimates of

the 9 coefficients involved against λ between λ = λ10 and λ = 6. For λ < λ10 the

picture becomes quite complex; for λ > λ1 we are just plotting 0. At λ = λ10 the

LASSO estimate of β1588 becomes 0 and that variable leaves the model Between

λ10 and λ11 = 2.213 there are only 9 non-zero estimated slopes. At λ11 = 2.213

variable 1297 is added.

Now I show you in Figure 2.2 a frame from a movie. It shows the values of the

10 entries for β̂λj for j as in Table 2.2 plotted against λ ∈ [λ10, 6]. The movie

itself, which simply steps λ down from the right by small increments is available

here. At each knot in the table you see the value of the corresponding estimated

coefficient is 0 to the right and changes linearly to the left. The slopes of all these

http://www.stat.sfu.ca/~lockhart/richard/Cambridge/LASSOpath10.mp4
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lines change each time a variable enters a model; this is natural because now we

are adjusting the slopes of each variable on a different set of covariates.

One important point is what happens with variable 1588. That variable enters

the model at knot λ5. At knot 6 or 7 the estimate for this coefficient switches from

moving away from 0 (as λ decreases) to moving towards 0. Indeed at knot 10 this

estimate hits 0. No variable enters at λ10.

We will use the following jargon. The term active set refers to the set of j

for which the jth coefficient is not 0. We will speak of the true active set as

A0 ≡ {j : β0j 6= 0} where the subscript 0 indicates the true parameter vector. For

a given value of λ we will have an estimated active set

Âλ = {j : β̂λj 6= 0}.

For clarity here are some examples. For λ ≥ λ1 we have Âλ = ∅. For λ2 ≤ λ < λ1

we have Âλ = {1278}. Finally for λ11 ≤ λ < λ10 the estimated active set consists

of all the variables in Table 2.2 except 1588.

2.3. Tests for the selected variable. I now want to discuss our strategy for

answering the question: Do we need these variables in our model? I begin by

considering a test of the hypothesis β = 0. We will want to understand, however,
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the relation between this classical hypothesis and the random hypothesis βJ1 = 0.

Our strategy is to measure the improvement of the fit when we add variable J1 to

the model using the change in covariance between the predictor Xβ̂(λ) and Y as

λ varies between λ1 and λ2. This change scales with ε so we will scale the change

in covariance by an estimate of the error variance σ2. Lockhart et al. [2014] mostly

consider a fictitious universe in which σ is known.

An aside on the nature of the model selection problem

We cannot simply look at the t statistic in the fit of Y against X1278 or at

corresponding F tests when we consider more variables. Suppose we regress log

riboflavin production on variables 1278, 4003, 1516, 2564, 1588; these are the first

5 variables which come into the model in Table 2.2. The usual overall F test gives

a P -value of P = 2.2 × 10−16. Individual t-test P -values: 4 × 10−5, 5 × 10−6,

4× 10−3, 1× 10−4 and 0.34.

We have already seen, however, the impact of cherry picking and discussed

adjusted P -values. There are 9.5× 1015 possible regressions of Y on 5 of our 4088

covariates. So the Bonferroni corrected overall F -test P -value is 1 (the product

2.2× 10−16 × 9.5× 1015 > 1, that is).

The test statistic from Lockhart et al. [2014] for the first variable is

T1 =
λ1(λ1 − λ2)

σ̂2
= 24 or 2.55.

The word “or” reflects uncertainty about how to estimate σ2. For the two choices

we usually suggest we get a P -value which is either 3.7× 10−11 or 0.078. That is a

big range. Estimation of σ is crucial and hard, I think. I now turn to the details

of our suggestion.

I am going to work my way through the Karush-Kuhn-Tucker conditions for the

LASSO fit. My presentation will be elementary because our objective function Jλ

is nearly differentiable and it is easy to say where it is not. Thus I will just discuss

the components of the gradient vector. At values of β for which some component

of the gradient is not defined I will just write down left and right derivatives.

At β∗ these derivatives take one of three forms depending on the value of β∗j .

• For β∗j > 0 the derivative is(
X>Xβ∗

)
j
− Uj + λ = X>j Xβ

∗ − Uj + λ
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• For β∗j < 0 the derivative is

X>j Xβ
∗ − Uj − λ

• At β∗j = 0 the formulas above are the right and left derivatives.

What, then, are the Karush-Kuhn-Tucker conditions? They simply say that at

a solution the derivative with respect to βj must be 0 for each non zero component

and that the left and right derivatives with respect to βj must be on opposite sides

of 0 for the components j which are 0. To be precise, fix some λ > 0. The estimate

β̂λ is the vector β∗ if:

β∗j 6= 0⇒ ∂J(β)
∂βi

∣∣∣
β=β∗

= 0 and

β∗j = 0⇒ ∂J(β−)
∂βi

∣∣∣
β=β∗

≤ 0 and

β∗j = 0⇒ ∂J(β+)
∂βi

∣∣∣
β=β∗

≥ 0.

Here β± indicate a right (+) or left (−) partial derivative. As I said the right

and left derivatives differ, when β∗j = 0, by 2λ. With the formulas for derivatives

as above we may write the inequalities in a form which can be quite useful for

theoretical purposes. The vector β∗ is a minimizer of Jλ if

X>Xβ∗ −U + λκ = 0

for a vector κ with

β∗j 6= 0⇒ κj = signβ∗j

and

β∗j = 0⇒ |κj| ≤ 1.

We usually write this as

‖κ‖∞ ≤ 1

and

β∗j 6= 0⇒ κj − signβ∗j .

Compactly, let Si be the sign of β∗j and A = {i : β∗j 6= 0} and SA the vector of

Si for i ∈ A. Then

Xβ∗ = XAβ
∗
A

and

X>AXAβ
∗
A = X>AY − SAλ.
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Consider now the simplest case. When is β∗ = 0? For this value we must have

that for all j

−Uj − λ ≤ 0 and − Uj + λ ≥ 0

or

|Uj| ≤ λ.

Thus

λ1 = max
j
{|Uj|}.

Now I turn my attention to finding λ2. First I claim that except in pathological

situations there is a unique j = J1 such that

|UJ1| = max
j
{|Uj|}.

For that to fail we would have to have a pair i 6= j with

|X>i Y | − |X>j Y | =
∣∣(Xi ±Xj)

>Y
∣∣ = 0

which won’t happen for absolutely continuous errors unless there is a choice of

signs making

Xi ±Xj = 0

If the matrix X has columns in general position then this does not happen for

any pair i 6= j; the technical meaning of general position is discussed in Tibshirani

[2013]. In general it means that for no k < n can you write a column of X or its

negative as a convex combination of k other columns (permitting you to change

the sign of those other columns). A design matrix with two identical columns or

one column exactly equal to minus the other is a very doubtful design.

