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Course schedule

Note: almost certain to change as time goes by

Jan 23 Introduction: framing of issues in high dimensional inference;
an example data set; some primitive inference methods;
discussion of scientific contexts.

Jan 30 LASSO for model selection before inference; Unconditional
limit theory for LASSO path; Lockhart et al. [2014]

Feb 6 Conditional inference given selection; Tibshirani et al (2016)

Feb 13 POSI: conservative inference schemes; Berk et al

Feb 20 Limits ; Leeb and Pötscher

Feb 27 Debiasing: Bühlmann, van de Geer, Meinshausen

Mar 6 Javanmard, Montanari

Mar 13 Synthesis: comparison, strengths, weaknesses, my view of open
issues
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1. Introduction

These notes are to a accompany a series of 8, hopefully, lectures on the general
subject of inference in high dimensional linear models. They will develop over
the course of Lent Term 2017. The basic data structure will be as follows. We
have measurements Y1, . . . , Yn of some quantity which I will call the response.
Associated with Yi we have measurements Xi1, . . . , Xip of some other quantities
which I will probably call covariates, predictors, or features; any use I may happen
to make of the last of these terms will be, or at least seem to be, forced. The high
dimensional part will concern situations where p is large – typically larger than n
but in any case substantial compared to n.

Some questions of interest to me include:

• In what scientific contexts is it important to provide inference for the pa-
rameters in a linear model?
• When we do model selection followed by inference how do we select a target

of inference?
• How much trade-off must there be between model selection and inference?
• To what extent does large sample theory provide useful guidance in these

problems?
• Do we want conditional or unconditional inference?

1.1. Motivating Analysis of Riboflavin Data. I am going to use some data
described in Bühlmann et al. [2014] to illustrate the sort of problem I intend to
talk about for the next 8 lectures. In the example the response variable, Y , is
the (base 2 logarithm of) production of riboflavin by a bacterium called Bacillus
subtilis. The covariates are logarithms of normalized expression levels for p = 4088
protein coding genes. A total of n = 71 bacterial samples were analyzed.

The idea is that some small number of genes control the production of riboflavin.
The expression data measures the extent to which a gene is ‘switched-on’; for a
gene which influences the production of riboflavin there ought to be a correlation
how switched-on the gene is and the actual production of riboflavin.

I am going to pretend that we have a sample of n independent and identically
distributed vectors (Yi, Xi1, . . . , Xip). I will start with the basic question of whether
or not there is any relationship between any of the genes and riboflavin. We will
need some notation.

As usual we will stack the covariate values into a 71× 4088 matrix, denoted X
with jth column Xj. We will write Xij for the ijth entry and XA for the submatrix
of X with columns whose indices j belong to A ⊂ {1, . . . , p}.
Global null hypothesis: We begin by considering the hypothesis, H0, that Y
is independent of the set of covariates. I will replace that strong null hypothesis
with the weaker null hypothesis of of pairwise independence. For each j we have
a test statistic Tj for the null hypothesis, Hj, that Y is independent of Xj, the
jth covariate. Then we test the global hypothesis that Hj is true for every j.
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If we reject this hypothesis then of course we reject the original hypothesis of
independence but there do exist (exotic) joint laws for Y and the set of covariates
under which Y is independent each subset of fewer than k (with k < p) of the
covariates but not independent of all p. As in virtually all testing problems there
is no uniformly most powerful test so we must choose where to focus our test —
which alternatives we want good power for.

Even if we accept this rationale there are many tests of bivariate independence to
choose from. I am simply going to use the ordinary Pearson correlation coefficient
rj between Y and the jth covariate. Here is a plot of rj against the index j running
from 1 to 4088. I have highlighted with big red dots those points with |rj| > 0.6
— just a round number chosen so that there would not be too many dots. Notice
that 4 of the red dots are very close together.
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Now I turn these 4088 correlations into a single test statistic by taking maxi{|ri|}.
I computed a P -value by a variety of methods: Bonferroni correction of 1 at a
time P -values from t-statistics; parametric bootstrap, taking the covariates as
fixed and generating Gaussian Y s; nonparametric bootstrap, resampling Y s with
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replacement independently of the covariates; permutation test, where I randomly
permute the Y s before computing the correlations.

The largest absolute value of a t statistic is 5.4325 for variable 1278 which has the
name YXLD at. All the methods I tried attached very small P -values to this test
statistic as a test of the hypothesis that all 4088 correlation coefficients are 0. For
the 3 simulation methods I generated 50,000 new values of Y by each method and
recomputed the maximal absolute correlation. I never saw any statistic values as
large at 5.4325. The parametric bootstrap and bootstrap methods each produced
a largest absolute t statistic around 5.13 while the permutation test managed a
5.24.

