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Abstract

This article is motivated by jointly modelling longitudinal and time-to-event clinical data of patients with diabetes and end-

stage renal disease. All patients are on the waiting list for the pancreas transplant after kidney transplant, and some of

them have a pancreas transplant before kidney transplant failure or death. Scant literature has studied the dynamical joint

relationship of the estimated glomerular filtration rates trajectory, the effect of pancreas transplant, and time-to-event

outcomes, although it remains an important clinical question. In an attempt to describe the association in the multiple

outcomes, we propose a new joint model with a longitudinal submodel and an accelerated failure time submodel, which

are linked by some latent variables. The accelerated failure time submodel is used to determine the relationship of the

time-to-event outcome with all predictors. In addition, the piecewise linear function in the survival submodel is used

to calculate the dynamic hazard ratio curve of a time-dependent side event, because the effect of the side event on

the time-to-event outcome is non-proportional. The model parameters are estimated with a Monte Carlo EM algorithm.

The finite sample performance of the proposed method is investigated in simulation studies. Our method is

demonstrated by fitting the joint model for the clinical data of 13,635 patients with diabetes and the end-stage renal

disease.
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1 Introduction

This article is motivated by a longitudinal and time-to-event clinical dataset, where all patients have the end-stage
renal disease (ESRD) and diabetes. All patients have already had a kidney transplantation from a living or
decreased kidney donor, and all of them are on the waiting list for the pancreas transplant to treat the diabetes
disease. Partial patients have a pancreas transplantation if a matched pancreas organ is available for them. It is
known that the organ transplantation can prolong the survival of type 1 diabetic patients with ESRD.1–7 However,
how to extend the long-term kidney function still remains the main challenge for transplantation.

No studies have used a joint model to predict the long-term kidney function, which includes the longitudinal
continuous outcome of glomerular filtration rate (GFR) and the time-to-event outcome of all-cause graft loss
(ACGL). From our preliminary result as in Figure 1, the levels of the observed GFR trajectories for patients with
ACGL are higher than those of patients without ACGL, and we find that the slopes of GFR trajectories for
patients with ACGL are steeper in comparison with patients without ACGL. In addition, all patients may have a
pancreas transplant at any time post kidney transplant to treat the diabetic disease, and they are in different
statuses at different time points during the follow-up period. For example, they are in status 1 (alive without
pancreas transplant) at the time of the admission to the waiting list for a pancreas. They move to status 2
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(alive with pancreas transplant) if a matched pancreas organ becomes available for them before ACGL, or they
directly move to status 3 with ACGL. In fact, the failure rates of the time-to-event outcome are different as
patients change their status. As shown in Figure 1, it seems that patients who have a pancreas transplant are less
likely to have ACGL. In short, the above scenarios motivate us to develop a new dynamical joint model to predict
the long-term outcome, since there are at least two advantages in using a joint model. First, joint modelling
multiple outcomes together can increase the power and decrease the Type I error.8,9 Second, this joint model
can estimate the parameters in the longitudinal component by incorporating the time-to-event information
through censoring, and similarly, for the converse situation, the estimation of the time-to-event is incorporated
by the longitudinal data information.

Several methods for estimating joint models of multiple outcomes have been developed. The main challenge in
jointly modelling multiple outcomes is the lack of a suitable multivariate joint distribution. The first approach is a
two-stage approach,10 where a random components model is developed to describe repeated longitudinal measures
in the first stage, and a Cox proportional hazards model is estimated in the second stage. However, this approach
may cause bias when the observation of the longitudinal process is interrupted by the event. To address this
problem, the second approach11 directly specifies the joint distribution by factorizing it into the conditional
distribution of one outcome and a marginal distribution of the other outcome. This approach was reviewed
with some insightful comments.12 The accelerated failure time model is considered in their joint model rather
than the Cox proportional hazards model.13,14 The third approach directly formulates a joint model for
longitudinal repeated measurements and the time-to-event outcome. For instance, a copula is used to construct

Figure 1. Observed individual GFR trajectory curves. The left two panels, from top to bottom, are GFR curves for patients with

All-cause graft loss (ACGL) events or without ACGL events, respectively, when they do not have a pancreas transplantation. The right

two panels, from top to bottom, are GFR curves for patients with ACGL event or without ACGL events, respectively, when they have

a pancreas transplantation. Each color represents the individual patient in each panel.
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the joint distribution.15 Another challenge in jointly modelling multiple outcomes is the intensive computation due
to the complex correlation structure of latent variables and measurement errors in covariates.11,13 So the EM or
the Monte Carlo EM algorithm is developed to estimate parameters in the joint models.13,14 The Bayesian method
is also developed to estimate the joint models.16

Most of above joint models are based on the Cox proportional hazard regression, and only a few joint models
such as Tseng et al. 14 use the accelerated failure time regression. As shown in Figure 3, the assumption of Cox
proportional hazard model fails because the cumulative survival lines cross with each other for patients with/
without a pancreas transplant. Therefore, the accelerated failure time submodel is used in our proposed joint
model. On the other hand, the proposed joint model is different from the joint models in Tseng et al.,14 which
treats the longitudinal component as a covariate in the survival analysis. In our proposed joint model, instead of
using the whole longitudinal component as a covariate, we propose to use some latent features of the longitudinal
component in the survival submodel. Finally, none of the above joint models has considered a method to obtain
the dynamical non-proportional hazard ratio curve of a side event when hazard ratios are non-proportional during
the followed-up time period.