More or less the end of what I said in Lecture 2

Recall λ1 = maxi{|Ui|}. Use J1 for the maximizing index and S1 for the sign of

UJ1 . For λ > λ1 we have shown that β̂λ = 0. I claim there is a λ2 < λ1 such that

for all λ2 ≤ λ ≤ λ1 we have

β̂λ,j =

0 j 6= J1

UJ1 − S1λ j = J1

Proof: We will check to see that this β∗ satisfies the conditions. Remember that

λ1 = max
i
{|Ui|} = S1UJ1 .
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For λ < λ1 we see that UJ1 − S1λ 6= 0 so the relevant KKT condition is given by

A = {J1} and the equation

X>AXAβA − UJ1 + S1λ = 0.

Since X>X is a correlation matrix and A has only a single column this reduces

to (UJ1 − S1λ)− UJ1 + S1λ = 0 which is trivial.

For j 6= J1 the KKT condition is

X>j XA(U1 − S1λ)− Uj − λ < 0 <X>j XAX
>
j XAβA − Uj + λ.

Write ρjk for the jkth entry in X>X; the choice of the letter ρ is to remind you

that X>X is a correlation matrix and every off diagonal entry lies in [−1, 1]. Note

that

Cov(Uj, Uk) = Corr(Uj, Uk) = ρjk.

Then the left and right derivatives are on opposite sides of 0 if

−λ(1 + ρjJ1S1) ≤ Uj − ρjJ1UJ1 ≤ λ(1− ρjJ1S1).

I want to divide through by the quantities multiplying λ but I don’t want to

divide by 0 and I want to remember that if I divide by a negative number the

direction of the inequalities would change. Since |ρjJ1 | ≤ 1 we can divide by 0

only if ρjJ1 ∈ {−1, 1}. But that would mean that columns j and J1 were perfectly

correlated and, in view of our scaling, contradict our general position assumption.

Notice too that |S1ρjJ1| < 1 so we will not be dividing by a negative number. We

learn that if, for each j 6= J1 we have

max

{
Uj − ρjJ1UJ1
1− ρjJ1S1

,
−(Uj − ρjJ1UJ1)

1 + ρjJ1S1

}
< λ

then β̂λj = 0 for j 6= J1. Thus if

λ2 ≡ max
j 6=J1,s∈{−1,1}

{
s(Uj − ρjJ1UJ1)

1− sρjJ1S1

}
< λ < λ1

then, as claimed,

β̂λj =

0 j 6= J1

UJ1 − λS1 j = J1.

Use J2 for the maximizing value of j and S2 for the choice of s in the definition

of λ2. Notice that S2 will be the sign of the term Uj − ρjJ1UJ1 in the numerator.
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Notice too that this quantity is the residual when Uj is regressed on UJ1 (and J1

is treated as non-random).

Now I describe the tests of Lockhart et al. [2014]. They compared two fits at

λ = λ2 to get a test of the global null β = 0. The two fits compare the active set

at λ just larger than λ1 and at λ just smaller than λ1.

For λ > λ1 the active set is empty. For this active set the LASSO fitted predictor

is 0 at every λ including λ = λ2; the covariance with Y is 0. For λ2 < λ < λ1 the

active set is just {J1}. At λ = λ2 the fitted predictor is Xβ̂λ2 (which is column J1

of X multiplied by β̂λ2J1) and the “covariance” is

Y >Xβ̂λ2 .

The change in covariance then becomes

Y >Xβ̂λ2 =UJ1 β̂λ2J1

=UJ1 (UJ1 − λ2S1)

=U2
J1
− λ2|UJ1|

=λ21 − λ1λ2
=λ1(λ1 − λ2).

This has to be scaled for the scale of Y so our test statistic is

T =
λ1(λ1 − λ2)

σ2
.

I will discuss estimation of σ later.

2.4. Toy example: orthogonal design, global null hypothesis true. Ap-

proximate theory usually depends on limits. When I was a child we did limit

theory by fixing the parameter vector β and so also fixing p. Then we would take

a limit as n → ∞ and tell the story that we were describing what would happen

if we continued collecting data. Here, however, our focus is on big p. I will start

with an example which can be worked out in considerable detail using extreme

value theory. So now consider an orthogonal design where X>X = I. Fix σ = 1

known. Under these assumptions the entries U1, . . . , Up of U are iid N(0,1). Our

statistic for i = 1 boils down to

|U[1]|(|U[1]| − |U[2]|);
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where the square brackets in the subscript denote descending order of absolute

values. Thus we are studying extreme order statistics and this is an extreme value

problem.

What does extreme value theory tell us? Suppose X1, . . . , Xn are iid with con-

tinuous cdf F . The cdf of X(n) = max{Xi; 1 ≤ i ≤ n} is F n(x) and the cdf

of
X(n) − an

bn
is

F n(an + bnx)

If this sequence of distribution functions converges to a distribution G(x) then

the Fisher-Tippett theorem (whose final form is due to Gnedenko) says that G

must be, up to a location-scale transformation one of three possibilities: Weibull,

Pareto or Gumbel. In the case at hand F is the cumulative distribution function

of a χ1 random variable (the square root of a χ2
1 variate or the absolute value of a

standard normal variate). That is

F (x) = max{2Φ(x)− 1, 0}.

For this distribution the choices

an =
√

2 log n

and

bn = an −
log log n+ log π

2an
work and the limit distribution is the standard Gumbel law

G(x) = exp(− exp(−x)).

Weissman [1978] extends these conclusion to the joint law of the k largest order

statistics via a Poisson process approximation. Let N(x) be the number of Xi

which are at least x. Then N(x) has a Binomial(n, 1 − F (x)) distribution and

N(an + bnx) has a Binomial(n, 1− F (an + bnx)) distribution. The condition

F n(an + bnx)→ G(x)

for all x is equivalent to

(2) n(1− F (an + bnx))→ G(x)
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for all x and then the sequence of counting processes Mn defined by

Mn[x,∞) = N(an + bnx)

converges weakly to a Poisson process with intensity G′(x). That is, whenever

x1 < · · · < xk we have

Mn[x1, x2), . . . ,Mn[xk−1, xk),Mn[xk,∞)⇒M [x1, x2), . . . ,M [xk−1, xk),M [xk,∞)

where M is an inhomogeneous Poisson Process on the line with intensity G′(x).

The canonical theoretical choice is 1−F (bn) = 1/n and an = nf(bn) but there are

many asymptotically equivalent choices. To be explicit I will choose, as above,

an =
√

2 log n

and

bn = an −
log log n+ log π

2an
.

With these choices it is easy to check that (2) holds. Now fix k and real numbers

wk < · · · < w1

and consider the event

wk ≤ an(|U[k]| − bn) < wk−1 ≤ an(|U[k−1]| − bn) < · · · < w1 ≤ an(|U[1]| − bn).

This is the event

M [wk, wk−1) ≥ 1,M [wk−1, wk−2) = 1, . . . ,M [w1,∞) = 1.