The uncorrected P -value for the t statistic for variable 1278 would be 7.8×10−7;
after correction by multiplying by 4088 I get P = 0.0032 suggesting pretty strongly
that at least one of these covariates is related to Y . But the Bonferroni correction
is really quite conservative here. There are lots of strong correlations among the
t-statistics because there are some very strong correlations among the covariates.
Here are all the pairwise scatterplots among the top 6 variables.

Remark: An exact P -value is a random variable p which has, under some null
hypothesis, a Uniform[0,1] distribution. I call p a conservative P -value if P (p <≤
u) ≤ u for all u ∈ [0, 1] and the inequality is strict for some u. If p1, . . . , pm are
any m exact P -values (with any joint law whatsoever) then

P (∃j : mpj ≤ u) = P (m min
1≤j≤m

{pj} ≤ u) ≤
k∑
j=1

P (pj ≤ u/m) = mu/m = u

so

pBon = m min
1≤j≤m

{pj}

is a conservative P -value. Of course if each pj is conservative then the conclusion
still holds; the first equality just becomes an inequality.

The proof just uses the Bonferroni inequality

P (∪mi=1{pj ≤ u/m}) ≤
m∑
i=1

P ({pj ≤ u/m})

If the events indicated have substantial overlaps (say because some pj are strongly
correlated with others) then the right hand side can be much larger than the left;
we say Bonferroni can be very conservative.
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Some commentary after seeing these plots and these statistics.

• There is no reasonable way the response is independent of the predictors.
• I find it hard to believe that we are confident that variable 1278 is the

correct gene; distinguishing it from variable 1279 would appear to be very
hard.

Here is a small easy study. Consider regressing Y on two columns U ,V
with U>U = V >V = 1 and U>V = 1− ε. Generate the Yi independently
from a normal distribution with mean βUi and variance 1. Thus the true
model is

Y = Uβ + ε

with N(0, 1) errors. We will consider fitting three regression models

Yi = α1Ui + εi,

Yi = α2Vi + εi,

and
Y = Uβ1 + V β2 + ε
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The middle model is wrong in the sense that the errors in that model do
not have mean 0:

E(Yi) = βUi = αVi

is not true for any choice of α; if it were our conditions would guarantee
U>V = ±1.

When we regress Y on U without an intercept we get a fitted slope
α̂1 = U>Y with mean β and variance 1 while if we regress Y on V
without an intercept we get fitted slope α̂2 = V >Y with mean (1 − ε)β.
The covariance between these two estimates is

Cov(U>Y ,Y >U) = U>V = 1− ε.
Since Y has a multivariate normal distribution the pair (α̂1, α̂2) has a bi-
variate normal distribution with the given means and variance-covariance.

Now consider the sort of selection algorithm I am suggesting above where
we pick the covariate with the highest absolute correlation with Y as our
preferred predictor. This is what I am doing when I pick out variable 1278.
In the example I get the right variable if |α̂1 > |α̂2| so I will compute this
probability in the limit as ε→ 0. I will prove this probability is 1/2.

The probability I want is

πε ≡P (0 < α̂2 < α̂1) + P (0 < −α̂2 < −α̂1)

+ P (0 < −α̂2 < α̂1) + P (0 < α̂2 < −α̂1).

Let

δ̂ =
α̂1 − α̂2√

2ε

Then the joint distribution of δ̂ and α̂2 is bivariate normal with mean
vector (β

√
ε/2, β(1− ε), both variances equal to 1, and covariance −

√
ε/2.

As ε → 0 this joint distribution then converges to bivariate normal with
identity covariance and means 0 and β. Rewrite the events of interest in
terms of α̂2 and δ to get

πε =P (0 < α̂2, δ > 0) + P (α̂2 < 0, δ < 0)

+ P (0 < −α̂2 < α̂2 +
√

2εδ) + P (0 < α̂2 < −
√

2εδ − α̂2).

In the limit the first two probabilities involve intersections of independent
events so the first two terms converge to

1

2
P (N(β, 1) > 0) +

1

2
P (N(β, 1) < 0) =

1

2
.

In the limit ε→ 0 the other two terms become

P (0 < −α̂2 < α̂2) + P (0 < α̂2 < −α̂2) = 0

because the events indicated are empty. So limε→0 πε = 1/2.
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Remark: if we regress Y on both U and V we get β̃1, β̃2 with a bivariate
normal distribution with mean β, 0 and variance covariance matrix

1

2ε− ε2

[
1 −(1− ε)

−(1− ε) 1

]
which is, of course, huge for small ε. Both variances are effectively 1/(2ε)
and the correlation converges to −1.

