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Abstract

The problem of determining haplotypes from genotypes has gained considerable prominence
in the research community. Here the focus is on determining the actual DNA sequence of
individual chromosomes since such information captures the genetic causes of disease. Present
algorithmic tools for haplotyping make effective use of phylogenetic tree construction and, in
particular, perfect phylogeny [7]. Here the underlying assumption is that recombinations are
not present, an assumption with some basis in experimentation. However these experiments
do not exclude recombinations and models are needed that incorporate this extra degree of
complication.

First attempt in haplotyping via models which allow a limited number of biological events
that violate the perfect phylogeny model was taken in [15]. In this paper a polynomial algorithm
for haplotyping via imperfect phylogenies with a single homoplasy was presented, as well as a
practical algorithm for haplotyping via galled-tree networks with one gall. In earlier work we
characterized the existence of the galled-tree networks [6]. Building on this work, we are able
to reduce the problem of haplotype inferring via galled-tree networks to a hypergraph covering
problem, although we require that the genotype matrices satisfy a combinatorial condition.
Note that our experiments on real and simulated data show that this condition is almost always
satisfied. In [5], we have presented a polynomial algorithm based on the above reduction for
haplotype inference via galled-tree networks with galls having exactly two mutations. It is very
natural to ask whether the assumption on the size of galls can be dropped and still hope for a
polynomial algorithm. In this paper we show that without this assumption, we are unable to
solve the problem in polynomial time. Indeed, we show that the hypergraph covering problem
we obtain in the general case is NP-complete by reduction from 3-SAT. Hence, we have a strong
evidence that the haplotype inferring via galled-tree networks is intractable.

1 Introduction

With the sequencing of the Human Genome, research has focused on the problem of determining
the DNA sequence of individuals on each of their chromosomes. Such information captures genetic
variation and is already playing a central role in helping to determine the genetic causes of disease
and in designing effective pharmaceutical responses to these diseases. Experimental methods allow
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for cost-effective determination of genotype information (the combined information for an individ-
ual across both matching chromosomes) and so the problem can be reduced to computationally
determining haplotypes from genotypes.

Helmuth [10] was among the first to note the importance of haplotypes and it’s role in un-
derstanding diseases. Other researchers (see [3, 14] for example) also noted that haplotypes have
important implications for identifying disease associations and isolating environmental and genetic
affects on disease. Gabirel et al [4] noted that haplotyping contributed to the identification of genes
for Mendelian diseases amongst others. This body of work is now encompassed in the International
HapMap project (cf. http://www.hapmap.org/abouthapmap.html).

While in-vitro techniques can be used for haplotyping as well, the cost is prohibitive, and
therefore is a strong interest in the development of algorithmic tools [12]. The first heuristic
algorithm for computational haplotype inference was designed by Clark [2]. Gusfield [7] developed
the first exact algorithms based on the assumption of no recombinations which allowed him to make
effective use of phylogenetic trees. This assumption was justified by experimental results that show
chromosomes are partitioned into blocks with a strong correlation between sites on the same block
([3, 14]). As such these experiments do not exclude recombinations within a block and models were
needed that allow for a small rate of recombinations.

First attempt in haplotyping via models which allow a limited number of biological events
that violate the perfect phylogeny model was taken in [15]. In this paper a polynomial algorithm
for haplotyping via imperfect phylogenies with a single homoplasy was presented, as well as a
practical algorithm for haplotyping via galled-tree networks with one gall. In earlier work[6] we
considered the problem of characterizing the existence of galled-tree networks. Later in [5], we have
presented a polynomial algorithm for haplotype inference via galled-tree networks with galls having
two mutations based on reduction of haplotyping problem to a hypergraph covering problem. It
is very natural to ask whether the assumption on the size of galls can be dropped and still hope
for a polynomial algorithm. In this paper we show that without this assumption, we are unable to
solve the problem using the same technique as in [5] in polynomial time. Indeed, we show that the
modified hypergraph covering problem we obtain in the general case is NP-complete by reduction
from 3-SAT. Hence, we have a strong evidence that the haplotype inferring via galled-tree networks
is intractable.

1.1 Definitions of phylogenetic and galled-tree networks

We will assume that a genotype matrix has values in {0,1,2}. Similarly, a haplotype matrix has
values in {0,1}.

Definition 1. A phylogenetic network N on m characters is a directed acyclic graph containing
exactly one vertex (the root) with no incoming edges, a set of internal vertices that have both
incoming and outgoing edges, and exactly n vertices (the leaves) with no outgoing edges. Each
vertex other than the root has either one or two incoming edges. If it has one incoming edge, the
edge is called a mutation edge, otherwise it is called a recombination edge. A vertex x with two
incoming edges is called a recombination vertex.

Each integer (character) from 1 to m is assigned to exactly one mutation edge in N and each
mutation edge is assigned one character. Each vertex in N is labeled by a binary sequence of length
m, starting with the root vertex which is labeled with the all-0 sequence. Since N is acyclic, the
vertices in N can be topologically sorted into a list, where every vertex occurs in the list only after
its parent(s). Using that list, we can define the labels of the non-root vertices, in order of their
appearance in the list, as follows:



e For a non-recombination vertex v, let e be the mutation edge labeled ¢ coming into v. The
label of v is obtained from the label of v’s parent by changing the value at position ¢ from 0
to 1.

e Each recombination vertex z is associated with an integer r, € {2,...,m}, called the recom-
bination point for x. Label the two recombination edges coming to x P and .5, respectively.
Let P(z) (S(z)) be the sequence of the parent of = on the edge labeled P (S). Then the label
of = consists of the first r, — 1 characters of P(x) , followed by the last m —r, + 1 characters
of S(x). Hence P(x) contributes a prefix and S(z) contributes a suffix to z’s sequence.

In this paper, the sequence at the root of the phylogenetic network is always the all-0 sequence,
and all results are relative to that assumption. More general phylogenetic networks with unknown
root were studied in a recent paper by Gusfield[8]. Note also that there are slight differences in the
definition of phylogenetic networks from the original definition of Wang et al.[16]. We assume that
each mutation edge has exactly one label. Every phylogenetic network without this assumption
can be easily transformed to our model by replacing every mutation edge with multiple labels by
a sequence of edges each having one of these labels, and contracting all mutation edge without a
label, and vice versa. Our definition results in a more uniform phylogenetic networks, however we
cannot require that all sequences of an input matrix appear at the leaves of the network.

Definition 2. Given an n x m matrix A with values in {0, 1}, we say that a phylogenetic network
N with m characters explains A if each sequence of A is a label of some vertex in V.

By the definition of the galled-tree network, the following observation follows:

Observation 1. Given a haplotype matriz M, let M’ be a matriz obtained from M by duplicating
one row or adding a row with all-0 sequence. Matriz M' can be explained by a galled-tree network
N if and only if M can be explained by N. Let M" be a matriz obtained from M by removing one
row. If M can be explained by a galled-tree network N then also M" can be explained by N.

Definition 3. (Galled-tree network) In a phylogenetic network N, let v be a vertex that has two
paths out of it that meet at a recombination vertex x (v is the least common ancestor of the parents
of x). The two paths together form a recombination cycle C'. The vertex v is called the coalescent
verter. We say that C' contains a character ¢, if 7 labels one of the mutation edges of C'.