The Poisson approximation to the probability of this event, which is valid for each

integer k fixed, is used by Weissman [1978] to deduce that

an(|U[1]| − bn), an(|U[2]| − bn), . . . , an(|U[k]| − bn)

converges in distribution to (W1, . . . ,Wk) with joint density

exp
(
−w1 − · · · − wk − e−wk

)
1(wk < · · · < w1).

(Notice that the probability of the first event can be computed from the joint cdf

of the k variables in question. That joint cdf then is seen to converge to a limit

whose density I have just given.)
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This conclusion has several implications. Notice that bn/an → 1 as n → ∞.

Then

an(|U[1]| − |U[2]|)
d
 Exponential(1).

Moreover dividing the convergent quantities by an shows that |U[1]|/an → 1 so

|U[1]|(|U[1]| − |U[2]|)
d
 Exponential(1).

Indeed under the global null with Gaussian errors

U[1]|(|U[1]| − |U[2]|), . . . , U[k](U[k] − U[k+1])

converges in law to

E1, E2/2, . . . , Ek/k

where the Ei are iid standard exponential.

2.5. General design, global null hypothesis true. We now turn to the prob-

lem of a general X>X (subject still to being a correlation matrix). I want to show

that for x ≥ 0 we have (again for σ = 1)

lim
n→∞

P (λ1(λ1 − λ2) > x) = e−x.

The key step is to partition this event according to the values of J1 and S1. That

is

{λ1(λ1 − λ2) > x} =
⋃

1≤j≤p,s1∈{−1,1}

{J1 = j, S1 = s1, λ1(λ1 − λ2) > x} .

This is a disjoint union. On the event J1 = j, S1 = s1 we have

λ1 = sUj

and

λ2 = max
k 6=j,s∈{−1,1}

{
s(Uk − ρkjUj)

1− sρkjs1

}
Notice that Uj is independent of the vector Vj with entries

Vjk = Uk − ρkjUj

for k 6= j because all these variates are jointly normal and the covariance of Uj

with Uk − ρkjUj is 0.
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Let Fj be the distribution of

Wj ≡ max
k 6=j,s∈{−1,1}

{
sVjk

1− sρkjs1

}
(where I am hiding the dependence of Fj on s1 for convenience). Then:

P (T > x) =
∑
j,s1

P (T > x, J1 = j, S1 = s1)

=
∑
j,s1

P (s1Uj(s1Uj −Wj) > x, J1 = j, S1 = s1)

Now I rewrite the event

{J1 = j, S1 = s1} = ∩k 6=j,s{sUk ≤ s1Uj}

But if sUk ≤ s1Uj then

s(Uk − ρkjUj) ≤ s1Uj − sρkjUj = s1Uj(1− sρkjs1)

So

∩k 6=j,s{sUk ≤ s1Uj} = {Wj ≤ s1Uj}.

We get

P (T > x) =
∑
j,s1

P (s1Uj(s1Uj −Wj) > x, s1Uj > Wj).

Since Uj and Wj are independent the conditional law of Uj given Wj = w is

standard normal. So

P (s1Uj(s1Uj −Wj) > x, s1Uj > Wj) =

∫
P (Z(Z − w) > x,Z > w)Fj(dw).

The tail of the normal distribution is exponential in the following sense. Assume

Z ∼ N(0, 1) and E(Z) = 0 and let λ→∞. Then we can use Mill’s ratio to prove

(3) lim
λ→∞

P (Z(Z − λ) > x|Z > λ) = e−x for x > 0.

In fact define

u(x, `) =
`+
√
`2 + 4x

2
then

P (Z(Z − λ) > x|Z > λ) = P (Z > u(x, λ)|Z > λ) =
1− Φ(u(x, λ))

1− Φ(λ)
.



28 RICHARD LOCKHART

The limit, as λ → ∞, of this ratio is the same, by the Mill’s ratio inequalities as

the limit of
λφ(u(x, λ))

u(x, λ)φ(λ)
.

Standard calculus techniques finish the proof of (3).

Let

Ψ(`) = sup
λ≥`

∣∣P (Z(Z − λ) > x|Z > λ)− e−x
∣∣

and notice that Ψ(`) decreases to 0 as ` increases. Then for any ` > 0 we have

|P (T > x)− e−x|

=

∣∣∣∣∣∑
j,s1

P (s1Uj(s1Uj −Wj) > x, s1Uj > Wj)− e−x
∣∣∣∣∣

=

∣∣∣∣∣∑
j,s1

{
P (s1Uj(s1Uj −Wj) > x, s1Uj > Wj)− e−xP (s1Uj > Wj)

}∣∣∣∣∣
=

∣∣∣∣∣∑
j,s1

∫
P (s1Uj > w)

{
P (Z(Z − w) > x|Z > w)− e−x

}
Fj(dw)

∣∣∣∣∣
≤
∑
j,s1

Fj(`) + Ψ(`)
∑
j,s1

P (s1Uj > Wj > `).

The second term is bounded by Ψ(`) which goes to 0 for any sequence ` = `n

tending to infinity with n. To get a theorem we assume that for each fixed ` the

first term goes to 0. That implies the existence of a sequence ` = `n increasing to

infinity for which the first term converges to 0 giving∣∣P (T > x)− e−x
∣∣→ 0.

Our theorem is

Theorem 1. Suppose that the Wj converge to ∞ in probability uniformly in the

(fairly strong) sense that for each fixed w we have

E(#{j : Wj ≤ w}) =
∑
j

P (Wj ≤ w)→ 0.

Then

lim
n,p→∞

P (λ1(λ1 − λ2) > xσ2) = e−x.

More or less the end of what I said in Lecture 3
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The condition looks hard to check but is actually rather mild. It really imposes

a condition on the correlation structure of the Ui. Many LASSO results impose

conditions on the correlations which require there to be no correlations too close

to 1. What is needed here, though, is that Wj is larger than the maximum of a

large number of independent normal variables whose variance is bounded below

by some δ > 0.

Theorem 2. Suppose there is a δ > 0 and for each p such that for each j there is

a set of indices Sp of cardinality at least dp + 1 with j ∈ Sp and such that for each

i ∈ Sp, i 6= j we have

Var(Ui|Uk, k ∈ Sp, k 6= i) ≥ δ2.

If
log p

dp
→ 0

then the condition

E(#{j : Wj ≤ w}) =
∑
j

P (Wj ≤ w)→ 0.

of the previous theorem holds.

Proof: We will find ρ < 1 such that

P (Wj ≤ w) ≤ ρdp

for all j. The desired conclusion then follows easily since the sum is at most pρdp .

Fix j and let Sp be the corresponding set of indices. Then

Wj = max
k 6=j,s∈{−1,1}

{
s(Uk − ρkjUj)

1− sρkjs1

}
≥ max

k 6=j

{
|Uk − ρkjUj|

2

}
≥ max

k∈Sp,k 6=j
|Vk|

where Vk is temporary shorthand for (Uk− ρkjUj)/2. There are m ≡ |Sp| different

Vk with m ≥ dp and I will simplify the notation by labelling them as V1, . . . , Vm.