For the data at hand think of U as column 1278 and V as column
1279. Take β to be the slope of Y regressed on variable 1278 (ignoring
the selection problems these lectures are actually about) and simulate new
vectors Y as described above. The correlation between U and V is 0.9845
so ε = 0.0155. For these settings it is easy to check that the probability
that the correlation with variable 1279 will be larger in absolute value than
the correlation with variable 1278 is close to 1/2. In other words – for the
data at hand the argument above is applicable.

When I discuss extreme value theory I hope I will deal more clearly with
the probability of this event intersected with the event that the variable
1278 produces the largest correlation. For the moment I will just say the
answer is essentially 1/2 under the (false, I believe) hypothesis that variable
1278 is the only variable needed to predict Y . NOTE: quite a different
picture emerges if we allow for selection and take a substantially smaller
value of β. More about this later.
• I also don’t believe that there is clear evidence about the number of non-

zero predictors.
Bühlmann et al. [2014] uses a variety of methods on the Riboflavin data.

One finds no important predictors. One finds exactly variable 4003. One
marginal screening method (roughly trying to find which predictors have
unadjusted correlations with Y which could not credibly be 0) finds 53
genes when controlling the family wise (Type I) error rate at 0.05. Another,
controlling the False Discovery Rate at 10% finds 375 genes.

More than one variable needed?
The central difficulty surrounding hypothesis testing arrives at this stage. We

are now sure that at least one variable is related to the production of riboflavin. I
want to test the hypothesis that none of the others is, adjusted for the one we have
found. But describing the problem that way assumes more than I have achieved.
The P -value I computed does not attach to the hypothesis that β1278 = 0. Instead
I have rejected the null hypothesis that all βj are 0 and that is far from implying
that β1278 6= 0. The multi-sample splitting method of Bühlmann et al. [2014] splits
the data set at random, selects a model based on one half, then uses the other half
to test the hypotheses H0j : βj = 0 for each variable included in the model. Then
it computes a Bonferroni adjusted P -value for that split. The process is repeated



INFERENCE IN HIGH-DIMENSIONAL LINEAR MODELS COURSE NOTES 9

and the P values are aggregated (carefully) to control the family wise error rate

P (Any true null hypothesis is rejected) ≤ 0.05.

Bühlmann et al. [2014] indicate that they found exactly 1 significant variable this
way. Using multi.split from the R package hdi I find: # 4003.

So taking note of the obvious difficulty I go on: is variable 1278 enough? Is
variable # 4003 enough? I need a model. I want to test the hypothesis that given
X1278 the response Y is independent of all the other Xj. Again I will replace that
with the hypothesis that each other Xj is conditionally uncorrelated with Y give
X1278. But this requires me to be able to condition on X1278 and I don’t know
how to do that without assumptions. So finally I assume that (Y,X1, . . . , Xp) have
a multivariate normal distribution. I regress each Xj on X1278 and compute the
residuals. I do the same for Y . Now I have a new data set with say Y ∗ and X∗j and
compute 4087 correlation coefficients (or equivalently 4087 t-statistics). I get P
values by bootstrapping the Y ∗ or permuting the Y ∗. Ignoring estimation error the
resampled Y ∗ variable is independent of the X∗ variables. I find the correlation is
maximized for X4002 and the associated P -values are estimated at 0.00052 for the
bootstrap and 0.00077 for the permutation scheme. Notice that I get the variable
right next door to X4003. These two variables are strongly correlated and although
the unadjusted correlation of X4003 with Y is marginally larger than that of X4002

with Y , this ordering is reversed after eliminating X1278.
I repeated the exercise removing the effects of X1278 and X4002 on Y and on

all the other Xj and was no longer able to reject the null that all the remaining
βj are 0. Of course, not rejecting a null is a far cry from asserting its truth. I
also repeated the second step of this exercise starting with variable X4003 (the one
picked by multi-split). Again I found another variable was needed. The most
likely candidate was X1278.

My take is that there is reasonably strong evidence for the existence of more
than 1 important predictor but:

• I would certainly do follow up work with these genes and all those highly
correlated with them.
• I think the evidence that 1278 and 4002 are the important predictors is

very weak. But I suspect that one of 1278 and the things it is strongly
correlated to, together with 4003 or the things it is strongly connected to,
are needed.
• We have no clear idea what the evidence is about the size of the effects.
• Suppose I wanted to summarize my results by fitting some linear model of
Y on some or all of the Xj. Should I offer confidence intervals for 4088 βj
in a regression of Y on all 4088 predictors? Should I regress Y on some
subset of the 4088 – say just {1278, 4002} and give confidence intervals for
the slopes in that regression?
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• I am not sure the βj are of any real scientific interest given the pre-
processing of the gene expression data.