The main contribution of this paper is that we review the clinical question in the transplantation data, and
accordingly develop a new joint model to determine the relationships of multiple outcomes to account for
correlations within/between subjects. To the best of our knowledge, it is the first time for the joint model to be
applied to the organ transplantation research. Our proposed joint model has three advantages. First, the survival
submodel shares a vector of latent variables with the longitudinal submodel. The advantages of this model are that
unnecessary noise can be filtered, and the effects of other covariates can be adjusted in the longitudinal submodel.
In addition, it is easy to interpret the coefficients from the model results. For example, the latent features are the
baseline and the slope of GFR trajectories in the application example. The coefficients in the survival component
represent their corresponding relationship with the time-to-event outcome. Second, the survival submodel shares
the data information together with the longitudinal submodel. For example, our proposed joint model in the
application example has considered that the occurrence of death or transplant failure may lead to the censoring of
GFR, which overcomes the drawback of separate analyses for each outcome. Finally, our proposed joint model
includes a piecewise linear function to display the dynamical non-proportional hazard ratios of the side event on
the time-to-event outcome.

The rest of this article is organized as follows. Our proposed joint models are introduced in Section 2. We
present our estimation method for the joint model in Section 3. Section 4 demonstrates the application of our joint
model in the transplantation clinical data. Section 5 presents three simulation studies to investigate the finite
sample performance of our joint model. Conclusions and discussion are given in Section 6.

2 The joint model

Let YiðtijÞ be a repeated continuous measured outcome at times tij for the i-th subject, where
i ¼ 1, . . . , n, j ¼ 1, . . . ,mi, and mi is the number of repeated measurements for the i-th subject. For example,
the longitudinal outcome YiðtijÞ is the repeated measurements of GFR at different time points in the
application example of transplant clinical data. Let Ti be the i-th subject’s survival time to the event of interest,
Ci be a possible censoring time, �i ¼ 1fTi�Cig be the censoring indicator, Si ¼ minðTi,CiÞ be the observed survival
time, and Zi ¼ ½Zi1, . . . ,ZiP�

T be the observed covariates for the i-th subject. We propose the following joint model

YiðtijÞ ¼ aTZi þ bT
i nðtijÞ þ �i, i ¼ 1, . . . , n,

�ðtjZi, bi,wiðtÞÞ ¼ �0f
R t
0 �ðs,Zi,wiðsÞ, bi, cÞdsg�ðt,Zi,wiðtÞ, bi, cÞ

(
ð1Þ

The first equation in the joint model (1) is the longitudinal submodel for repeated measurement outcome YiðtijÞ,
where a ¼ ð�1, . . . ,�PÞ

T is a vector of coefficients for the fixed effects of Zi ¼ ½Zi1, . . . ,ZiP�
T, and

bi ¼ ð�i1, . . . ,�iLÞ
T is a vector of coefficients for the random effects of nðtÞ ¼ ð�1ðtÞ, . . . , �LðtÞÞ

T. Here,
�‘ ðtÞ, ‘ ¼ 1, . . . ,L is a parametric function of t. For example, �1ðtÞ ¼ 1 and �2ðtÞ ¼ t in our application example.
We assume that bi � Normalðb,BÞ. The vector of measurement errors �i ¼ ð�i1, . . . , �imi

Þ are assumed to be
multivariate normal distributed with the mean 0 and the variance–covariance matrix 	2In.

The second equation in the joint model (1) is the survival sub-model with the accelerated failure time hazard
function, where �ðt,Zi,wiðtÞ, bi, cÞ ¼ exp½cT1Zi þ cT2 bi þ wiðtjc3Þ�, which represent the joint effects of covariates,
c ¼ ðcT1 , c

T
2 , c

T
3 Þ are the coefficients in the survival model, and bi ¼ ð�i1, . . . ,�iLÞ

T are the vector of latent
variables, which are shared in the longitudinal sub-model and the survival sub-model. The time-dependent
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indicator function wiðtjc3Þ captures the dynamic relative risk of the side event at different time points post the side
event. Here, �0f

R t
0 �ðs,Zi,wiðsÞ,bi, cÞdsg is the baseline hazard function. This survival sub-model is justified with

more details in section 2.1.
This proposed joint model has two major advantages. First, the mixed-effect submodel of the longitudinal

outcome can adjust for other co-variables to filter some noise because we do not treat the longitudinal outcome as
a covariate in the survival submodel. Second, the survival submodel shares the latent features bi with the mixed-
effect submodel. The estimates of the latent features in the joint model can offer an answer for specific clinical
questions. For example, in our kidney transplant application, the latent variable �i1 is the baseline of GFR, the
latent variable �i2 is the slope of GFR. Their corresponding coefficients (
21 and 
22) in the survival model show
the effect of the baseline and the slope of GFR to the time-to-event outcome.