I now want to bound

P (Wj ≤ w) ≤ P (|V1| ≤ w, . . . , |Vm| ≤ w)

= P (|V1| ≤ w, . . . , |Vm−1| ≤ w)P (|Vm| ≤ w, | |V1| ≤ w, . . . , |Vm−1| ≤ w).
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First I note that if G is a N(µ, σ2) random variable then

P (|G| ≤ w) ≤ P (|G− µ| ≤ w) = Φ(w/σ)− Φ(−w/σ).

For each k the variables (Uj, V1, . . . , Vk) are multivariate normal so that the con-

ditional law of Vk given Uj and V1, . . . , Vk−1 is normal with variance

Var(Uk | Uj, V1, . . . , Vk−1) = Var(Uk | Uj, U1, . . . , Uk−1)

≥ Var(Uk | Ui, i ∈ S, i 6= k)

≥ δ2.

The first equality arises because Uj, V1, . . . , Vk−1 is one to one with Uj, U1, . . . , Uk−1.

(Notationally, of course, I am temporarily labelling the entries in U so that j > k.)

The inequality on the next line arises because adding variables to a conditioning

set always decreases the variance. Remember

Var(A|C) = E(Var(A|B,C)|C) + Var(E(A|B,C)|C) ≥ E(Var(A|B,C)|C).

For jointly Gaussian variates that inner conditional variance is not random, of

course, so we get

Var(A|C) ≥ Var(A|B,C).

It follows that

P (|Vk| ≤ w|V1, . . . , Vk) ≥ ρ ≡ Φ(w/δ)− Φ(−w/δ)

Then

P (|Vm| ≤ w ||V1| ≤ w, . . . , |Vm−1| ≤ w)

= E [P (|Vk| ≤ w | V1, . . . , Vk)1(|V1| ≤ w, . . . , |Vm−1| ≤ w)]

≤ ρP (|V1| ≤ w, . . . , |Vm−1| ≤ w).

We find inductively that

P (Wj ≤ w) ≤ P (|V1| ≤ w)ρm ≤ ρdp .

In the last inequality we used P (|V1| ≤ w) ≤ ρ which may be checked by condi-

tioning on Uj. •
One of our findings is that this is a better approximation than usual extreme

value theory. I won’t talk about it in class but here is some commentary.
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There are two natural ways to plot the quality of this approximation. The first,

in Figure 2.5, plots the approximate P -value

P (Z(Z − λ) > v|Z > λ) ≈ e−v

against the exact P -value

P (Z(Z − λ) > v|Z > λ) = P (Z > u(v, λ)|Z > λ) =
1− Φ{u(v, λ)}

1− Φ(λ)

for the values λ = 2, 3, 4, 5, 6. It will be seen that the plots lie very close to the line

y = x. A less favourable view focuses on the quality of the approximation when

the P -value is low. In Figure 2.5 I plot the ratio

e−v

P (Z > u(v, λ)|Z > λ)

against P (Z > u(v, λ)|Z > λ) for the same set of λ values. It may be worth saying

that λ = 6 is very very far in the normal tail; we are conditioning on an event of

probability 2× 10−9.

2.6. Extensions and criticism. Lockhart et al. [2014] extend the ideas to try

to handle the case where there is some true active set A0. They imagine following

the LASSO (LARS) path down to the kth knot and assume that a variable, say

variable Jk joins the active set at λk. Suppose Ak−1 is the active set not including

this variable and Ak is Ak−1 ∪ {Jk}. They try to test the null hypothesis that

the active set Ak−1 includes A0. The active set Ak−1 is random so there is some

controversy over whether you can call it a hypothesis if the null hypothesis tested

is random.

The test statistic compares two fitted values but now I have to be more careful.

In class I said we compared two fits at λ1 and at λ2 but this was only right for the

first knot because one of the fits was the same at λ1 as it was at λ2 (the fit with no

predictors at all). In general we actually compare two fits at the next knot, λk+1.

One fit uses the LASSO at λk+1 and gives the fitted vector

Xβ̂λk+1
= XAk

bbetaλk+1,Ak

That fit uses the larger set of predictors including Jk. The other fit uses only the

predictors in Ak−1 but fits the LASSO at λk+1 using this restricted set of predictors.
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Figure 3. Plot of approximate approximate tail probability
P (Z(Z − λ) > x|Z > λ) ≈ exp(−x) against the true tail proba-
bility P (Z(Z − λ) > x|Z > λ) = P (Z > u(x, λ)|Z > λ) where Z is
standard normal for values of λ ∈ {2, 3, 4, 5, 6}
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Define β̃λ,A to minimize

Jλ,A(βA) =
1

2
‖Y −XAβA‖+ λ

∑
j∈A

|βj|.

The test statistic is again the change in scaled covariance

T ≡
Y >XAk

β̂λk+1,Ak
− Y >XAk−1

β̃λk+1,Ak−1

σ̂2
.

Notice that in the global null hypothesis the active set Ak−1 is actually empty so

the fitted value is 0 whether I fit at λ1 or at λ2. Other choices seem possible, of

course, but we did not fully analyse them all. For instance we could compare, as
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Figure 4. Ratio, as a function of x, of approximate tail proba-
bilities P (Z(Z − λ) > x|Z > λ) ≈ exp(−x) divided by true tail
probabilities P (Z(Z − λ) > x|Z > λ) = P (u(Z, λ) > x) where Z is
standard normal and λ is 2, 3, 4, 5, and 6.
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I suggested earlier the fit using Ak−1 at λk to the fit using Ak at λk+1. I remark

that the fit at λk can be made including Jk (as indicated in the formula) or not

since the variable being added at λk has coefficient 0 at that exact λ value. The

theorem is that T is stochastically smaller than a standard exponential variable

under that null hypothesis and some strong assumptions. The most important

of these assumptions is that Ak−1 is nearly deterministic — there is a set A∗ of

indices which includes A0 and has P (Ak−1 = A∗)→ 1 as n, p→∞. In the LASSO

literature literature there are many papers giving conditions under which the first

k variables in the model are exactly the k truly active variables; these conditions

would be sufficient for the theory here.
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The conclusions are weaker than in the general case. Several problems arise:

• When I was computing λ2 I began with the assertion that for all the coef-

ficients βj, j 6= J1 to be 0 the left and right derivatives of the penalty with

respect to each such j had to be on opposite sides of 0 at the estimate.

Suppose I have computed knots λ1 > · · · > λk and that A is the active set

for λ just less than λk. For j not in the active set the inequalities mentioned

are

X>j XA

(
X>AXA

)−1
(UA − λSA)− Uj − λ ≤ 0 ≤

X>j XA

(
X>AXA

)−1
(UA − λSA)− Uj + λ.