A phylogenetic network is called a galled-tree network if no two recombination cycles share an
edge. A recombination cycle of a galled-tree network is sometimes referred to as a gall.

Note that in the original definition of galled-tree network[16] it is required that recombination
cycles do not share vertices. It is easy to see that our modification is only a minor difference (one
can be transformed to the other easily) introduced for technical reasons.

In the following definition we describe two basic operations on the matrices which we will use
frequently.

Definition 4. Given a haplotype matrix M, let S be a subset of characters of M. The matrix
M]S] is the sub-matrix of M restricted to the columns in S. We will assume that the names of
columns in M[S] are the same as in the original matrix M. Let z be a binary sequence of length
|S]. By M[S] — x, we denote the sub-matrix of M[S] from which we remove all rows whose strings
are identical to z.

Definition 5. We say that the characters ¢; and ¢y conflict in a haplotype matrix M if Mcy, o]
contains all three pairs [0,1], [1,0] and [1,1]. The conflict graph Gy has the vertex set {1,...,m}
and for every two characters ¢; and ¢, (¢1,c2) is an (undirected) edge of Gy if they conflict.



The following characterization of the existence of galled-tree network was obtained in [6].

Theorem 1. ([6/) Given a haplotype matriz M, matriz M can be explained by a galled-tree network
if and only if every nontrivial component (having at least two vertices) K of the conflict graph Gy
satisfies the following conditions:

(1) K is bipartite with partitions L and R such that all characters in L are smaller than all
characters in R (the ordered component property); and

(2) there exists a sequence x #* 05T such that M[K] — x has no conflicting characters.

Note that the necessity part of Theorem 1 has been proved in[9].

2 Inferring haplotypes via galled-tree network

In this section we introduce both the perfect phylogeny haplotype (PPH) problem and our galled-
tree network haplotype (GTNH) problem.

Definition 6. Given a genotype n X m matrix A, find a 2n x m haplotype matrix B with values
in {0,1}, where rows 2i — 1 and 2i of B represent haplotypes for the genotype in row i of A. We
say that B is inferred from A if and only if for every character ¢ € {1,...,m},

o if A(i,c) € {0,1}, then B(2i — 1,¢) = B(2i,¢) = A(i,c); and
o if A(i,c) =2, B(2i — 1,¢) # B(2i,c).

Let X4 = {Zpeye; A(ryc1) = A(r,c2) = 2, ¢1 < ca} be the set of Boolean variables. The value of
the variable z,.,., determines the way how the pair of 2’s in the row r and columns ¢; and ¢y is
resolved. Define assignment Ip : X4 — {0,1} as follows. Let Ig(2ye,c,) = 0 if the pair is resolved

equally in B, i.e, (2 2) — <(1) (1)>, and Ip(Tye,c,) = 1 if the pair is resolved unequally in B, i.e,

1 0
B (up to swapping rows 2i — 1 and 2i, for any i € {1,...,n}).

(2 2) — <0 ) Note that specifying the assignment Ip is equivalent to specifying the matrix

Definition 7. Given a genotype matrix A, we say that A can be explained by phylogenetic
tree/galled-tree network if there exists a haplotype matrix B inferred from A such that B can
be explained by a phylogenetic tree/galled-tree network.

Problem 1. (Perfect phylogeny haplotype (PPH) problem/Galled-tree network haplotype (GTNH)
problem) Given a genotype matrix A, decide if A can be explained by a phylogenetic tree/galled-tree
network.

In what follows we will need a characterization of the existence of the solution to the PPH
problem. We will use the characterization given by Bafna et al. in [1].

Definition 8. Given a genotype matrix A, for every =,y € {0,1}, we say that a pair of columns
1, ¢ induces [x,y] in A, if Alcy, ca] contains at least one of the pairs [z,y], [2,y] and [z, 2].

Theorem 2. (Bafna et al.[1]) Given a genotype matriz A, there is a solution to PPH problem on
A if and only if no two columns ¢1 < ¢y induce all three pairs [1,1], [0,1] and [1,0] in A, and there
exists an assignment Ip such that



(1) fOT’ €VeTY Tycycoy Trleieq € Xa, IB(mrclcz) = IB(xr/clcg);
(2) for every xyeic, € Xa, IB(XTreyey) =0 if c1, 0 induce [1,1] in A;
(3) for every xycicy € Xa, IB(Treyey) =1 if 1, ¢ induce both [0,1] and [1,0] in A; and

(4) Jor every Treicy, Treyess Treges € Xa, IB($T6162) + IB(:ETClCS) + IB(xTCQCB) =0.

When considering the GTNH problem, the above rules (except for (4)) do not apply since
violating rules (1)—(3) just creates a conflict between corresponding columns/characters in B. We
have the following observation about the relationship between the conflict graph of B and the
assignment [p.

Observation 2. Given a genotype matrix A, infer a matriz B. Characters ¢y < ca conflict in B
if and only if at least one of the following is true:

(CO) c1,ca induce all three pairs: [1,1], [0,1] and [1,0] in A;
(CZ) IB(mrclcg) 7& IB (xr’clcg) f07’ S0ME Tyeicos Lr'cyes € XA;
(C2) c1,ca induce [1,1] in A, and there exists Tyc,c, € Xa such that Ig(Tyeye,) = 1;

(C83) ¢1,ca induce both [0,1] and [1,0] in A, and there exists Tycyc, € Xa such that Ip(Zye,c,) = 0.

3 Special instance of GTNH problem

The GTNH problem for general matrices seems to be very hard, therefore we study special instances
of this problem. In[5], we studied the instance when the input genotype matrix has the property
that every row that contains 2, contains 1 as well and we required that the solution (haplotype
matrix) can be explained by a galled-tree network with galls having exactly two mutation edges.
In the instance studied in this paper, we put no restriction on the galled-tree networks but assume
a little bit stronger assumption about the input genotype matrix.

Definition 9. Given a genotype matrix A, we say that a pair of characters is active if it contains
[2,2], or it induces all three pairs [1,1], [0,1] and [1,0]. Further, we say that a pair ¢1, ¢ is weakly
active if either it is active, or if there is a character cg such that c1,c3 and cs, c3 are both active
pairs. Now, we say that A has the weak diagonal property if every weakly active pair of characters
induces both [0,1] and [1,0].

In fact, many data sets, including real data and simulated data sets, satisfy the WD property.
We tested Daly’s genotype data ([3]), which has 103 columns and 387 rows. The data contains
11 blocks, where the evolutionary history for haplotypes on each block is claimed to have very
few recombinations or in other words satisfy the assumption of galled-tree network. The genotype
matrices for 9 out of the 11 blocks satisfy WD property. The remaining two blocks related genotype
matrices have the WD property after removing one column from each of them respectively. We also
tested the WD property on hundreds of simulated matrices based on Hudson’s simulation program
([11]). In particular, for each binary matrix generated using Hudson’s program, we randomly
repeat each row 2 to 4 times and randomly pair two rows to get a genotype. In average, 1/2 of the
simulated genotype matrices satisfy the WD property.