More or less the end of what I said in Lecture 1
From here on the notes have not been updated

1.2. Targets of inference. I hope the example has shown that there are some
important issues to face up to. We are going to focus on a regression model of the
form

(1) Y = β0 +Xβ + ε

where we assume that conditional on X the entries in ε are independent and
identically distributed with mean 0 and variance σ2. This situation arises in at
least two ways:

(1) The entries in the design matrix X are actually controlled by an experi-
menter / data collector. In compressed sensing applications, for instance,
these entries code up some expansion of some ‘image’ in terms of some set
of basis functions like wavelets or whatever. (I am not going to deal explic-
itly with any such problem but will talk about at least one deterministic
design.)

(2) The vectors Yi, Xi1, . . . , Xip are independent and identically distributed and
the conditional expectation of Yi given the rest is linear with homoscedastic
errors. Essentially: the data are jointly multivariate normal and we have
an iid sample of size n. In this case our analysis will be conditional on the
design in the beginning at least.

The preliminary analysis I did above was focused on the second of these ideas.
But I want to point out two things.

First is nature of the response. Here are the first few sorted values of 10000×2Y .

> cat(10000*sort(2^y))

10 13 13 26 30 31 31 32 33 35 35

You see that there is considerable discreteness in Y itself and this may be worth
remembering when we start to throw around assumptions like they were candy.

Second the rows of the data matrix riboflavin in R have names: the first three
observations are called

b_Fbat107PT24.CEL

b_Fbat107PT30.CEL

b_Fbat107PT48.CEL

I hope the names don’t mean the rows shouldn’t be thought of as an iid sample.
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2. Model selection by the LASSO

Traditionally we fit the model

Y = β01 +Xβ + ε

(where 1 is a vector with all entries equal to 1) by ordinary least squares minimizing
the Error Sum of Squares

||Y −X∗β∗||2

where X∗ is the matrix with a column of 1s followed by X and β∗ is the concate-
nation of β0 and β. This smooth function of β∗ has gradient

−2
{
X∗>X∗β∗ −X∗>Y

}
and is minimized at the least squares estimates

β̂∗ =
{
X∗>X∗

}−1
X∗>Y .

When p exceeds n− 1 however the matrix X∗ must be singular and this method
fails. We focus on situations where p is large from now on.

In generalX∗β is a vector in the column space ofX∗; any vector in that column
space can be realized in this way. When X∗>X∗ is singular there is nevertheless
a unique vector v̂ in the column space of X∗ minimizing

||Y − v||2

over all v in the column space of X∗. But there is not a unique vector β for which
v = Xβ.

One way to describe the problem is to say that the map

β → ||Y −Xβ||2

is convex (its second derivative matrix is non-negative definite) but not strictly
convex. If the rank of X is less than the number of columns of X then the null
space ofX is non-empty; there is a non-trivial subspace of vectors θ withXθ = 0.
For any such θ and any β we see that

t→ ||Y −X (β + tθ) ||2

is constant.
It turns out, however, that there are many (possibly ad hoc in flavour) ways

to modify the error sum of squares criterion to restore strict convexity (except
perhaps for truly pathological design matrices). The general form of a penalized
error sum of squares is

J(β) ≡ 1

2
‖Y −Xβ‖2 + Penalty(β).

Procedures in this class includes Ridge regression where the penalty is

λ
∑
i

β2
i
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Smoothly Clipped Absolute Deviation (SCAD) which I won’t define and others. I
am going to focus on Least Absolute Shrinkage and Selection Operator (LASSO)
because it is the only one I now even a little about.

For a given λ > 0 the LASSO estimate of β is β̂λ minimizing the penalized error
sum of squares:

Jλ(β) =
1

2
‖Y −Xβ‖2 + λ

∑
i

|βi|

=
1

2
Y >Y +

1

2
β>X>Xβ −U>β + λ

∑
i

|βi|

Notice that this function (and so its minimizer) depends on the data Y only via
U = X>Y .

2.1. Scaling, intercepts. I think most scientists would regard this definition with
suspicion. The columns of X are different co-variates and in most regression prob-
lems different columns will be measured in different units. Suppose for instance
that Y is weight in kilograms of a person, X1 is height in centimetres, and X2 is
age in years. If we wrote down the (silly) model

Yi = α + β1X1i + β2X2i + εi

then Yi, α, and εi must all be measured in kilograms. The term β1X1i will be
in kilograms as well provided β1 is in kilograms per centimetre. Similarly β2 has
units kilograms per year. The error sum of squares has units kilograms squared.
But the penalty term adds kilograms per year to kilograms per centimetre and
multiplies by λ so we are adding apples to oranges; you should not do that. If the
intercept α is included in the penalty then that term has units kilogram multiplied
by the units of Y .