I then rewrite them as

−λ(1 +X>j XA

(
X>AXA

)−1
SA) ≤ Uj −X>j XA

(
X>AXA

)−1
UA

≤ λ(1−X>j XA

(
X>AXA

)−1
SA)

If G1, G2 are jointly Gaussian with mean 0 and partitioned covariance ma-

trix

Σ =

[
Σ11 Σ12

Σ21 Σ22

]
then the (true) residual, G1 − E(G1|G2) when G1 is regressed on G2 is

G1 −Σ12Σ
−1
22 G2

with variance

Σ11 −Σ12Σ
−1
22 Σ21.

So you see that the central term in the chain of inequalities is just such a

residual. When I was studying the global null hypothesis I divided through

by the coefficient of λ on each side of this equation to get a lower bound

for λ. In general, however, the term

1±X>j XA

(
X>AXA

)−1
SA

could be negative for one of the two sign choices. Dividing through gives

an upper bound for λ, not a lower bound. This complication is dealt with

at length in Lockhart et al. [2014] but it will be seen that it is assumed out

of existence in the large sample theory given there.
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• When computing the next knot, λk+1 it may happen, as in the Riboflavin

data set at knot 10, that rather than adding a variable, a variable must be

deleted. If Ak is the active set for λ just smaller than λk then the estimated

coefficients at such a λ are(
X>AXA

)−1
(UA − λSA) =

(
X>AXA

)−1
UA − λ

(
X>AXA

)−1
SA.

It is possible that for some index j ∈ A the jth component of the first term

has the opposite sign to the jth component. In this case that component of

the estimate is moving towards 0, not away, as λ shrinks. The estimate is

linear in λ so set it equal to 0 and solve. Now for each j in the active set you

have computed a value, say λdelj at which the coefficient would be 0. If this

is more than λk ignore it. Let λdel be the maximum of all those λdelj which

are less than λk. The theory in the paper makes a very strong assumption

that prevents (with probability tending to 1) any deletion before two more

additions to A under the null hypothesis.

• The estimate β̃A considers only variables in A and not, in particular, the

variable Jk which joined at λk. Because Jk is not included in the active

set, when computing β̃A it could happen that one of the coefficients in

the LASSO solution using only the variables in A hits 0 in the interval

λk+1 < λ < λk. Again the paper makes the assumption that the chance

this happens is negligible in the limit

• The actual test statistic takes the form

Cλk(λk − λk+1)

σ̂2
.

The number C is computable from the values of Jk, Sk, and the design ma-

trix X (using only the columns in the active set after adding Jk). Condi-

tional on these values the variable
√
Cλk is standard normal but the statis-

tic does not then have the conditional form Z(Z−M) given Z > M with Z

standard normal. The result is that the statistic is actually stochastically

smaller than exponential; this should be expected to result in diminished

power.

In reading papers it is important to look for things that might be regarded as

weaknesses. Lockhart et al. [2014] has a few, in my view:

• Its handling of estimation of σ is unconvincing.
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• The paper illustrates the mechanics of computing P -values with this expo-

nential distribution using some prostate cancer data in which n = 67 and

p = 8. It is important to remember that the theory developed is making

an approximation to the tails of a normal distribution. For the global null

in this problem we are looking at the largest of 8 Gaussian’s and making

an extreme value computation. Our limit theory requires p→∞.

• The use of conservative limits is quite unattractive. Suppose you have a test

statistic, T , which you pretend has an exponential distribution with mean

1 under some null hypothesis. If the distribution is exponential but the

real mean is 1/2 and we observe T = 2.5 then our computed P -value using

the standard exponential is 0.082 while if we use the correct exponential

mean we get a P -value of 0.0067. In such a case we would be giving away

a lot of power.

3. Conditional Inference

The weaknesses I enumerated above of Lockhart et al. [2014] led to a number of

papers from my collaborators. In particular they noticed the following key point.

We are approximating P (Z(Z−M) > x|Z > M) ≈ exp(−x). But we can compute

exactly P (Z(Z −M) > x|Z > M,M = m) so if we could just condition on the

value of M we would not need to rely on the exponential limit.

Tibshirani et al. [2016] implements this conditioning idea.

3.1. Global null test. Here is the simplest version. Consider a general design

with the standardization as before; assume σ = 1 is known. At λ = λ1 variable J1

is entered into the model with sign S1. At λ = λ2 < λ1 a second variable enters

the model We begin with testing the global null hypothesis β = 0 using our test

statistic

T = λ1(λ1 − λ2).

If we observe T = tobs then the P -value is naturally

PHo(T > tobs)

This probability was approximated above. We are treating X as fixed (our model

holds conditionally on X) so the P -value depends on X in principle and is hard
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to compute. We could, however, try to compute a conditional P -value

pcond = PHo(T > tobs | J1 = j1,obs, S1 = s1,obs)

which is also hard. On the event J1 = j1, S1 = s1 however we have

λ2 = max
j 6=j1,s∈{−1,1}

{
s (Uj − ρjj1Uj1)

1− sρjj1s1

}
which is independent of Uj1 . Thus when the null hypothesis β = 0 holds we have

P (S1UJ1 > z | J1 = j1, S1 = s1, λ2 = `) = P (Z > z|Z > `)

where Z is standard normal. Write this as

P (S1UJ1 > z | J1 = j1, S1 = s1, λ2 = `) =
1− Φ(z)

1− Φ(`)

where Φ is the standard normal cumulative. So given J1 = j1, S1 = s1, λ2 = ` the

random variable

p =
1− Φ(s1Uj1)

1− Φ(`)
=

1− Φ(λ1)

1− Φ(λ2)

has a uniform distribution on the unit interval. Since that conditional distribution

is free of J1, S1, and λ2 we see that p is a valid unconditional P -value for our global

null hypothesis.

Theorem 3. Suppose Y is an n-dimensional response vector and X is an n× p
non-random design matrix. Assume that

Y = Xβ + ε

where the entries in ε are iid standard normal, the columns of X have been cen-

tred and standardized and are in standard position. Under the null hypothesis the

quantity

p =
1− Φ(λ1)

1− Φ(λ2)

has a Uniform[0,1] distribution.

The P -value p is a test statistic which is its own P -value; a one sided test rejects

at level α if p < α. Tibshirani et al. [2016] call this a spacings test.

Notice the assumptions: centring, scaling and general position. This new pro-

cedure appears to be unrelated to the earlier test statistic T = λ1(λ1 − λ2) but

given J1 = j1, S1 = s1 and λ2 = ` the event T > x is equivalent to λ1 > u(λ2, x)
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where as before

u(x, `) =
`+
√
`2 + 4x

2
.

So a transformation of T by its conditional survival function is equivalent to a

transformation of λ1 by its conditional survival function (given J1, S1 and λ2).

Also, when λ2 is large and p is not too close to 0 the value of p must be well

approximated by exp(−λ1(λ1−λ2)), the P -value from the previous covariance test.