2.1 The survival submodel

This section provides the justification for the survival submodel in the proposed joint model with more details. In
the transplant clinical data, all subjects have a kidney transplant, and only part of them have a pancreas transplant
at a certain time after kidney transplant before death.

From our preliminary analysis, the clinical transplant data has several aspects. First, as shown in Figure 1,
patients with a pancreas transplant are less likely to have the time-to-event outcome in comparison with patients
without a pancreas transplant. Second, patients have a dynamical status as shown in Figure 2. For instance, each
individual is on the waiting-list program for the pancreas transplantation after kidney transplant (status 1). Then
patients either move to status 2 (alive and pancreas transplant) when a matched pancreas organ is available, or they
directly move to status 3 (ACGL or on the waiting). The hazard rates are different when moving from status 1 to
status 3 in comparison with the other scenario when moving from status 2 to status 3. Third, the assumption of Cox
proportional hazard model fails as shown in Figure 3, because the cumulative survival line of patients with a
pancreas transplant cross with the cumulative survival line of patients who have no pancreas transplant.
Therefore, we recommend the alternative hazard model rather than Cox proportional hazards model in this paper.

We propose to use the accelerated failure time (AFT) model, which was first introduced by Cox17 to determine
whether the effect of a covariate is to accelerate or decelerate the life course of a disease by some constant. Cox and
Oakes18 extended an AFT model with time-dependent covariates. James19 provided a method to estimate the time-
dependent AFT model in the presence of confounding factors. Reid20 and Kay21 mentioned that the AFT models
were more appealing than the proportional hazard models because they could give direct physical interpretations.
For example, as mentioned in the paper by Kay,21 the AFT model can supply a more straightforward
interpretation of the treatment effect on the time-to-event data because the coefficient of the treatment
indicator can be estimated across various intervals defined by the cut time points from the date of treatment.

Figure 2. The three statuses of kidney transplant patients. All patients start from the date of the kidney transplant (Status 1), then

they may move to Status 2 (pancreas transplantation) when a matched pancreas organ is available during the followed-up time period.

If not, they directly move to Status 3 when the time-to-event outcome of all-cause graft loss happens, or they still are on the waiting-

list for the pancreas transplant.
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In this paper, the hazard function of the accelerated failure time submodel is specified as

�ðtjZi, bi,wiðtÞÞ ¼ �0

Z t

0

�ðs,Zi,wiðsÞ, bi, cÞds

� �
�ðt,Zi,wiðtÞ, bi, cÞ ð2Þ

where �ðt,Zi,wiðtÞ, bi, cÞ ¼ exp½cT1Zi þ cT2 bi þ wiðtÞ�, Zi ¼ ½Zi1, . . . ,ZiP�
T is a vector of time-independent

covariates, bi ¼ ð�i1, . . . ,�iLÞ
T is a vector of latent variables, which are random factors shared with the

longitudinal sub-model, and wiðtÞ is a time-dependent indicator function. We assume wiðtÞ to be a piecewise
linear function, which is used to capture the dynamic relative risk at different time points post the side event.
We express wiðtÞ as

wiðtjc3Þ ¼

0 if t �Wi,


30 if Wi 5 t �Wi þ
D0

365 ,


3k t�Wi �
Dk�1

365

� �
if Wi þ

Dk�1

365 5 t �Wi þ
Dk

365 , k ¼ 1, . . . ,K,


3ðKþ1Þ if t4Wi þ
DK

365

8>>>><>>>>: ð3Þ

where Wi is the time of the side event for the i-th subject, D0,D1, . . . ,DK are denoted as the specified number of
days post the side event, and c3 ¼ ð
30, . . . , 
3ðKþ1ÞÞ

T are the coefficients in the piecewise function. In our
application example of the clinical transplant data, Wi is the time from the kidney transplant to the pancreas
transplant for those patients who have pancreas transplant. For patients without pancreas transplant, Wi is set to
be larger than the end date of the study cohort minus the date of kidney transplant.