There are some natural ways out:

• Sometimes (like the riboflavin example) all the columns of X other than
the column of 1s are measured in the same units. In this case the β all
have units given by units of Y divided by units of an X and λ must have
units of X per unit of Y .
• In the penalty multiply any βi by an estimate of scale for the variable Xi.
• Don’t shrink the intercept. This is most easily handled by estimating α by
Ȳ , the mean of the responses and then centering Y and each column of X
by subtracting means.
• Scale X (after centering) so that R ≡ X>X has a constant on the di-

agonal. I will make sure that constant is 1 so that R is a correlation
matrix. Another common choice is to make the constant n so that R/n is
a correlation matrix.

When people work with the iid sampling model they often use a slightly different
formulation. Like us they centre the columns of X. But then they divide the error
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sum of squares by the sample size n and minimize

1

n
‖Y −Xβ‖2 + γ

∑
|βi|.

This means that γ corresponds to 2λ/n in my scaling above. In the iid sampling
context the matrix X>X grows like n because with p fixed

lim
n→∞

1

n
X>X = Var(X),

the population variance-covariance matrix of the covariates. If we have shave been
normalized to have length n then the limit is the correlation matrix of X. If we
apply our scaling so that X>X has 1 on the diagonal then we have effectively
divided each column by the standard deviation of that covariate multiplied by√
n. This means that the corresponding entry in β has been multiplied by the

same quantity. Thus in our formulation β effectively grows with n, like
√
n.

2.2. Asymptotic Tests following Lockhart et al. [2014]. In order to actually
use the LASSO, or any other penalized method, you have to specify λ. Many
suggestions have been made but I am not going to discuss any of them. Instead
I am going to describe a technique which considers the way the estimates depend
on λ. That is, I am going to think about the fit as a function of λ. I will start out
with λ very large and show you that for all sufficiently large λ the estimated vector
β̂λ is 0. I am going to compute the infimum of that set of λ values explicitly, show
that the estimate is continuous and piecewise linear in λ and show you how to
compute sequentially the places where there are corners.

Here is a brief summary of our strategy which introduces some notation:

• Start λ out very large.
• For all large λ all components of β̂(λ) = 0.
• Shrink λ gradually till one variable enters model.
• At critical value (knot) of λ, which I will denote by λ1, variable J1 enters

our model; that is, its estimate becomes non-zero. (This value is a random
variable of course.)

• For λ slightly smaller than λ1 only β̂J1 is non-zero.
• As we shrink λ new variables enter (or possibly leave) at knots

λ1 > λ2 > · · · .
• ith variable entering is Ji with sign Si ∈ {±1}; this notation will become

unsatisfactory when we look carefully at variables which leave the model.
• As λ goes from λi to λi+1, β̂Ji(λ) grows (linearly).

For the riboflavin data after centering the columns of X and standardizing each
column to have unit length we find the first 10 knots, λ1, . . . , λ10 and corresponding
index numbers and sign are as in Table 2.2. In Figure 2.2 I plot the estimates of
the 9 coefficients involved against λ between λ = λ10 and λ = 6. For λ < λ10 the
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Table 1. For the riboflavin data this table shows the first 10 knots
on the LASSO path. At each of the first 9 knots the active set is
enlarge by the addition of the Variable indicated. At λ10 = 2.409
variable 1588 leaves the model.

Knot Knot value Variable What happened
λ1 5.000214 1278 Added
λ2 4.567995 4003 Added
λ3 4.387905 1516 Added
λ4 3.863533 2564 Added
λ5 3.285314 1588 Added
λ6 2.963925 624 Added
λ7 2.960060 1312 Added
λ8 2.942163 1502 Added
λ9 2.424337 1639 Added
λ10 2.408743 1588 Deleted

picture becomes quite complex; for λ > λ1 we are just plotting 0. At λ = λ10 the
LASSO estimate of β1588 becomes 0 and that variable leaves the model Between
λ10 and λ11 = 2.213 there are only 9 non-zero estimated slopes. At λ11 = 2.213
variable 1297 is added.

Now I show you in Figure 2.2 a frame from a movie. It shows the values of the
10 entries for β̂λj for j as in Table 2.2 plotted against λ ∈ [λ10, 6]. The movie
itself, which simply steps λ down from the right by small increments is available
at ???. At each knot in the table you see the value of the corresponding estimated
coefficient is 0 to the right and changes linearly to the left. The slopes of all these
lines change each time a variable enters a model; this is natural because now we
are adjusting the slopes of each variable on a different set of covariates.