3.2. Corresponding confidence intervals. Now consider the question of con-

fidence intervals. The idea is simple. Suppose only variable 1 has a non-zero

coefficient. If we regress Y on the “correct” covariate X1 then the least squares

estimate of β1 is simply U1 = X>1 Y after our scaling. In the model selection world,

however, we will likely only be interested in this estimate if we select variable 1 by

the LASSO – that is, we find J1 = 1. So now I will imagine doing the following.

Run the LASSO for one step and find variable J1. Assume that variable 1 is the

only variable with a non-zero regression coefficient, β1 = E(U1) = E(X>1 Y ).

When I actually run LASSO, however, I will get variable J1 entering with sign

S1. If I see J1 = j1 I will be hoping that j1 is an active variable (in fact I rather

hope it is the only active variable). Then I will want a confidence interval for

βj1 . If j1 were the unique active variable then I would be interested in the mean

of X>j1Y which would be β1. So I imagine that having observed J1 = j1 I will

consider getting a confidence interval for E(X>j1Y ) = X>j1E(Y ).

In the situation I described where only variable 1 is active then the expected

value of Y is simply β1X1 so I will look for a confidence interval for

X>j1X1β1 = ρj1,1β1.

This quantity is the regression of the true mean of Y on Xj1 . I acknowledge that

some people will feel let-down. We are not getting a confidence interval for β1.

But if your model selection picked variable 12 there is no way you can maintain

that you are interested in the coefficient of a variable you have eliminated from

your model. Instead we just say – I am making the best linear approximation I

can to predicting Y from Xj1 by predicting its mean as well as I can.

Theorem 4. Suppose Y is an n-dimensional response vector with independent

normally distributed entries (given X) with variance 1 (given X) and E(Yi |X) =

θi. Define ψj = Xjθ. Assume that the columns of X have been centred and
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standardized and are in standard position. Then

P (λ1 > x|J1 = j1, S1 = s1, {Uj − ρjj1Uj1 ; j 6= j1}) =

P (s1(Z + ψj) > x|s1(Z + ψj) > `) =
1− Φ(x− s1ψj)
1− Φ(`− s1ψj)

where ` = λ2 (computed from {Uj − ρjj1Uj1 ; j 6= j1}). Thus

1− Φ(λ1 − S1ψJ1)

1− Φ(λ2 − S1ψJ1)

is a pivot; it has a Uniform[0,1] distribution.

So if we solve the inequalities

α

2
≤ 1− Φ(λ1 − S1ψJ1)

1− Φ(λ2 − S1ψJ1)
≤ 1− α

2

to get

cL ≤ ψJ1 ≤ cU

then (cL, cU) is a level 1− α confidence interval for ΨJ1 . Notice that the target of

the interval is random. As a result you might feel it is not a confidence interval

because ΨJ1 is not a parameter. But I argue it plays the role of a confidence

interval in a perfectly natural way.

More or less the end of what I said in Lecture 4

From here on the notes are quite raw.

3.3. Forward Stepwise Algorithm, General Step. The forward stepwise method

for variable selection selects variables to add to the model sequentially. It begins

by regressing Y on each column Xj of X and selecting variable J1 = j1 if the

that variable minimizes the Error Sum of Squares — or equivalently maximizes

the Regression Sum of Squares, the squared length of the fitted vector. Then a

second variable J2 is added to minimize the Error Sum of Squares over all two

variable models including variable J1. This procedure continues. I will discuss this

procedure under the condition that each model contains an intercept term.

The result is that I may assume that the columns of X have been centred;

remember fitted values depend only on the column space of the design matrix.

Similarly fitted values and the ESS are unaffected if the columns of X are rescaled

so I will again take X to be a correlation matrix.
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If we regress Y on Xj the centred fitted vector is then

XjX
>
j Y = XjUj.

The squared length of this vector is

U2
j =

(
X>j Y

)2
The variable J1 = j1 maximizes this length if

s1Uj1 > sUk

for s1 = sign(Uj1) and all k 6= j1 and signs s ∈ {−1, 1}. This is a set of 2(p − 1)

inequalities:

(s1Xj1 +X1)
>Y > 0

(s1Xj1 −X1)
>Y > 0

...

(s1Xj1 −Xp)
>Y > 0

where we omit the two rows where the second index would be j1. Thus the event

J1 = j1 and S1 = s1 is the event

Γ1Y ≥ 0

where Γ1 is a 2p− 2×n matrix with rows (s1Xj1 ±Xk)
>. The matrix Γ1 depends

on j1 and s1 though the notation hides that. The matrix is not random.

Now when we add a second variable to the model the new fitted vector for the

model including the variable J1 = j1 and some variable k 6= j1 is the projection of

Y on the linear span of Xj1 and Xk. This span is unaffected if we replace Xk by

its standardized residual when we regress Xk on Xj1 ; for clarity I replace Xk by

X∗k = (Xk −X>k Xj1Xj1)/c

and c =
√

1− ρ2k,j1 is the length of the vector Xk−X>k Xj1Xj. The change in the

Error Sum of Squares due to adding k is just the squared length of

X∗kY
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Pick J2 = j2 which maximizes this squared length and let S2 = s2 be the sign of

X∗j2Y . The condition that j2 is the maximizer with sign s2 is just

s2

(
Xj2 −X>j2Xj1Xj1

)>
Y√

1− ρ2j2,j1
> s

(
Xk −X>k Xj1Xj1

)>
Y√

1− ρ2k,j1

for all k 6∈ {j1, j2} and s ∈ {−1, 1}.
Again we may write the event J1 = j1, S1 = s1, J2 = j2, S2 = s2 in the form

Γ2Y > 0

where the matrix Γ2 adds 2p − 4 rows to Γ1. This process may be continued to

give explicit matrices Γk for which the event

J1 = j1, S1 = s1, . . . , Jk = jk, Sk = sk

is exactly the event

ΓkY > 0.

Definition: If Γ is a q × n matrix and u is a q-vector then the

{x ∈ Rq : Γx ≥ u}

is a polytope which I am going to call a polyhedron. The inequality means that

each entry in Γx is at least as big as the corresponding entry in u.

Theorem 5 (Polyhedral Lemma). Suppose Y has a multivariate normal distri-

bution in Rn with mean θ and covariance matrix Σ. Suppose that Γ is some q×n
matrix with jth row γ>j . Let v be some n-vector. The covariance between ΓY and

v>Y is

ΓΣv.

Define

ρj = γ>j Σv(vtΣv)−1.



42 RICHARD LOCKHART

and

V lo(Y ) = max
j:ρj>0

{
uj −

(
γ>j Y − ρjv>Y

)
ρj

}

V hi(Y ) = min
j:ρj<0

{
uj −

(
γ>j Y − ρjv>Y

)
ρj

}
V 0(Y ) = min

j:ρj=0

{
γ>j Y − ρjv>Y − uj

}
= min

j:ρj=0

{
γ>j Y − uj

}
Then v>Y is independent of

(
V lo(Y ), V hi(Y ), V 0(Y )

)
and the event ΓY > u is

the event

V lo(Y ) < v>Y < V hi(Y ), V 0(Y ) > 0

Proof: The independence is just a matter of computing covariances. The terms

γ>j Y −ρjv>Y are the residuals when v>Y is regressed on γTY so the covariances

are 0. The condition ρj = 0 just amounts to saying γ>j Y has covariance 0 with

vTY . The inequalities are elementary algebra. You should check back to the

arguments surrounding the covariance test for the first variable in.