Definition 10. For every z,y,z € {0,1}, we say that a triple of columns ¢y, ¢a, s induces [x,y, 2]
in A, if Alcy, co, c3] contains at least one of the triples [z, v, 2], [2,v, 2], [z,2, 2] and [z, y, 2].



Note that if columns ¢y, ¢, ¢3 induce [z, y, 2] in A then every matrix B inferred from A contains
[,y, 2] in Bley, ca, c3).

If A has the weak diagonal property, then for every ¢, € X4 such that Ip(x,ce,) = 0, 1
and co conflict in B. By Observation 2, we have the following observation.

Observation 3. Given a genotype matrixz A with the weak diagonal property, let B be a haplotype
matriz inferred from A. Characters ¢y < ¢ conflict in Gg if and only if they induce [0,1], [1,0]
and [1,1] in A, or there is Tycyey € X4 such that Ip(xye,c,) = 0. Consequently, if a pair ¢; < ca
conflicts in B, then it is active in A.

First, we will study some basic characteristics of matrices with the weak diagonal property. In
the following subsections, we will use these results to reduce the problem to a hypergraph covering
problem similar to the one introduced in [5].

3.1 Characteristics of matrices with the weak diagonal property

In this subsection we observe some properties of matrices with the weak diagonal property which
can be explained by a galled-tree network.

Claim 1. Given an n x m genotype matriz A, assume that A has a row r which contains one 2.
Let A’ be a matriz obtained from A by replacing r with the 2 X m matriz inferred from r. Then A
can be explained by a galled-tree network N if and only if A’ can be explained by N.

Proof. First, note that X4 = X4,. Hence, there is a one-to-one correspondence between matrices
B and B’ inferred from A and A’: Ig = Ip,. The matrix B’ can be obtained from B by duplicating
two rows. The claim follows by Observation 1. U

Claim 2. Given a genotype matriz A with the weak diagonal property, let B be a matriz inferred
from A such that it can be explained by a galled-tree network. Then for every triple of 2’s occurring
in columns ¢y < ca < c3 and in a same row T, exactly one of Ig(Treiey)s IB(Treyes)s 1B (Treyes) S
equal to 0.

Proof. The values have to satisfy condition (4) of Theorem 2, i.e., Ip(Zrc,co) +IB(Treycs) HIB(Treges) =
0. This implies that either all three variables are mapped to 0 or exactly one of them. In the latter
case we are done. In the former case, due to the weak diagonal property, by Observation 3, we
have that all three pairs ¢1,co, ¢1,c3 and ¢, cg conflict in B. Hence, the conflict graph Gp is not
bipartite, a contradiction with Theorem 1. O

The following two corollaries easily follow from the above claim.

Corollary 1. Given a genotype matriz A with the weak diagonal property, let B be a matrix inferred
from A such that it can be explained by a galled-tree network. Then for every four 2’s occurring
m columns ¢ < co < cg < ¢4 and in a same row T, there are pairs di < do and d3 < dy4 such
that {dy,da,ds,ds} = {c1,c2,¢3, ¢4}, IB(Traydy) = IB(Traga,) = 0 and for every pair d < d’, where
d,d € {cy,ca,c3,c4}, different from dy < dy and ds < dy, Ip(xrqq) = 1.

Corollary 2. Given a genotype matriz A with the weak diagonal property, if A has a row r with
at least five 2’s, then A cannot be explained by a galled-tree network.

Proof. Let C,. = {c1,...,ce} be the ordered set of all columns containing 2 in the row r. Suppose
¢ > 5. Assume that A can be explained by a galled-tree network, and let B be the corresponding
haplotype matrix. By Claim 2, for every three character ¢; < ¢; < ¢ € C, exactly one of



IB(Treyes)s IB(Treyes)s IB(Treyes) 18 equal to 0. Without loss of generality we can assume that for
triple ¢1, o, c3, we have Ip(Zyee,) = 0. It follows that values Ip(Treics), 1B(Treges)y IB(Treiey)s
IB(Tregey)s IB(Treies)s IB(Treyes) are all equal to 1, and hence the values Ip(Zresey), IB(Treses),
I(xye,es) are all equal to 0, a contradiction. O

From now on, we will assume that the input genotype matrix (with the weak diagonal property)
has either no, two, three or four 2’s in each row, since otherwise it either has no solution (Corollary 2)
or can be converted to a matrix with this property (Claim 2). In the following definition we define
a hypergraph assigned to a genotype matrix and its coverings.

Definition 11. Given an n X m genotype matrix A with the weak diagonal (WD) property, the
genotype hypergraph H 4 of A has the set of characters {1,...,m} as a vertex set, and for every row
r of A containing at least two 2’s, say in columns ¢y, ..., ¢ there is a hyperedge e, = {c1,..., ¢t}
Furthermore, for every two columns ¢ and ¢ inducing [0, 1], [1,0] and [1,1] in A, there is a forced
hyperedge [¢, ¢] in H4. The hypergraph H 4 does not contain any other hyperedges. For distinction
purpose, we call a 2-edge an unforced 2-edge.

We say that a graph G on the vertex set V(H4) covers a hypergraph H 4 with hyperedges of
cardinality at most 4, if G can be obtained as follows:

o for every forced 2-edge [c1, co] of Ha, add the edge (c1,¢2) in G;
e for every unforced 2-edge {c1,co} of H 4, make a choice whether to add the edge (¢1,c2) in G;

e for every 3-edge {c1,ca,c3} of Hy, add exactly one of the edges (c1,¢2), (c2,c3) and (c1,¢3)
to G,

e for every 4-edge {c1,c2,c3,c4} of Hy, add exactly two disjoint edges (dy,ds) and (ds,dy) such
that {dl, ds, ds, d4} = {Cl, Co,C3, 04} to G.

Now, we can characterize all possible conflict graphs of matrices inferred from an input genotype
matrix as follows.

Lemma 3. Given a genotype matriz A with the weak diagonal property, let B be a haplotype matrix
inferred from A which can be explained by a galled-tree network. Then the conflict graph Gg of B
s a covering of the genotype hypergraph H 4 of A.

Conversely, let G be a covering for the graph H 4. FEach way of finding the covering G from H 4
(a collection of choices for every unforced hyperedge of Hy), defines a haplotype matriz B. This
haplotype matriz B can be inferred from A and the conflict graph of B is G.

Proof. Let B be a haplotype matrix inferred from A which can be explained by a galled-tree
network. By Corollary 2, A contains at most four 2’s in every row. By Observation 3, characters
¢1 < cg conflict if and only if they induce [0, 1], [1,0] and [1,1] in A, or if Ig(2ye,e,) = 0 for some
Treyey € Xa. It follows by Definition 11, Claim 2 and Corollary 1 that Gp covers H 4.

Conversely, let G be a covering for Hy. Then A contains at most four 2’s in every row, and
there exists a choice for every (unforced) k-edge as described in Definition 11. By Claim 2 and
Corollary 1, each such collection of choices for every unforced k-edge, defines values Ip(x; ) for
every . € X4 satisfying condition (4) of Theorem 2. Hence, also a haplotype matrix B can be
inferred from A. By Observation 3, the conflict graph G g is isomorphic to G. O



3.2 Characterization of conflict graphs of haplotype matrices explainable by a
GTN inferred from a genotype matrix with the WD property

The following claim is crucial in restricting the possible cases we need to study.