One important point is what happens with variable 1588. That variable enters
the model at knot λ5. At knot 6 or 7 the estimate for this coefficient switches from
moving away from 0 (as λ decreases) to moving towards 0. Indeed at knot 10 this
estimate hits 0. No variable enters at λ10.

We will use the following jargon. The term active set refers to the set of j
for which the jth coefficient is not 0. We will speak of the true active set as
A0 ≡ {j : β0j 6= 0} where the subscript 0 indicates the true parameter vector. For
a given value of λ we will have an estimated active set

Âλ = {j : β̂λj 6= 0}.

For clarity here are some examples. For λ ≥ λ1 we have ÂAλ = ∅. For λ2 ≤ λ < λ1
we have Âλ = {1278}. Finally for λ11 ≤ λ < λ10 the estimated active set consists
of all the variables in Table ?? except 1588.
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2.3. Tests for the selected variable. I now want to discuss our strategy for
answering the question: Do we need these variables in our model? I begin by
considering a test of the hypothesis β = 0. We will want to understand, however,
the relation between this classical hypothesis and the random hypothesis βJ1 = 0.
Our strategy is to measure the improvement of the fit when we add variable J1 to
the model using the change in covariance between the predictor Xβ̂(λ) and Y as
λ varies between λ1 and λ2. This change scales with ε so we will scale the change
in covariance by an estimate of the error variance σ2. Lockhart et al. [2014] mostly
consider a fictitious universe in which σ is known.

An aside on the nature of the model selection problem

We cannot simply look at the t statistic in the fit of Y against X1278 or at
corresponding F tests when we consider more variables. Suppose we regress log
riboflavin production on variables 1278, 4003, 1516, 2564, 1588; these are the first
5 variables which come into the model in Table ??. The usual overall F test gives
a P -value of P = 2.2 × 10−16. Individual t-test P -values: 4 × 10−5, 5 × 10−6,
4× 10−3, 1× 10−4 and 0.34.

We have already seen, however, the impact of cherry picking and discussed
adjusted P -values. There are 9.5× 1015 possible regressions of Y on 5 of our 4088
covariates. So the Bonferroni corrected overall F -test P -value is 1 (the product
2.2× 10−16 × 9.5× 1015 > 1, that is).
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The test statistic from Lockhart et al. [2014] for the first variable is

T1 =
λ1(λ1 − λ2)

σ̂2
= 24 or 2.55.

The word “or” reflects uncertainty about how to estimate σ̂2. For the two choices
we usually suggest we get a P -value which is either 3.7× 10−11 or 0.078. That is a
big range. Estimation of σ is crucial and hard, I think. I now turn to the details
of our suggestion.

I am going to work my way through the Karush-Kuhn-Tucker conditions for the
LASSO fit. My presentation will be elementary because our objective function Jλ
is nearly differentiable and it is easy to say where it is not. Thus I will just discuss
the components of the gradient vector. At values of β for which some component
of the gradient is not defined I will just write down left and right derivatives.

Fix some λ > 0. The estimate β̂λ is the vector β∗ if:

β∗j 6= 0⇒ ∂J(β)

∂βi

∣∣∣∣
β=β∗

= 0 and

β∗j = 0⇒ ∂J(β−)

∂βi

∣∣∣∣
β=β∗

≤ 0 and

β∗j = 0⇒ ∂J(β+)

∂βi

∣∣∣∣
β=β∗

≥ 0.

Here β± indicate a right (+) or left (−) partial derivative. The right and left
derivatives differ, when β∗j = 0, by 2λ.

What are these Karush-Kuhn-Tucker conditions? In the following I am going
to need XA to denote the submatrix of X with columns whose indices are in A
and Xj to denote the jth column of X.

At β∗ these derivatives take one of three forms depending on the value of β∗j .

• For β∗j > 0 the derivative is(
X>Xβ∗

)
j
− Uj + λ = X>j Xβ

∗ − Uj + λ

• For β∗j < 0 the derivative is

X>j Xβ
∗ − Uj − λ

• At β∗j = 0 the formulas above are the right and left derivatives.

Compactly, let Si be the sign of β∗j and A = {i : β∗j 6= 0}. Then

Xβ∗ = XAβ
∗
A

and

X>AXAβ
∗
A = X>AY − SAλ.
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Consider now the simplest case. When is β∗ = 0? For this value we must have
that for all j

−Uj − λ ≤ 0 and − Uj + λ ≥ 0

or

|Uj| ≤ λ.

Thus

λ1 = max
j
{|Uj|}.

Now I turn my attention to finding λ2. First I claim that except in pathological
situations there is a unique j = J1 such that

|UJ1| = max
j
{|Uj|}.