Figure 3. The cumulative Nelson–Aalen estimate of all-cause graft loss by patient status of pancreas transplantation. The red line is

the cumulative Nelson–Aalen estimate of all-cause graft loss for patient with a pancreas transplant and the blue line is the cumulative

Nelson–Aalen estimate of all-cause graft loss for patient without a pancreas transplant.
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It is worth mentioning that the hazard function defined in equation (2) can be a strata hazard model because it
can provide different hazard functions when patients are in different statuses. For example, the hazard function
�ðtjZi, bi,wiðtjc3Þ ¼ 0Þ is the hazard rate when patients move from status 1 to status 3 if t �Wi. The hazard
function �ðtjZi, bi,wiðtjc3Þ 6¼ 0Þ is the hazard rate when patients move from status 2 to status 3 if t4Wi.

More importantly, the piecewise linear function (3) in the proposed joint model can be used to determine the
time-dependent hazard ratios of the side event when the effect of the side event on the time-to-event outcome is
non-proportional. For example, in our application example, this piecewise linear function can be used to calculate
the dynamic relative risk of the pancreas transplant on all-cause graft loss at different time points (Dk) after a
pancreas transplant. For instance, we set Dk as D0 ¼ 14 days, D1 ¼ 45 days, D2 ¼ 90 days, D3 ¼ 180 days,
D4 ¼ 365 days, and D5 ¼ 730 days from the date of pancreas transplant, and then we can obtain the relative
hazard ratios at each time point from the joint model. These relative hazard ratios can supply some references to
control the potential risk of the pancreas transplant in the clinical practice. We give the change curve of the relative
hazard ratios over time Dk and discuss it in more detail in Section 4.

3 Estimation method

We discuss the likelihood function in a general framework for this proposed joint model with latent variables. Let
? ¼ ðcT, aT, kT, bT,BT, 	2, �0Þ

T be the parameters to estimate. The overall likelihood function based on the
observed information is given by

Lð�Þ ¼
Yn
i¼1

f ðti,wiðtiÞ,Si, �ijYi,Zi, c, �0Þ
Ymi

j¼1

f ðYijjZi,bi, ti, a, 	
2Þ

( )
f ðbijb,BÞ

" #
ð4Þ

where

f ðti,wiðtiÞ, �ijYi,Zi, c, �0Þ ¼ �0 �ðt,Zi,wiðtjc3Þ, bi, cÞ, cÞ
� �

�0ðt,Zi,wiðtjc3Þ, bi, cÞ
� ��i
� exp �

Z �ðti,Zi,wiðtjc3Þ, bi, cÞ

0

�0ðsÞds

� 	
is the density function of the survival submodel of the proposed joint model, and

�ðt,Zi,wiðtjc3Þ, bi, cÞ ¼

Z t

0

�ðs,Zi,wiðtjc3Þ, bi, cÞds

¼

Z t

0

expðcT1Zi þ cT2 bi þ wiðtjc3ÞÞds

The function f ðYijjZi, bi, ti, a, 	
2Þ is the density function of NormalðaTZi þ bT

i �ðtiÞ, 	
2Þ, and f ðbijb,BÞ is the

density function of Normalðb,BÞ.
We propose to estimate the parameters in the joint model (1) by using the Monte Carlo EM algorithm.22 The

EM-algorithm23 is an iterative procedure with two steps: the expectation (E) step and the maximization (M) step.
In the E-step, we compute the expectation of joint log-likelihood function over the latent variable bi using the
observations and parameter estimates obtained so far. In the M-step, we maximize the expected joint log-
likelihood over the parameters.

3.1 E-step

At the t-th iteration of the E-step, the expectation of the log-likelihood function w.r.t the latent variable bi can be
expressed in the following form

Qð�j�ðtÞÞ ¼ Eb logLð�jt,wðtÞ,S, �,Z,YðtÞÞj�ðtÞ

 �

¼
Xn
i¼1

Z h
log f ðti,wðtiÞ,Si, �ijbi, c, �0Þ þ

Xmi

j¼1

logf ðYijjbi, a, 	
2Þ

þ log f ðbijb,BÞ
i
f bijt,wiðtÞ,Si, �i,Zi,YiðtÞ,�

ðtÞ
� �

dbi

ð5Þ
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where f ðbijti,wiðtÞ,Si, �i,Zi,YiðtÞ,�
ðtÞÞ ¼

f ðbijZi,YiðtÞ,�
ðtÞÞ f ðti,wiðtÞ,Si, �ijbi,�

ðtÞÞ

f ðti,wiðtÞ,Si, �ijZi,YiðtÞ,�ðtÞÞ
,

f ðbijZi,YiðtÞ,�
ðtÞÞ �MVN Ai

nTi ðtÞðYiðtÞ � ZT
i �Þ

	2

� 	
,Ai

� 


Ai ¼
nTi ðtÞniðtÞ

	2
þ B�1

h i�1
. The integral in the above equation is intractable because of the intractability of

normalizing constant f ðti,wiðtÞ,Si, �ijZi,YiðtÞ,�
ðtÞÞ. An alternative is to use the importance sampling to

approximate the integral in E-step.