Claim 3. Given a genotype matriz A with the weak diagonal property, let B be a matriz inferred
from A which can be explained by a galled-tree network. Let cq,co,c3 be three characters such that
both pairs c1,co and co, c3 conflict in B. Let K be the component containing c1,co, c3 and x a vector
such that B[K| — x has no conflicts. Then x[c1,c2,c3] is either [0,1,1] or [1,1,0].

Proof. By Observation 3, both pairs c1,co and co,c3 are active. Hence, the pair ¢y, c3 is weakly
active and satisfies the weak diagonal condition, i.e., it induces [0,1] and [1,0] in A. Hence, there
are two rows in B containing those two pairs in Blcy, cs]. Note that ¢; and ¢3 cannot conflict in
B, otherwise Gp is not a bipartite which would violate (1) of Theorem 1. Therefore, since z is
a sequence in one of the rows of B[K], we have z[ci,c3] # [1,1]. On the other hand z has to
remove conflicts between c1, ¢y and between co, c3, i.e, x[c1, o, z[co,c3] # [0,0]. There are only
three possibilities left for the value of x[ey, co, c3): [0,1,0], [0,1,1] and [1,1,0].

To finish the proof it is enough to consider (and exclude) the case z[c1, c2,c3] = [0,1,0]. Since,
c1, ¢ conflict in B, there is a row r containing triple [1,1,y], where y € {0,1}, in Bley, ca,¢3]. If
y = 1, then ¢; and c3 conflict in B, a contradiction. On the other hand, if y = 0, then B[K] — z
still contains the row r. Thus, character ¢z and c3 still conflict in B[K| — x, a contradiction. [

Claim 3 is a powerful tool which helps to characterize all possible conflict graphs of haplotype
matrices explainable by a galled-tree network inferred from a given genotype matrix with the WD

property.

Corollary 3. Given a genotype matriz A with the weak diagonal property, let B be a matriz inferred
from A which can be explained by a galled-tree network. Every vertex in Gg has degree at most 2,
i.e., Gp consists of cycles and paths.

Proof. Assume for the contrary that there is a character ¢ with degree at least 3 in the conflict graph
Gp. Let ¢, c9,c3 be three neighbors of ¢ in Gg. Let K be the component containing ¢, ¢q, ca, c3
and z a sequence such that B[K]— x does not contain any conflict. By Claim 3, z[c1, ¢, ] is either
[0,1,1] or [1,1,0]. Without loss of generality assume it is [0, 1,1]. By Claim 3, z[c1, ¢, c3] = [0, 1, 1].
Now, x[ca, ¢, c3] = [1,1,1], which contradicts Claim 3. O

Corollary 4. Given a genotype matriz A with the weak diagonal property, let B be a matriz inferred
from A which can be explained by a galled-tree network. Then each component of Gg is a path of
length at most 3 (contains at most three edges).

Proof. By Corollary 3, each component of Gy is either a cycle or a path. Assume to the contrary
that a component K of Gp is a cycle or a path of length at least 4. Since by Theorem 1, K is a bi-
partite, if K is a cycle then its length is at least 4. Hence, K contains a path (¢1, co, ¢3, ¢4, ¢5), where
characters ¢; and ¢5 can be the same (in the case when K is a cycle of length 4). Let x be a sequence
such that B[K] —  does not contain any conflict. By Claim 3, each of z[c1, ca, ¢3], 2[ca, 3, ca] and
x[cs, cq, c5) is either [0,1, 1] or [1,1,0]. Obviously, this is not possible, a contradiction. O

3.3 Dealing with rows with two 2’s

In this section we deal with the problem how to resolve rows containing only two 2’s. The general
strategy is to resolve such rows unequally if it helps to avoid conflict, and otherwise equally. The
following two claims show the correctness of this strategy.



Claim 4. Given a genotype matriz A with the weak diagonal property, consider any two columns
c1 < cp. Letry,...,ry be rows containing 2’s in columns c1,cz and no other 2’s, and 1, ..., 1) rows
containing 2’s in columns c1,co and at least one 2 in some other column. Assume that k > 1 and
that ¢y and co do not induce [1,1] in A. Let B be a haplotype matriz inferred from A such that

e B can be explained by a galled-tree network;

o for somei=1,....k, Ip(Ty,c;c,) = 0; and
o foreveryi=1,...,¢, IB(mr;clcQ) =1.
Then the matriz B" such that for everyi=1,...,k, Ip/(Zr,cic,) = 1 and for every other x,.. € Xy,

Ip (ree) = Ip(Treer), can be explained by a galled-tree network as well.

Proof. The conflict graph G g differs from the conflict graph G only by not containing an edge
(c1,c2). Hence, it satisfies condition (1) of Theorem 1. Let us verify the second condition. Consider
component of G that contains ¢; and co. By Corollary 4, it is a path of length at most 3. Therefore,
in Gp this component is split into two, each containing one of ¢q, co. Consider a component K
of Gpr. Since it contains at most one of ¢; and co then B[K] and B’[K] contains the same set of
sequences. Let K’ be a component of G containing K. There is a sequence x such that B[K'| —x
has no conflict. Obviously, B[K] — z[K] has no conflict as well, and hence also B'[K| — z[K]. By
Theorem 1, B’ can be explained by a galled-tree network.

O

Claim 5. Given a genotype matriz A with the weak diagonal property, consider any two columns
c1 < . Letry,...,ry be rows containing 2’s in columns c1,cz and no other 2’s, and 1, ..., 1) rows
containing 2’s in columns c1,co and at least one 2 in some other column. Assume that k > 1. Let
B be a haplotype matriz inferred from A such that B can be explained by a galled-tree network. If
either for some i =1,...,¢, Igp(x,1¢0,) =0 orci and ¢ induce [1,1] in A, then the matriz B such
that for every i =1,...,k, IB/(acTzCICQ) = 0 and for every other T. € Xa, Ip(Treer) = IB(Xree),
can be explained by a galled-tree network as well.

Proof. The conflict graph Gp is the same as the conflict graph Gp. Hence, it satisfies the first
condition of Theorem 1. It is enough to verify the second condition. Consider a component K of
Gp = Gp. If it does not contain ¢; and ¢ then B[K| and B’[K] contains the same set of sequences,
and condition (2) easily follows.

Since ¢ and ¢y conflict, we only need to consider the case when K contains both ¢; and co. If
K does not contain any other character, condition (2) trivially holds. Without loss of generality,
assume that K contains a character c3 such that co,c3 conflicts in B. Similarly, if for every
i=1,...,k Ip(Tycc,) =0, then B' = B, and the claim follows trivially. Hence, we can assume
that there is ¢ € {1,...,k} such that Ip(xy,c,c,) = 1. We will show that this is not possible. Since,
B can be explained by a galled-tree network, there is a sequence x such that B[K] — x has no
conflict. By Claim 3, x[c1, ca, 3] is either [0,1,1] or [1,1,0]. If Alcy, co, 3] contains [2,2,0] in row
r; then Blcy, ca, 3] contains [0,1,0] in row 2r; — 1 or row 2r;. Hence, if z[c1,co,c3] = [0,1,1], =
cannot remove conflict between ¢; and co, and if z[cq, co, 3] = [1,1,0], x cannot remove conflict
between ¢y and c3. On the other hand, if Alcy, ¢, c3] contains [2,2, 1], then one of the rows 2r; — 1
and 2r; contains [1, 1] in B[ey, c3] and hence ¢; and c3 conflict in B. This is a contradiction, since
by Theorem 1, G g is bipartite. O

The above two claims do not allow for resolving all rows with only two 2’s before solving the
problem in the case when the input genotype matrix has the weak diagonal property. However, in
some certain cases such rows can be resolved before building the genotype hypergraph.