It remains to establish the equivalence of the events. We have

uj ≤ γ>j Y ⇔ uj − ρjν>Y ≤ γ>j Y − ρjv>Y

⇔ ρjν
>Y ≥ uj −

(
γ>j Y − ρjv>Y

)
For any j for which ρj > 0 we divide by ρj to see that the indicated inequality is

equivalent to

ν>Y ≥
uj −

(
γ>j Y − ρjv>Y

)
ρj

.

For a j for which ρj < 0 we also divide through by ρj but now the direction of the

inequality is reversed; the indicated inequality is equivalent to

ν>Y ≤
uj −

(
γ>j Y − ρjv>Y

)
ρj

when ρj < 0. When ρj = 0 the original inequality is unchanged. All the inequal-

ities for j such that ρj > 0 hold if and only if v>Y ≥ V lo and the corresponding

inequalities for j such that ρj < 0 all hold if and only if v>Y ≤ V hi. •

The polyhedral lemma tells you that the conditional distribution of vTY given

the event that Y lands in the polyhedron given and the value of the residual

when v>Y is regressed on ΓY is normal between two limits. It shows you how
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to compute those limits. The independence means that the conditioning did not

change the variance of v>Y which is

v>Σv.

3.4. Extra ideas. Tibshirani et al. [2016] contains a number of other ideas.

• Whenever the polyhedral lemma applies you can get tests and confidence

intervals for v>θ using the Gaussian distribution with mean v>θ condi-

tioned to lie in the interval [V −, V +].

• Sometimes the matrix Γ can be made smaller at the price of replacing the

deterministic vector u (which is often just full of 0s) by a random vector U ;

this vector should not be confused with the notation U = X>Y already in

use. The simplification is acceptable is U is also uncorrelated with v>Y ;

typically that will happen when it is computed from the same vector of

residuals.

• The paper details construction of the matrix Γ for LASSO and for LARS

(like LASSO but no deletions are allowed — the LASSO and LARS paths

coincide up to the first variable deletion for LASSO).

• The paper gives various approximate versions, for higher k, of the spacings

test.

• You could also compute the conditional distribution of λ1 given only J1 = j1

without condition on S1. This conditions on Y belonging to the union of

two polytopes and the computations are harder.

• Sequential testing procedures are described but not studied in detail.

• There is a discussion by Larry Brown and Kory Johnson which expresses

doubt that the methods have any value.

• The methods are implemented in selectedInference in R.

• Estimation of σ is again swept under the rug. The R package implements

two methods. One uses an over estimate of σ which is just the sample

standard deviation of Y . This can be very conservative, of course. The

other selects λ by cross-validation in the LASSO framework and then uses

a suggestion for that context. In the RIboflavin example that estimate

of σ is based on a fit to some 30 predictors. I feel, but cannot prove, that

the estimate is too liberal – that is, too small – when I am thinking about

whether or not to put in a single predictor or a second predictor. Of course
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the ordinary least squares estimate using the selected variable will be too

liberal as well, typically.

The conditional inference method here accepts the model selection method as

a good one and then tries simply to give confidence intervals for parameters of

interest. Part of the difficulty lies in the fact that a good model selection procedure

must use lots of the information in the data to select the model and have little left

over for the fitting part. One might try to think about writing the log-likelihood

in the form

log
{
P (M̂ = M ;β)

}
+ log

{
fY (y|M̂ = M ;β)

}
.

The Hessian of this is the total information about β and a strongly peaked first

term would seem to rule out a strongly peaked second term.

Here is a short list of some of the ways in which this work has been expanded:

• Lee et al. [2016] is concerned with the same theoretical structure – inference

conditional on a polyhedron but applied to LASSO at a single value of λ

for instance rather than as a tool along the LASSO / LARS path.

• Fithian et al. [2014] is concerned with the trade-off between conditioning on

more information and the power of post-selective inference. In Tibshirani

et al. [2016] we condition on the model selected and on the bounds V + and

V −. If we could condition solely on the model selected we would expect

to be able to get more testing power. This paper introduces the term

data carving, arguing using classic optimal hypothesis testing theory that

data splitting is inadmissible. Typically data splitting partitions data D

at randm into D1 and D2, uses D1 to perform model selection and then

does inference on the model parameters using D2 only. Fithian et al. [2014]

notes that this amounts to conditioning on D1 and argues for conditioning

only on the model selected using D1, leaving an analyst free to re-used

the rest of the information in D1 as well as all the information in D2 for

inference within the selected model.

• Fithian et al. [2015] suggests an alternate, and more powerful, approach

to using the P -values of Tibshirani et al. [2016] and provides an explicit

method for controlling the False Discovery Rate.

• Tian and Taylor [2015] suggests adding noise to the model selection step in

the process in order to save more information for post-selection inference.
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4. De-biasing and de-sparsifying

In this section I am going to look at van de Geer et al. [2014], Javanmard and

Montanari [2013], Javanmard and Montanari [2014b], Javanmard and Montanari

[2014a], Javanmard and Montanari [2015], and Zhang and Zhang [2014]. They too

study inference after using LASSO to select a model. Having found the LASSO

estimate β̂λ for some λ they adjust the estimate to try to remove its bias and then

give confidence intervals for the coefficients. The three papers overlap a great deal

but got published in widely separated venues at around the same time.

A central inferential issue is always what you want to estimate. The papers

given here assume that there is a vector β0, depending on n and p (which depends

itself on n) such that

Y = Xβ0 + ε

with iid entries in the error vector. The goal is to give confidence intervals for

all the entries in β0 or at least for any specific entry in β0. There is a sense in

which one is abandoning the model selection goal of the LASSO but there is also

the realistic understanding that when one selects a model with a given estimated

active set Â there may well be j 6∈ Â for which β0j 6= 0.

These three papers make very similar suggestions. They produce confidence

intervals for components βj by finding estimates whose estimation error (β̂j − βj)
has the form

a>j Y + oP

(√
a>j aj

)
with

a>j aj = O(1/n).

They achieve this by correcting the bias in some estimator. Zhang and Zhang [2014]

proceed by finding a linear estimator which has approximately the properties of

ordinary least squares, then using the LASSO to remove the bias of that estimate.

Javanmard and Montanari [2014b] and van de Geer et al. [2014] start from the

LASSO estimates and adjust them to remove bias and get an error expansion as

above.