. Draw N samples b
ð1Þ
i , . . . , b

ðNÞ
i from f ðbijZi,YiðtÞ,�

ðtÞÞ based on the current parameter estimates �ðtÞ, and
compute the normalized weights w

ðsÞ
i / f ðti,wiðtÞ,Si, �ijb

ðsÞ
i ,�ðtÞÞ.

. Calculate Q̂ð�j�ðtÞÞ ¼
Pn

i¼1

PN
s¼1 w

ðsÞ
i � l

ðsÞ
i ð�jti,wiðtÞ,Si, �i,Zi,YiðtÞ,�

ðtÞÞ, where
l
ðsÞ
i ¼ log f ðti,wðtiÞ,Si, �ijb

ðsÞ
i ,�ðtÞÞ þ

Pmi

j¼1 logf ðYijjb
ðsÞ
i ,�ðtÞÞ þ log f ðb

ðsÞ
i j�

ðtÞÞ

3.2 M-step

After computing the expectation of the log-likelihood function in equation (5), in M-step we estimate each
parameter of � by maximizing Q̂ð�j�ðtÞÞ. The MLEs of bb, bB, ba, 	̂2, the baseline hazard function �̂0ðtÞ are
derived in the supplementary document. The MLE of c has no closed form, hence we could use the numeric
optimization algorithm24 to optimize this parameter. We repeat the E-step and M-step until convergence achieved.
The convergence criterion for MCEM in our numerical study is

max
j�ðtÞ ��ðt�1Þj

j�ðtÞj þ �2

� �
5 �1

where we set �1 ¼ 0:002 and �2 ¼ 0:001. The standard error of �̂ is computed using the bootstrap method.25

4 Application to clinical transplant data

The clinical transplant data resource is from the United Network for Organ Sharing. As mentioned in the
introduction, all patients (N¼ 13,635) have both an end-stage renal disease (ESRD) and a diabetic disease.
In this data, all patients already have a kidney transplantation from a living or deceased donor, and all of
them are on the waiting list for the pancreas transplant. A part of patients (N¼ 2776) may have a pancreas
transplant at any time during the follow-up period. We apply the proposed joint model to this clinical
transplant data in this section. The main result from the proposed joint model is shown in Section 4.1, and the
effect of the side event of pancreas transplant on the all-cause graft loss is shown in Section 4.2.

4.1 Main results from the joint model

In order to demonstrate the feasibility of the proposed joint model (1), we apply it to some clinical transplant data
in this section. As shown in Figure 1, the baseline of GFR and the slope of GFR are related to the time-to-event
outcome as mentioned before. So we choose two latent factors �i1 and �i2, and the joint model can be specified as
in the following

YiðtÞ ¼ aTZi þ bT
i nðtÞ þ �i, i ¼ 1, . . . , n,

�ðtjZi,wiðtÞ, bi, cÞ ¼ �0f
R t
0 �ðs,Zi,wiðsÞ, bi, cÞdsg�ðt,Zi,wiðtÞ,bi, cÞ

(
ð6Þ

where �ðt,Zi,wiðtÞ, bi, cÞ ¼ exp½cT1Zi þ cT2 bi þ wiðtjc3Þ�, and YiðtÞ is the GFR value at various time points post
kidney transplant. The GFR value is calculated according to the formula in the paper26: GFR ¼
141�minðScr=d, 1Þe �maxðScr=d, 1Þ�1:209 � 0:993Age � ð1:018 if femaleÞ � ð1:159 if blackÞ, where Scr is the
measured serum creatinine in mg/dL, and the serum creatinine is a chemical waste product from the muscle
metabolism and blood. The parameter d¼ 0.7 if female or 0.9 if male, and the parameter e ¼ �0:329 if female
or –0.411 if male. Let Wi be the time from the kidney transplant to the pancreas transplant or the time on the
waiting-list for patients without a pancreas transplant. We specify the piecewise linear function wiðtÞ in
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�ðti,Zi,wiðtÞ, bi, cÞ in equation (6) as follows