Corollary 5. Given an n X m genotype matric A with the weak diagonal property, for any row r
containing only two 2’s, say in columns c; < ca,

e if c1,co induce [1,1] in A, replace v with two rows of the 2 x m matriz R inferred from r such
that Ir(Treyey) = 05

o if c1,co do not induce [1,1] in A and every row containing 2’s in ¢1 and cy contains only these
two 2’s, replace r with two rows of the 2xm matrix R inferred from r such that Ig(Zyec,) = 1.

The new matriz A" obtained like that can be explained by a galled-tree network if and only if A does.

The above corollary follows by Observation 1 and Claims 4 and 5. Hence, we can assume that
the input genotype matrix contains a row with two 2’s, say in columns ¢y and ¢z, only if there is
another row with at least three 2’s with two of them being in columns ¢; and cs. We say that such
a genotype matrix is reduced. For the remaining rows with two 2’s, the resolution depends on the
resolution of the other rows containing more than two 2’s.

Lemma 4. Given an n X m reduced genotype matrixz A with the weak diagonal property, the matriz
A can be explained by a galled-tree network if and only if there is a matriz B which can be explained
by a galled-tree network and is inferred from A such that for every row r with only two 2’s, say in
columns ¢1 and cs,

o Ip(Tree,) = 0, if there is a row ' with at least three 2’s such that Tyiciey, € Xa and
IB(mr’clcg) = 0;

o I5(Treie,) = 1, otherwise.

In other words, starting with a reduced genotype matrix A, a row with only two 2’s is never
resolved in a way which would introduce a conflict which is not introduced by another row with
more than two 2’s. This leads us to the following definition of finding a hypergraph covering of a
given hypergraph.

Definition 12. We say that a graph G is a canonical covering of a hypergraph H if it is a covering
for H such that no unforced 2-edge {c1,c2} of H contributes the edge (¢1,c2) to G, i.e., the edge
(c1,¢2) is formally added to G if and only if it is added to G by some other hyperedge than the
unforced 2-edge {c1,co}.

Note that although adding edges to G for some unforced 2-edges of H does not affect the
resulting graph covering, it affects the process of inferring which defines the matrix B.
As another corollary we have the following claim about finding a canonical covering.

Corollary 6. Given a reduced genotype matriz A with the weak diagonal property, if A can be
explained by a galled-tree network then there is a haplotype matrix B inferred from A which can be
explained by a galled-tree network and its conflict graph is a canonical covering of H 4.

There is an easy characterization how the rows with only two 2’s are inferred for haplotype
matrices defined during a process of finding a canonical covering.

Observation 4. Given a reduced genotype matriz A with the weak diagonal property, let G be a
graph that canonically covers Hya and let B be a haplotype matriz defined during the process of
finding a canonical covering G. Then for every row r with only two 2’s, say in columns c¢1 and ca,
I(%re,c,) = 0 if and only if (c1,c2) is an edge in G.
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Proof. By Lemma 3, Gp = G. Consider a row r with only two 2’s, in columns ¢; and cz. Obviously,
the pair ¢y, ¢y is active and hence, if Ig(zy¢,c,) = 0 then ¢y, co conflict in B, i.e., (c1,c2) € E(G). For
the converse, assume that ci,cy conflict in B, i.e., there is edge (¢, ¢2) in G. Since G canonically
covers Hy and it defines B, there is either forced 2-edge [c1,c2] in Ha, or a k-edge containing
c1 and cg with £ > 2 and the edge (¢1,c2) was added to G when processing this k-edge. Hence,
when processing the unforced 2-edge e, = {c1,c2}, the edge (¢1,c2) is added to G and hence
IB(a:TCICQ) = 0. O

3.4 Reduction to the extended hypergraph covering problem

Now, we are ready to convert the GTNH problem in the case when the input genotype matrix
has the weak diagonal property to a hypergraph covering problem. It easy to see that a conflict
graph of a matrix inferred from a given genotype matrix A which can be explained by GTN, is also
a covering of hypergraph H 4 which satisfies all the observed conditions. The following examples
show that these conditions are not sufficient.

Aley ¢o e3¢y Blci e c3 ca
c1 ca 0010

1100

0110

0001

e “ 0011

G 1 000

1100

0001

Figure 1: Example of a genotype matrix A with the weak diagonal property, the corresponding
GI problem and its solution, and a haplotype matrix B inferred from A with the conflict graph
equivalent to this solution. The matrix B does not satisfy condition (2) of Theorem 1.

Example 1. Figure 1 shows an example of a genotype matrix A with four characters. It is easy to
see that A has the weak diagonal property since every pair of columns induces [0, 1] and [1,0]. The
corresponding hypergraph H 4 has four 3-edges. One possible solution is a covering G of H 4 which
can be constructed as follows: in 3-edge {c1, 2, c3} we select edge (c1,¢2), in 3-edge {ca,c3,c4} we
select edge (c2,c3), in 3-edge {c1,c3,cq} we select edge (c3,cq) and finally, in 3-edge {c1,ca,cq} we
select edge (c1,c2). Note that this covering contains only paths of length at most 3 and is canonical
since A does not contain any rows with only two 2’s. A haplotype matrix B corresponds to this
selection of edges in GG, hence its conflict graph is G. However, removal of any row from matrix B
is not able to eliminate all conflicts in B. Hence, the condition (2) of Theorem 1 is not satisfied
and B cannot be explained by a galled-tree network.

Consider now another graph G’ on the same set of characters with only two edges (c1,¢4) and
(c2,c3). This graph is a covering for H4 as well. Obviously, the haplotype matrix corresponding
to this selection of edges for every hyperedge of H 4 satisfies condition (2) of Theorem 1, i.e., can
be explained by a galled-tree network. Hence, one of the additional constrains we will require from
the new hypergraph covering problem is the minimality of the number of edges.

Example 2. Figure 2 shows an example of a reduced genotype matrix A with three characters which
satisfies the weak diagonal property. It has a row with only two 2’s, in columns ¢; and c3. However,
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Figure 2: Example of a genotype matrix A with the weak diagonal property, the corresponding GI
problem and its unique solution, and a haplotype matrix B inferred from A with the conflict graph
equivalent to this solution. The matrix B does not satisfy condition (2) of Theorem 1.

this row could not be resolved since ¢1,c3 do not induce [1,1] and there is another row with three
2’s containing 2’s in ¢; and c3. The corresponding hypergraph H 4 has one 3-edge, one unforced
2-edge and two forced 2-edges. There is only one graph covers H 4 such that it contains only paths
of length at most 3, the graph G. In particular, G can be constructed as follows: we have to select
forced 2-edges, in 3-edge {c1,co,c3} we select edge (c1,co) (respectively, (c2,c3), it will not affect
the hypergraph covering), and finally, we do not add unforced 2-edge {c1,c3} to G. Note that this
is a canonical covering. A haplotype matrix B corresponds to this selection of edges in (G, hence
its conflict graph is (G. However, removal of any row from matrix B is not able to eliminate all
conflicts in B. Hence, the condition (2) of Theorem 1 is not satisfied and B cannot be explained
by a galled-tree network.