For that to fail we would have to have a pair i 6= j with

|X>i Y | − |X>j Y | =
∣∣(Xi ±Xj)

>Y
∣∣ = 0

which won’t happen for absolutely continuous errors unless there is a choice of
signs making

Xi ±Xj = 0

We say that the matrix X has columns in general position if that does not happen
for any pair i 6= j. A design matrix with two identical columns or one column
exactly equal to minus the other is a very doubtful design.

Recall λ1 = maxi{|Ui|}. Use J1 for the maximizing index and S1 for the sign of

UJ1 . For λ > λ1 we have shown that β̂λ = 0. Now consider λ = λ1 − ε with ε > 0
small. I claim that there is a ε > 0 for which

β̂λ,j =0 for j 6= J1

β̂λ,J1 =UJ1 − S1λ

= UJ1 − S1(S1UJ1 − ε)
= S1ε.

Proof:
We will check to see that this β∗ satisfies the conditions. We are saying A = {J1}

and solving the equation

X>AXAβA − UJ1 + S1λ = 0.

But remember that X>X is the identity and that A has only a single column so
that X>AXA = 1 and we must solve βA − UJ1 + S1λ = 0 which gives the desired
formula.

For j 6= J1 the left and right derivatives are

X>j XAβA − Uj ± λ
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Write ρjk for the jkth entry in X>X; the choice of the letter ρ is to remind you
that X>X is a correlation matrix and every off diagonal entry lies in [−1, 1]. Note
that

Cov(Uj, UK) = Corr(Uj, Uk) = ρjk.

Then the left and right derivatives are on opposite sides of 0 if

ρjJ1(UJ1 − λS1)− Uj − λ < 0 < ρjJ1(UJ1 − λS1)− Uj + λ

which becomes

−λ(1 + ρjJ1S1) ≤ Uj − ρjJ1UJ1 ≤ λ(1− ρjJ1S1).

I want to divide through by the quantities multiplying λ but I don’t want to
divide by 0 and I want to remember that if I divide by a negative number the
direction of the inequalities would change. Since |ρjJ1 | ≤ 1 we can divide by 0
only if ρjJ1 ∈ {−1, 1}. But that would mean that columns j and J1 were perfectly
correlated and, in view of our scaling, contradict our general position assumption.
Notice two that |S1ρjJ1| < 1 so we will not be dividing by a negative number. We
learn that if, for each j 6= J1 we have

max

{
Uj − ρjJ1UJ1
1− ρjJ1S1

,
−(Uj − ρjJ1UJ1)

1 + ρjJ1S1

}
< λ

then β̂λj = 0 for j 6= J1. Thus if

λ2 ≡ max
j 6=J1,s∈{−1,1}

{
s(Uj − ρjJ1UJ1)

1− sρjJ1S1

}
< λ < λ1

then

β̂λj =

{
0 j 6= J1
UJ1 − λS1 j = J1.

Use J2 for the maximizing value of j and S2 for the choice of s in the definition
of λ2. Notice that S2 will be the sign of the term Uj − ρjJ1UJ1 in the numerator.
Notice too that this quantity is the residual when Uj is regressed on UJ1 (and J1
is treated as non-random).

Now I describe the tests of Lockhart et al. [2014]. They compared the fits at
λ1 and λ2 to get a test of the global null β = 0. At λ = λ1 the fitted predictor
is 0 and the covariance with Y is 0. At λ = λ2 the fitted predictor is Xβ̂λ2 the
“covariance” is

Y >Xβ̂λ2
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The change in covariance then becomes

Y >Xβ̂λ2 =UJ1 β̂λ2J1

=UJ1 (UJ1 − λ2S1)

=U2
J1
− λ2|UJ1|

=λ21 − λ1λ2
= λ1(λ1 − λ2)

This has to be scaled for the scale of Y so our test statistic is

T =
λ1(λ1 − λ2)

σ2

I will discuss estimation of σ later.

2.4. Toy example: global null hypothesis true. Approximate theory usually
depends on limits. When I was a child we did limit theory by fixing the parameter
vector β and so also fixing p. Then we would take a limit as n→∞. Here, however,
our focus is on big p. I will start with an example which can be worked out in
considerable detail using extreme value theory. So now consider an orthogonal
design where X>X = I. Fix σ = 1 known. Under these assumptions the entries
U1, . . . , Up of U are iid N(0,1). Our statistic for i = 1 boils down to

|U[1]|(|U[1]| − |U[2]|);
where the square brackets in the subscript denote descending order of absolute
values. Thus we are studying extreme order statistics and this is an extreme value
problem.