wiðtjc3Þ ¼

0 if t �Wi


30 if Wi 5 t �Wþ 14
365


31 t�Wi �
14
365

� �
if Wi þ

14
365 5 t �Wi þ

45
365


32 t�Wi �
45
365

� �
if Wi þ

45
365 5 t �Wi þ

90
365


33 t�Wi �
90
365

� �
if Wi þ

90
365 5 t �Wi þ

180
365


34 t�Wi �
180
365

� �
if Wi þ

180
365 5 t �Wi þ

365
365


35 t�Wi �
365
365

� �
if Wi þ

365
365 5 t �Wi þ

730
365


36 if t4Wi þ
730
365

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð7Þ

Table 1 displays the coefficients and standard errors of all parameters in the longitudinal sub-model and the
AFT survival sub-model. The baseline term (�1) in the mixed-effects submodel is 48.94, which indicates that most
patients have a good kidney function at the baseline. The slope term (�2 ¼ �1:36) of GFR is negative and
statistically significant, which means that the kidney function progression decreases during the follow-up period
time. The estimates for other coefficients in the mixed-effect submodel are also reasonable. For example, the value
of GFR decreases by 0.17 as the age of patients increases by 1. In other words, the kidney function of older
patients is worse than young patients. The average GFR value of patients with a decreased donor is 1.15 less than
patients with a living donor.

Table 1. Estimates for parameters in Model (1).

The longitudinal submodel The survival submodel

Parameters Coef. (SE) P value Coef. (SE) P value

Age (per year) �0:17 ð0:05Þ <0.001 0:02 ð0:01Þ 0.044

Female 5:39 ð0:73Þ <0.001 �0:23 ð0:03Þ 0.029

Black �3:69 ð1:34Þ <0.001 0:17 ð0:08Þ 0.020

Other �6:45 ð1:08Þ <0.001 0:23 ð0:07Þ <0.001

TX era 1993� 1997 7:56 ð1:15Þ <0.001 �0:29 ð0:04Þ 0.080

TX era 1998� 2002 10:75 ð1:16Þ <0.001 �0:76 ð0:03Þ <0.001

TX era 2003� 2007 16:52 ð1:30Þ <0.001 �0:95 ð0:03Þ <0.001

PKPRA 1� 29 �0:93 ð0:17Þ 0.024 0:06 ð0:01Þ 0.030

PKPRA 30� 100 �2:35 ð0:11Þ 0.159 0:27 ð0:13Þ 0.049

HLA mismatch 1� 6 �1:54 ð0:61Þ 0.045 0:24 ð0:05Þ 0.004

Dialysis time 0:1� 1 years �0:27 ð0:17Þ 0.689 0:07 ð0:01Þ 0.005

Dialysis time 1:1� 2 years �0:52 ð0:42Þ 0.166 0:08 ð0:01Þ 0.007

Dialysis time 2:1� 3 years �0:73 ð1:01Þ 0.142 0:33 ð0:03Þ 0.028

Dialysis time> 3 years �0:96 ð0:11Þ 0.029 0:38 ð0:05Þ <0.001

Decreased Donor �1:15 ð0:18Þ 0.015 0:14 ð0:05Þ 0.024

�1 48:94 ð2:34Þ <0.001

�2 �1:36 ð0:12Þ <0.001


21 �0:07 ð0:01Þ <0.001


22 �0:21 ð0:04Þ <0.001


30 1:22 ð0:01Þ <0.001


31 �9:42 ð0:04Þ 0.035


32 �2:51 ð0:05Þ 0.041


33 �0:65 ð0:45Þ 0.542


34 �0:35 ð0:21Þ 0.251


35 �0:06 ð0:01Þ 0.045


36 �0:28 ð0:04Þ <0.001

Random-effect parameters Value (Std. Error) Correlation

SD (�1) 14:91 ð2:30Þ –0.40

SD (�2) 2:89 ð0:12Þ

Note: The standard errors of the estimates are given in brackets.

Dong et al. 2731



In the survival sub-model, the coefficients (
21 and 
22) of the random intercept and slope (�1 and �2) of GFR
are negative, and they are also statistically significant. These results indicate that the latent baseline level and the
latent slope of GFR are related to the time-to-event outcome ACGL. In other words, the failure rate of ACGL
increases as the value of GFR decreases during the followed-up time period, and patients in the higher baseline of
GFR are less likely to have the time-to-event outcome ACGL. The coefficients of female patients are larger than
male patients. It is reasonable that patient age is significantly related to all-cause graft loss, which indicates that
patients are more likely to have an ACGL with the hazard ratio (1.02) as patient age increases per year. Compared
with the white patients, the black patients are more likely to have the time-to-event outcome ACGL. The
transplantation era and the dialysis duration before transplant are also related to the time-to-event outcome
ACGL. For example, patients have a longer dialysis duration before kidney transplant, and the more likely
patients have all-cause graft failure. Compared with patients who have a deceased donor, patients who have a
living donor transplant are less likely to have the time-to-event outcome ACGL. The dynamic effect of the
pancreas transplant on all-cause graft loss is presented in the next section.