Since we have examined all possible ways how to infer a haplotype matrix from A, it follows by
Corollary 6 that A cannot be explained by a galled-tree network.

The crucial reason why in the above example A cannot be explained by a galled-tree network
even though we can easily find a valid hypergraph covering of the hypergraph of A is the fact that
columns ¢y, c2, c3 induce [0,1,0] in A. The following claim captures this property.

Claim 6. Given a genotype matriz A with the weak diagonal property, let B be a haplotype matriz
inferred from A which can be explained by a galled-tree network. Let cq,co,c3 be three characters
(not necessarily ordered in this way). If they induce [0,1,0] in A then the conflict graph Gp cannot
contain both edges (c1,c2) and (ca,c3).

Proof. Assume for the contrary that both pairs ¢1,co and ca,c3 conflict in B. Hence, Blcy, c2]
(respectively, Bca,c3]) contains all three pairs [0, 1], [1,0] and [1,1]. By Observation 3, the pair
c1,c3 is weakly active in A, hence Bey, ¢3] contains [0, 1] and [1,0]. Since B can be explained by
a galled-tree network, by Theorem 1, characters ¢; and c3 cannot conflict, i.e., Blcy,cs] cannot
contain pair [1,1]. Hence, Blcy, ¢2, ¢3] contains [1,0,0], [1,1,0], [0,0,1] and [0, 1, 1]. Since the triple
¢1, ¢, cg induces [0, 1,0], Blc, ca, c3] contains also triple [0,1,0]. B does not satisfy condition (2)
of Theorem 1, a contradiction. O

The following definition is a generalization of Definition 11 which incorporates constrains shown
in Claim 6.

Definition 13. Given an n X m genotype matrix A with the weak diagonal property, the extended
genotype hypergraph H 4 of A has the set of characters {1,...,m} and contains all hyperedges of
genotype hypergraph H 4. In addition, it contains ordered 3-edges, called switches. For every three
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characters ¢y, co,cg such that ¢; < ¢3 and ¢q,¢9,¢3 induce [0,1,0] in A, H 4 contains the switch
(Cla C2, 03)' B

We say that a graph G is a canonical covering of extended hypergraph H, if G is a canonical
covering for underlying H 4 and in addition for every switch (¢, co, c3), it contains at most one of
the edges (c1,¢2) and (cg,c3).

Using Claim 6 we can immediately extend the result in Corollary 6.

Corollary 7. Given a genotype matrixz A with the weak diagonal property, if A can be explained by
a galled-tree network then there is a haplotype matrixz B inferred from A which can be explained by
a galled-tree network and its conflict graph is a canonical covering of the extended hypergraph H 4.

Problem 2 (Extended Hypergraph Covering (EHC) Problem). Given an extended hypergraph
H, determine whether it is possible to find a canonical covering graph G for H such that each
component of GG is a path of length at most 3 satisfying the ordered component property. In case
it is possible, find such a covering G with the minimum number of edges.

The following lemma shows that we can solve the GTNH problem in the case when the input
genotype matrix has the weak diagonal property if we can solve the above problem.

Lemma 5. The GTNH problem in the case when the input genotype matriz has the weak diagonal
property can be solved using the EHC problem.

Proof. Consider an input reduced genotype matrix A with the weak diagonal property. We will
show that A can be explained by a galled-tree network if and only if it is possible to find a canonical
covering graph G for the extended hypergraph H4 such that each component of G is a path of
length at most 3. The forward implication follows easily by Corollaries 4 and 7. For the converse,
we need the following claim.

Claim 7. Let G be a canonical covering of extended hypergraph H 4 with the minimum number of
edges such that all its components are paths of length at most 3 and satisfy the ordered component
property. Then there exists a matriz B inferred from A which can be explained by a galled-tree
network and its conflict graph is G.

Proof. There are several ways how to find the covering G from H 4. It is sufficient to show that one
of these coverings defines a haplotype matrix B which satisfies condition (2) of Theorem 1. Then
since all components are paths of length at most 3 with the ordered component property, condition
(1) holds and the claim follows.

Consider a component K of G. If it is a singleton or an edge, condition (2) is trivially satisfied.
Second, assume that K is a path of length 2, say (¢1, 2, ¢3). Consider any B defined by any covering
G from Ha. As in the proof of Claim 6, the submatrix B[K] must contain triples [1,0,0], [1,1,0],
[0,1,1] and [0,0,1]. It can also contain triples [0, 0,0] and [0, 1,0], all other triples would introduce
a conflict between ¢ and c3. It is easy to see that the component K satisfies condition (2) if and
only if B[K] does not contain [0, 1,0]. We will show that B[K] does not contain [0, 1,0].

Assume to the contrary that B[K]| contains [0, 1,0]. It must be inferred from some sequence
in A[K]. However, since G contains both edges (c1,c2) and (c2,c3), Ha does not contain switch
(c1,c2,c3), and hence ¢y, ¢g, 3 do not induce [0, 1, 0] in A. Therefore, there are only four possibilities:
(2,2,2], [2,1,2], [2,2,0] and [0,2,2]. In the first two cases, to infer [0,1,0] in B, we would have to
also infer [1,0, 1] (in the first case) or [1,1, 1] (in the second case). Since the pair ¢, c3 is weakly
active, it would conflict in B, a contradiction. Obviously, the third and fourth cases are symmetric,
hence we will consider only the first of them. Let r be the row containing [2,2,0] in A[K]. To
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infer [0,1,0] from [2,2,0], the pair must be resolved unequally, i.e., Ig(Zyce,) = 1. If r contains
another 2, say in column ¢, then by Claim 2, one of the pairs ¢,¢; and ¢, ¢y conflicts in B, which
is a contradiction with the fact that K is a connected component of G = G. Hence, assume that
r contains only two 2’s. By Observation 4, Ip(Zyc,c,) = 0, i.e., the sequence [0,1,0] cannot be
inferred.

Bleci ¢ c3 ¢y

00 00O
*10 0 0 1

0010
*x[0 0 1 1

01 00
¥¢[0 1 1 O
*11 0 0 0
711 0 0 1
*x|1 1 0 0

Figure 3: All possible sequence (except for the one with the question mark) B[K| can contain where
a component K of Gp is a path (c1,ca,c3,c4). The rows with star(s) are necessarily contained in
B[K].