4.1. Zhang and Zhang, 2014. I am going to start with Zhang and Zhang [2014]

because in this paper the formulas are developed one entry at a time and the

presentation seems simplest to me. In any least squares problem where X>X is
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not singular the jth entry in the ordinary least squares estimate of β is of the form

β̂jOLS =
x⊥j
>
Y

||x⊥j ||2
=
x⊥j
>
Y

x⊥j
>
x⊥j

=
x⊥j
>
Y

x⊥j
>
xj

for

x⊥j =
{
I −X−j

(
X>−jX−j

)−1
X>ij

}
xj.

This vector is the projection of xj onto the orthogonal complement of the column

space of X−j which is the X matrix with column j removed. Notice in particular

in the last equality that the inner product of x⊥j with itself is the same as its inner

product with xj because x⊥j is xj minus something in the column space of X−j.

Zhang and Zhang [2014] make one key observation about x⊥j . If a vector z is

in the column space of X, perpendicular to the column space of X−j and has

z>xj = z>z then z = x⊥j . (The orthogonal complement of the column space of

X−j within the column space of X is the set of all vectors of the form ax⊥j for a

scalar a. Thus z = ax⊥j . But then z>z = a2‖x⊥j ‖2 while z>xj = z>x⊥j = a‖x⊥j ‖2.
The only non-zero solution has a = 1.)

More or less the end of what I said in Lecture 5

If X−j has rank less than p − 1 then the matrix inverse won’t exist and will

need to be replaced by a generalized inverse (or by selecting a full rank submatrix

of X−j). But when p > n it will be the case that xj is in the column space of

X−j and the projection being discussed is 0. Thus β̂jOLS is undefined. In these

circumstances Zhang and Zhang [2014] suggests replacing x⊥j with some other

vector zj.

Imagine we used

β̂j,alt =
z>j Y

z>j xj
.

This estimate has mean

z>j xβ

z>j xj
= βj +

∑
k 6=j z

>
j xkβk

z>j xj

so it has bias ∑
k 6=j z

>
j xkβk

z>j xj
.
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It has variance

τ 2j =
z>j zj(
z>j xj

)2 .
The idea is to select, for each j, a vector zj by regression xj on X−j using LASSO

to regularize the fit. If we can estimate the bias and remove it by subtraction in

such a way that the residual bias is small compared to σj and without inflating

the variance then we get confidence intervals using

β̂j,alt ± 2σ̂j

where I am now imagining that we have in hand a consistent estimate of σ rather

than pretending it is known.

Zhang and Zhang [2014] make several particular suggestions. To remove the

bias they suggest using the Scaled LASSO to derive an initial estimate, β̂i for β

and an estimate σ̂2 of σ2. In the Scaled LASSO we minimize

Jλ(β, σ) =
‖Y −Xβ‖2

2nσ
+
σ

2
+ λ|β|1

If we knew the value of β then we could carry out the minimization over σ easily

and get the estimate

σ̂2(β, λ) =
‖Y −Xβ̂λ‖2

n
.

Profiling out this estimate we must minimize

Jλ,scaled(β) =
‖Y −Xβ‖2

n
+ λ‖β‖1.

This last is called the square-root LASSO (because we have replace the Error Sum

of Squares in the LASSO penalty by its square root); the square-root LASSO is

studied by Belloni et al. [2011]. Remember this suggestion makes λ unitless if

the covariates have been scaled to be unitless. As a consequence there is theory

suggesting a (fairly) specific value of λ, namely,

λuniv =

√
2 log p

n
.

(In fact the theory developed in Zhang and Zhang [2014] requires this to be modi-

fied by multiplying by some constant larger than 1 and replacing log(p) by log(p)+c

for some c > 0; the paper’s simulation studies use the universal value unmodified.)



48 RICHARD LOCKHART

Next we need to select the zj. To do so we return to the difference between the

true and the estimated bias:∣∣∣∣∣∣
∑

k 6=j z
>
j xk

(
β̂i
k − βk

)
z>j xj

∣∣∣∣∣∣ ≤ τj max
k 6=j

{∣∣∣∣∣ |z>j xk|z>j xj

∣∣∣∣∣
}
‖β̂i − β‖1.

Zhang and Zhang [2014] use the symbol ηj for the middle term.

The most important point here is this: you can do whatever you want with the

matrix X as long as you don’t do anything that depends on Y . So the suggestion

is to run square root lasso regressing each xj on X−j. Each such LASSO (called

‘node-wise’) can be given its own penalty λj and then the penalties can be altered

so that all the quantities ηj and τj are adjusted. Zhang and Zhang [2014] propose

a specific algorithm which searches over values of the λj to find a solution which

makes ηj small without letting τj get too large.

Here is a proposition which summarizes the basic strategy.

Proposition 1. Consider the usual linear regression model with homoscedastic

normal errors and fix some integer j and a vector zj, not perpendicular to xj.

Suppose β̂in is some initial estimate. Define

τj =
‖zj‖
|z>j xj|

and

ηj =
maxi 6=j{|z>j xi|}

‖zj‖
.

Define

β̂j =
z>j Y

z>j xj
−
∑

i 6=j z
>
j xiβ̂

in
i

z>j xj
.

Then

ηj‖β̂in − β‖1 = OP (1)

implies that
β̂j − βj
στj

d
 N(0, 1)

If σ̂ is consistent in the sense σ̂/σ → 1 in probability then

β̂j − βj
σ̂τj

d
 N(0, 1).
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Proof: Write
β̂j − βj
σ̂τj

=
z>j ε

‖zj‖
−
∑

i 6=j z
T
j xi(β̂

in
i − βi)

z>j xj
.

The first term on the right hand side has a standard normal distribution. The

absolute value of the second term is bounded by

maxi 6=j
{
|zTj xi|

}
|z>j xj|

× ‖β̂in − β‖1 = ηj‖β̂in − β‖1.

The results follow. •
The crucial inequality at the end can be rewritten in a different way which

highlights the overlap between this paper and the others I have mentioned. Define

the vector κj with entries

κj,i =
zTj xi

z>j xj

and the jth standard basis vector ej whose entries are all 0 except for entry j

which is 1. Notice that κj,j = 1 so that

ηj = max
i
{|κj,i − ej,i|} = ‖κj − ej ∞.

The inequality is therefore∣∣∣∣∣ β̂j − βjσ̂τj
−
z>j ε

‖zj‖

∣∣∣∣∣ ≤ ‖κj − ej ∞‖β̂in − β‖1.

Zhang and Zhang [2014] described their method as starting with a linear esti-

mator and correcting its bias using the LASSO to get and inital estimate. But we

can write

β̂j =
z>j Y

z>j xj
−
∑

i 6=j z
T
j xiβ̂

in
i

z>j xj

=
z>j Y

z>j xj
−
∑

i z
T
j xiβ̂

in
i

z>j xj
+ β̂in

j

= β̂in
j +

z>j

(
Y −Xβ̂in

)
z>j xj

This formulation looks like the initial estimator corrected by the extent to which

the residual is not perpendicular to zj. It is this form which Javanmard and

Montanari [2014b] and van de Geer et al. [2014] use.
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4.2. van de Geer et al. [2014] and Javanmard and Montanari [2014b].
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