4.2 Effect of pancreas transplant on allograft

In order to evaluate the average and time-varying relative risk of the pancreas transplant on all-cause graft loss, we
can set the piecewise linear function wiðtjc3Þ in equation (3) in two separate forms. In order to evaluate the average
relative risk of the pancreas transplant on all-cause graft loss, we set wiðtjc3Þ as

wiðtjc3Þ ¼
0 if t �Wi,


31 if t4Wi

�

Then the coefficient vector c3 in the piecewise function has only one element 
31. In fact, the coefficient 
31
represents the average relative risk of the side event on the time-to-event outcome in this case when we set K¼ 0
and D0 ¼ 0 in equation (3). We find that the pancreas transplant has a significantly statistical benefit effect on
ACGL because the hazard ratio is expð
31Þ ¼ expð�0:13Þ ¼ 0:88 with the p-value 0.045. In other words, the
pancreas transplant can reduce the risk of the time-to-event outcome ACGL.

However, the relative risk of this side event on the time-to-event outcome is non-proportional. Therefore, we
need to display the relative risk curve at various time points post pancreas transplant. It is also useful to control
the potential risk for the clinical practice if we can determine the relative risk at specified time points. In order to
evaluate the time-varying relative risk of the pancreas transplant on all-cause graft loss, we set the piecewise linear
function wiðtjc3Þ as the formula (7) after specifying the values of Dk as D0 ¼ 14 days, D1 ¼ 45 days, D2 ¼ 90 days,
D3 ¼ 180 days, D4 ¼ 365 days, and D5 ¼ 730 days. Then we obtain the coefficient vector c3 at these specified time
points from the date of pancreas transplant in comparison with patients without pancreas transplant, which is
shown in Table 1.

For easy comparison, we transform the estimated coefficients into the hazard ratios. Figure 4 displays the
hazard ratio curve of pancreas transplant at different time points. It shows that the hazard ratio is very high in the
beginning because of the clinical surgery or organ acute rejection, then the hazard ratio decreases to 1.00 at 152
days from the date of pancreas transplant, and then becomes less than 1 thereafter. From the time point when the
hazard ratio is equal to 1.00, the pancreas transplantation starts to have a survival benefit. It is a good clinical
example to demonstrate the hazard ratio curve when the hazard ratios are not proportional.

5 Simulations

5.1 Simulation 1

The first simulation study is implemented to access the finite-sample performance of our proposed MCEM
algorithm in Section 3. A multivariate mixed-effects model is chosen to simulate the longitudinal trajectories

YiðtÞ ¼
X15
p¼1

�pZip þ �i1 þ �i2tþ �i

where �i1 ¼ �1 þ bi1, bi1 � Normalð0, 	21Þ, �i2 ¼ �2 þ bi2, and bi2 � Normalð0, 	22Þ, i ¼ 1, . . . , n. In our application
example, the longitudinal outcome is GFR. Here �1,�2, . . . ,�15 are the coefficients for age, gender, and other fixed
covariates shown in Table 1. We set �1 ¼ 48:94, 	1 ¼ 14:91, �2 ¼ �1:36, and 	2 ¼ 2:89, which are the estimate
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from the real data in Table 1. The measurement error �ij �Normalð0, 	23Þ, where we set 	3 ¼ 0:85 and j ¼ 1, . . . , 12.
The scheduled measurement times of the repeated longitudinal outcome are set at the sequence year ð1, 2, . . . , 12Þ
for each subject, but there are no measurements available after death or censoring time. The time-to-event Ti is
specified as follows

LogðTiÞ ¼
X15
p¼1


1pZip þ 
21�i1 þ 
22�i2 þ wðtj
3Þ þ �i

where 
1, 
2, . . . , 
15 are the coefficients for age, gender, and other fixed covariates, 
21 and 
22 are the coefficient
for the random effects �1i and �2i, and the random error �i � Gumbel (0, 1). We set their true values as the
estimates from the real data shown in Table 1. The piecewise linear function wiðtjc3Þ is specified as follows

wiðtjc3Þ ¼
0 if t �Wi


31 if t4Wi

�

where 
31 ¼ �0:13. The number of subjects are set as n¼ 100.
We estimate the joint model (1) with the Monte Carlo EM algorithm from the simulated data. The simulation

procedure is repeated for 100 replicates. Table 2 shows the parameter estimates, together with biases and root
mean square errors (RMSEs). It shows that the means of the parameter estimates by the MCEM algorithm are
close to their true values. The average number of iterations till convergence is 12. We notice that the estimate for �1
and �1 has large RMSE, which is caused by the setting of our simulated data. In the simulation data, we set
�1 ¼ 48:94, 	1 ¼ 14:91, �2 ¼ �1:36, and 	2 ¼ 2:89, which are the estimated from the real transplant data. We find
that the MCEM algorithm can estimate parameters accurately in the proposed joint model, which is consistent
with the literature.13,14

Figure 4. The curve of hazard ratios of all-cause graft loss for patients with a pancreas transplant with the 95% confidence intervals

at 14, 45, 90, 152, 180, 365, 730 days from the date of pancreas transplant. The reference group are patients without a pancreas

transplant. The hazard Ratio curve reaches 1.00 at 152 days from the date of pancreas transplant.
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5.2 Simulation 2

In order to study the effect of the various correlation construction between the longitudinal submodel and the
survival model, we develop two simulation studies in this section.