Finally, assume that K is a path of length 3, say (c1, ¢c2, ¢3,¢4). Consider any B defined by any
covering G from H,. By Observation 3, the pairs c¢q,ca, ¢, c3 and c3,cy are active in A, hence
the pairs cq, c3 and co, ¢4 are weakly active. Since, the pairs ¢, c3 and ¢z, ¢4 do not conflict in B,
B[K] can contain only following 9 quadruples: [0, 0,0, 0], [0,0,0,1], [0,0,1,0], [0,0,1,1], [0,1,0,0],
[0,1,1,0], [1,0,0,0], [1,0,0,1] and [1,1,0,0], cf. Figure 3. Since, the pairs ¢, ca, c2,c3 and c3,cq
conflict in B, the rows with two stars “«x” are necessarily in B[K]. Consequently, B[ci, ¢4] contains
pairs [0, 1] and [1,0] and since ¢1,¢4 do not conflict, the row with the question mark “?” cannot
appear in B[K]. Without a row with “?” in B[K], the rows with one star “¢” become necessary to
guarantee the conflicts between c1, ¢a and between cs, ¢4. Hence, all rows with star(s) are necessarily
in B[K] and rows with no symbol are possibly in B[K]. The only candidate for z is 0110. It is easy
to check that the condition (2) of Theorem 1 is satisfied if and only if B[K] does not contain any
of [0,0,1,0] and [0,1,0,0]. Assume now that B[K] contains y = [0,0,1,0]. By Definition 13, the
extended hypergraph H 4 does not contain the switch (co, c3,¢4), and hence ca, 3, ¢4 do not induce
[0,1,0] in A. As in the previous case, there are four possible sequences in Alco, c3, ¢4] which could
be inferred to produce [0,1,0] in B[eg, ¢3,¢4], and building on that 8 possible sequences in A[K]
which could be inferred to produce y: (a) [0,2,2,2], (b) [2,2,2,2], (c) [0,2,1,2], (d) [2,2,1,2], (e)
[0,2,2,0], (f) [2,2,2,0], (g) [0,0,2,2] and (h) [2,0,2,2]. Let us analyze these possibilities:

(a) The only way how to infer y from [0,2,2,2] is to resolve ¢, c4 equally. This would produce
also quadruple [0,1,0,1] in B, and hence a conflict between ¢y and ¢4. Which contradicts the
fact that K is a component.

(b) To infer sequences from [2, 2, 2, 2] avoiding any conflict between ¢y, ¢3, 2, ¢4 Or ¢1, ¢4, €1, 2 and
c3, c4 are resolved equally, and other pairs unequally. Hence, the sequence y is not produced.

(c) To infer sequences from [0, 2, 1,2] avoiding a conflict between ¢, ¢4, the pair is resolved un-
equally, i.e., y is not produced.
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(d) The sequences [2,2,1,2] cannot appear in A[K] as otherwise the pair [1, 1] is induced by ¢y, 3
in A, i.e., ¢1,c3 would conflict.

(e) Let r be the row containing [0,2,2,0] in A. To produce y, the pair ¢y, c3 has to be resolved
unequally. If r contains another 2, say in column ¢, the one of the pairs ¢, co and ¢, cg would
have to be resolved equally, hence producing a conflict. This would contradict the fact that
K is a component in Gp. On the other hand, if r contains only two 2’s, by Observation 4,
the pair ¢, c3 is resolved equally in row r.

(f) Let r be a row containing [2,2,2,0] in A[K]. First, note that r does not contain any other
2, say in column c. For otherwise there would be a 4-edge in H4 containing c¢i, ca, c3 and c,
which would introduce an edge between ¢ and one of ¢q, ¢z, c3 in GG, a contradiction. There
are two ways how to infer sequences from r avoiding conflicts not in K: (1) resolving c1, ¢y
equally; (2) resolving cg, c3 equally. In the case (2), y is not produced from [2,2,2,0]. In the
case (1), we will consider another covering from H 4, which differs from the current one by
choosing edge (c2, c3) instead of (c1,c2) when processing a row containing [2,2,2,0] in A[K].
This new covering might be not canonical. Indeed, it is not canonical if  was the only row
containing 2’s in ¢;, ¢z and at least one other 2 such that Ip(z,cc,) = 0 and there is no
forced 2-edge (c1,c2). In such a case, to make the new covering canonical, we also change
the inferring of every row containing only two 2’s and those in columns ¢; and ¢y from equal
to unequal. Obviously, this new covering will not introduce any new conflict, although it
will remove conflict between ¢; and co. In such a case, we have found another graph G’
that canonically covers H4 with smaller number of edges, a contradiction with assumption
that G had the minimum number of edges. Hence, we can assume that G’ = G. If there is
another row containing [2,2,2,0] in A[K]|, we repeat the whole process. Finally, we either
get a contradiction or a canonical covering G' of H,4 such that y is not inferred from any row
containing [2,2,2,0] in A[K].

(g) Similar to the case (e).

(h) To infer sequences from [2,0, 2, 2] avoiding any conflict between ¢1, c3 or ¢y, ¢4, c3, ¢4 is resolved
equally, and other pairs unequally. Hence, the sequence y is not produced.

Hence, we can assume that there is a canonical covering G of H,4 such that the matrix B defined
by this covering does not contain [0,0,1,0] in B[K]. The similar proof applies to the sequence
[0,1,0,0]. Hence, there is a haplotype matrix B inferred from A with conflict graph G which
satisfied condition (2) of Theorem 1. O

Now, assume that it is possible to find a graph canonically covers H4. Let G be such a graph
with the minimum number of edges. Then by Claim 7, there is a matrix B inferred from A which
can be explained by a galled-tree network, i.e., A can be explained as well. O

3.5 The extended hypergraph covering problem is intractable

Unfortunately, the EHC problem is intractable as proved in the following theorem, and cannot be
used to polynomially solve the weak diagonal instance of the GTNH problem.

Theorem 6. The FHC problem is NP-hard.

Proof. The proof is done by conversion from a special instance of 3-SAT problem. This problem
is known to be NP-complete even when restricted to formulas where each clause contains 2 or 3
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literals and every variable occurs in exactly 3 clauses — once positive and twice negated [13]. Let

flxy,29,...,2) = Cy A -+ A Ck be such a formula in conjunctive normal form, where C1, ..., Cj
are clauses. Let p1,...,pn, be all occurrences of literals {z1,...,&m, "21,..., 72y} in f. For every
i=1,...,k, we have

Ci — psi,l \/pSLQ or CZ — psi,l \/pSLQ \/png

depending on whether C; contains 2 or 3 literals. Let S; = {si1,si,} or Si = {si1,8i2,5i3}
respectively. Sets Si,..., Sk forms a decomposition of set {1,...,m}. For every i = 1,...,m, let
pt;, be the occurrence of positive literal x; and py, ,,pt, ; two occurrences of negated literal —x;.
Let T; = {ti1,ti2, tiz}, Again, sets 11,...,T,, form a decomposition of set {1,...,m}. We will
construct an extended hypergraph H(f) such that it has a canonical covering with all components
being paths of length at most 3 and satisfying the ordered-component property if and only if f
is satisfiable. The hypergraph will only contain forced 2-edges and 3-edges. Hence, each covering
is canonical, and we will not mention this property of the covering in the remaining of the proof.
We will form the hypergraph H(f) as a union of several hypergraphs, called gadgets, one for each
clause, and one for each variable. The numbering of vertices in the hypergraph is important as it
influence the ordered-component property. All constructed gadgets will have to types of vertices
(characters): depicted by a dot and depicted by a cross. For our construction it will be sufficient
to number vertices so that all vertices with a cross have higher number than vertices with a dot,
which can be easily achieved.