What does extreme value theory tell us? Suppose X1, . . . , Xn are iid with con-
tinuous cdf F . The cdf of X(n) = max{Xi; 1 ≤ i ≤ n} is F n(x) and the cdf
of

X(n) − an
bn

is
F n(an + bnx)

If this sequence of distribution functions converges to a distribution G(x) then the
Fisher-Tippett theorem whose final form is due to Gnedenko says that G must be,
up to a location-scale transformation one of three possibilities: Weibull, Pareto or
Gumbel. In the case at hand F is the cumulative distribution function of a χ1

random variable (the square root of a χ2
1 variate or the absolute value of a standard

normal variate). That is

F (x) = max{2Φ(x)− 1, 0}.
For this distribution the choices

an =
√

2 log n
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and

bn = an −
log log n+ log π

2an
work and the limit distribution is the standard Gumbel law

G(x) = exp(− exp(−x)).

Weissman [1978b] extends these conclusion to the joint law of the k largest
order statistics via a Poisson process approximation. Let N(x) be the number of
Xi which are at least x. Then N(x) has a Binomial(n, 1− F (x)) distribution and
N(an + bnx) has a Binomial(n, 1− F (an + bnx)) distribution. The condition

F n(an + bnx)→ G(x)

guarantees that

n(1− F (an + bnx))→ G(x)

and then the sequence of counting processes Mn defined by

Mn[x,∞) = N(an + bnx)

converges weakly to a Poisson process with intensity ψ′(x). That is, whenever
x1 < · · · < xk we have

Mn[x1, x2), . . . ,Mn[xk−1, xk),Mn[xk,∞)⇒M [x1, x2), . . . ,M [xk−1, xk),M [xk,∞)

where M is an inhomogeneous Poisson Process on the line with intensity ψ′(x).
The canonical theoretical choice is bn = nf(an) but there are many asymptotically
equivalent choices.

• For ap and bp both more or less
√

2 log p we have

ap(|U[1]| − bp), ap(|U[2]| − bp), . . . , ap(|U[K]| − bp)
has joint extreme value limit distribution; Weissman [1978a].
• Weak limit W1, . . . ,Wk has joint density

exp
(
−w1 − · · · − wk − e−wk

)
1(wk < · · · < w1)

• In fact we may take

ap =
√

2 log p

and

bp = ap −
log log p+ log π

2ap
.

Consequences

• Implication:

ap(|U[1]| − |U[2]|) =⇒ Exponential(1).

• And |U[1]|/ap → 1 so

|U[1]|(|U[1]| − |U[2]|) =⇒ Exponential(1).
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• Indeed under the global null with Gaussian errors

U[1]|(|U[1]| − |U[2]|), . . . , U[k](U[k] − U[k+1])

converges in law to
E1, E2/2, . . . , Ek/k

where the Ei are iid standard exponential.

How to handle general X>X

• Notice U[1] is NOT independent of U[2].
• But given J1 = j1, U[2] computed from the Uj with j 6= j1.
• So conditional law of U[1] given J1 = j1, S1 = 1 AND U[2] is Gaussian

truncated to range
(|U[2]|,∞).

• This part remains true for general designs!
• So what is conditional law of

Uj1(Uj1 − λ2)
given other Uj and J1 = j1 and S1 = 1?

The tail of the normal distribution is exponential:

• Assume Z ∼ N(0, 1) and E(Z) = 0 and let λ→∞.
• Then

lim
λ→∞

P (Z(Z − λ) > x|Z > λ) = e−x for x > 0.

• Much better approx than usual extreme value theory.

There are two natural ways to plot the quality of this approximation. The first,
in Figure 2.4 plots the approximate P -value

P (Z(Z − λ) > v|Z > λ) ≈ e−v

against the exact P -value

P (Z(Z − λ) > v|Z > λ) = P (Z > u(v, λ)|Z > λ) =
1− Φ{u(v, λ)}

1− Φ(λ)

It will be seen that the plots lie very close to the line y = x. A less favourable view
focuses on the quality of the approximation when the P -value is low. In Figure 2.4
plots the ratio

e−v

P (Z > u(v, λ)|Z > λ)

against P (Z > u(v, λ)|Z > λ) when λ =???
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Figure 1. Plot of approximate approximate tail probability
P (Z(Z − λ) > x|Z > λ) ≈ exp(−x) against the true tail proba-
bility P (Z(Z − λ) > x|Z > λ) = P (Z > u(x, λ)|Z > λ) where Z is
standard normal for values of λ ∈ {2, 3, 4, 5, 6}
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Figure 2. Ratio, as a function of x, of approximate tail proba-
bilities P (Z(Z − λ) > x|Z > λ) ≈ exp(−x) divided by true tail
probabilities P (Z(Z − λ) > x|Z > λ) = P (u(Z, λ) > x) where Z is
standard normal and λ is ??
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