Ps; 2

psi,l
(a) (b) (c)

Figure 4: Part of hypergraph H(f) for clause C; = Ds;1 V Ds, , and all possible graphs cover it, each
representing one case how the clause can become satisfied. The vertices with cross have higher
numbers than vertices with dots.

For every clause with two literals C; = ps, , Vps, ,, We construct a part of hypergraph (a gadget)
consisting of two forced 2-edges and one 3-edge as depicted in Figure 4. The figure also shows all
possible graphs cover the gadget satisfying the conditions of the EHC problem. In these figures, a
variable p; has value 1 if no other edge (from the other parts of H(f)) can be joining the vertex
pj- For instance, in the first graph, ps,, has value 1, as any other edge joining ps, , would increase
the degree of this vertex to 3, and ps, , has value 0. Note that in each hypergraph covering of the
gadget at least one of ps, , and ps, , has value 1.

For every clause with three literals C; = ps, | V ps; , V ps, 5, We construct a gadget consisting of
four forced 2-edged and four 3-edges as depicted in Figure 5(a). Figure 5 also shows three possible
graphs (b—d) that cover the part of hypergraph satisfying the conditions of the EHC problem.
There are other graphs which can be covering for the part of H(f), however in each of them at
least one of pg, |, Ps; 5, Ps; ; has value 1. Indeed, assume that all three values are set to 0. Then no
edge from inside of gadget can be joining any of Psi1sDsi00Ps;5- We have the situation depicted
in Figure 5(e). Now, there is no edge to be selected from the 3-edge which vertices are connected
with dashed edges without increasing degree of some vertex to 3.

The second part of the construction checks whether three occurrences of a variable z;: pr, |, pt, », Pt; 5
do not have contradictory values. That is if py, , (positive occurrence) has value 1 then both py, ,
and py, ; (negated occurrences) should have values 0, and if at least one of p,, and py, , has value
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(c) (d)

Figure 5: (a) The part of hypergraph H(f) for clause C; = Psiq VDsin VPs; 5 (b-d) Three possible
graphs that cover from it, each representing one case how the clause can become satisfied. (e) A
trial to search for a hypergraph covering with values of ps, ,, ps, ,, Ps; 5 set to 0.

Ptis Pt s Pt
Pt o Pt; o Pti»
Pty Pt; Pt; 1

(b) (c) (d) (¢)

Figure 6: (a) The part of hypergraph H(f) verifying the values of three occurrences of a variable
z;. (b-d) Three possible hypergraph coverings. In (b), p,, has value 1 and forces values of py, ,
and py, , to 0. In (c), py, , has value 1 and in (d), both py, , and py, , have value 1. In both cases (c)
and (d), py,, is forced to have value 0. (e) A trial to search for a hypergraph covering with values
of py,, and py, , set to 1.

1 then p, , should have value 0. This is achieved by a gadget consisting of four forced 2-edges
and four 3-edges depicted in Figure 6(a). Figures 6(b—d) show three possible graphs that cover the
gadget. In these figures, a variable p; has value 1 if no edge in the gadget joins p;, which is in
agreement with interpretation of values of p;’s in gadgets of the first part of construction.

Let us verify the claimed property of the gadget. Assume for instance that both p,, and py, ,
have values 1. Hence, no edge from inside of the gadget is joining these two vertices. Then to
avoid a vertex of degree higher than 2, from the 3-edge {z1, 22, 23} we have to select edge (22, 23),
cf. Figure 6(e). Now, there is no edge to be selected from the 3-edge which vertices are connected
with dashed edges without producing a path of length 4 or 5. The other cases can be proved using
similar arguments.

Now, let us verify that it is possible to find a hypergraph covering of H(f) which satisfies
conditions of the EHC problem if and only if f is satisfiable. First, consider a graph G that covers
from H(f) such that each component is a path of length at most 3. For every clause Cj, at least
one of ps; |, ps; , (respectively, psi’l,psm,psi’g) has value 1 in G. Let it be pg, (if there are several
literals in C; with value 1 in G, pick any of them). We will form a true assignment as follows. For
every xj, if there is py, = x;, set x; = 1; if there is p,, = -z, set x; = 0; otherwise set x; to any
value. As long as we guarantee that there are no 4,7 such that p,, = z; and Pq, = —xj, the above
definition is correct and obviously is a true assignment for f. Assume for contrary that p,, = z;
and p,, = —x;j. Obviously, ¢; = {1 and g; is either ¢; 5 or ¢; 3. Now, since we p;;, has value 1 and
one of py; ,,pr; 4 has value 1, we have a contradiction with the property of the gadget for z;.

For the converse, consider a true assignment for f. For every clause C; = ps, | V ps, , with two
literals, there is at least one literal p,, with value 1, where ¢; € {s; 1, s;2}. If ¢; = s;1, search for a
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hypergraph covering of the gadget for C; as depicted in Figure 4(b). If ¢; = s; 2, as in Figure 4(c).
Similarly, for every clause C; = ps,, V ps,, V ps; ; with three literals, there is at least one literal py,
with value 1, where ¢; € {psi’l,psi’g,psiﬁ}. If g = s;1 (respectively, ¢; = s;2, ¢; = s;3), search for
a hypergraph covering of the gadget for C; as depicted in Figure 5(b) (respectively, Figure 5(c),
Figure 5(d)). For the gadgets in the second part of construction we will search for coverings as
follows. For every x;, if value of x; is 1, find a hypergraph covering of the gadget for x; as depicted
in Figure 6(b), and if value of z; is 0, as in Figure 6(d). Let G be the union of graphs that cover
all gadgets. We will show that G satisfies the conditions of the EHC problem.

First, it is easy to see that all possible edges of G are connecting a vertex with a cross with
a vertex with a dot. The ordered-component property follows. It is also easy to see that the
components of graphs that cover a single gadget are all paths of length at most 3. Hence, it is
enough to verify that pg-vertices which are shared between gadgets do not combine components to
a component which is not a path of length at most 3. Observe that each p; is shared by exactly
two gadgets, one gadget for a clause C; and one gadget for a variable x;. In the gadget for Cj, the
component containing py is either an edge, if pj is not necessary to satisfy the clause, or a path of
length with p; as the middle vertex, if p; is necessary to satisfy the clause. In the second case, by
definition of G, py has value 1 in the considered true assignment for f. In the gadget for x;, the
component containing py is either a singleton, if p; has value 1, and an edge, if p; has value 0. The
only way how to obtain an invalid component is to combine the middle vertex of path of length 2
with an edge, but this will never happen as the first one requires the value of p; to be 1 and the
other to be 0. ]

Even though we have proved that the EHC problem is NP-complete, it does not imply the
NP-completeness of the GTNH problem. Indeed, it is not possible to construct a genotype matrix
resulting in the constructed gadgets for a given boolean formula. However, our recent research
indicates that the weak diagonal instance of the GTNH problem might be the key for proving
NP-completeness of the GTNH problem in general.
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