The relationship between the longitudinal submodel and the survival model in our proposed joint model (1) is
based on latent feathers. Some other studies treat the longitudinal outcome as a covariable in the survival model as
shown in the model (8) such as10,12,14

YiðtÞ ¼ XiðtÞ þ �i, i ¼ 1, . . . , n,

�ðtjXðtÞÞ ¼ �0f
R t
0 
1XðsÞdsg expð
1XðtÞÞ

�
ð8Þ

The simulation data are generated in two scenarios. In the first scenario, we set 
1 ¼ 
2 ¼ 1:00. In the second
scenario, we set 
1 ¼ 1:00 and 
2 ¼ �1:00. We choose these two different scenarios because we want to see the
differences between the proposed model (1) and the model (8) when the effects of the intercept and slope of GFR
curves are in the same or opposite direction. A mixed-effects model is chosen to mimic the longitudinal trajectories

YiðtÞ ¼ �i1 þ �i2tþ �i

where �i1 ¼ �1 þ bi1, bi1 � Normalð0, 	21Þ, �i2 ¼ �2 þ bi2, bi2 � Normalð0, 	22Þ, i ¼ 1, . . . , n. Here we set the true
values for these parameters as �1 ¼ 2:50, 	1 ¼ 1, �2 ¼ �0:20, and 	2 ¼ 0:02. The random measurement error �i �
Normal(0, 1), and the number of subjects are set as n¼ 100. The preliminary scheduled measurement time of the
longitudinal outcome is set at the sequence year ð1, 2, . . . , 12Þ for each subject, but there are no measurements
available after death or censoring time. The time-to-event Ti is specified as follows

LogðTiÞ ¼ 
1�i1 þ 
2�i2 þ �i

where the random error �i � Gumbel (0, 1). Note that our proposed joint model (1) and the alternative model (8)
treat YiðtÞ in two different ways. Our proposed joint model (1) chooses a mixed-effects submodel for YiðtÞ, and

Table 2. Means, biases, root mean square errors (RMSEs) of the parameter estimates for the joint model (1) using our proposed

MCEM algorithm in Simulation 1.

The longitudinal submodel The survival submodel

Parameters True Mean Bias RMSE True Mean Bias RMSE

Age (per year) �0.17 �0.17 0.00 0.012 0.02 0.02 �0.00 0.001

Female 5.39 5.41 �0.02 0.236 �0.23 �0.23 �0.00 0.010

Black �3.69 �3.68 �0.01 0.235 0.17 0.17 0.00 0.009

Other �6.45 �6.45 0.00 0.220 0.23 0.23 0.00 0.010

TX era 1993� 1997 7.56 7.57 �0.01 0.300 �0.29 �0.29 0.00 0.010

TX era 1998� 2002 10.75 10.80 �0.05 0.245 �0.76 �0.76 �0.00 0.010

TX era 2003� 2007 16.52 16.55 �0.03 0.227 �0.95 �0.95 0.00 0.011

PKPRA 1� 29 �0.93 �0.93 �0.00 0.114 0.06 0.06 0.00 0.003

PKPRA 30� 100 �2.35 �2.43 �0.08 0.119 0.27 0.27 0.00 0.011

HLA Mismatch 1� 6 �1.54 �1.54 0.00 0.132 0.24 0.24 �0.00 0.010

Dialysis time 0:1� 1 years �0.27 �0.27 0.00 0.121 0.07 0.07 0.00 0.005

Dialysis time 1:1� 2 years �0.52 �0.49 �0.03 0.118 0.08 0.08 �0.00 0.005

Dialysis time 2:1� 3 years �0.67 �0.66 �0.01 0.147 0.33 0.33 �0.00 0.004

Dialysis time 4 3 years �0.96 �0.94 �0.02 0.163 0.38 0.38 �0.00 0.005

Decreased Donor �1.15 �1.14 �0.01 0.109 0.14 0.14 0.00 0.004

�1 48.94 49.35 �0.41 1.439

�2 �1.36 �1.47 0.11 0.505


21 �0.07 �0.07 �0.00 0.002


22 �0.21 �0.21 �0.00 0.005


3 �0.13 �0.13 0.00 0.005
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shares two random parameters �i1 and �i2 with the AFT survival submodel. The alternative model (8) treats XiðtÞ
as a covariate in the AFT survival component.

We estimate the joint model (1) with the Monte Carlo EM algorithm from the simulated data. The simulation
procedure is repeated for 100 replicates. The average number of steps till convergence is 32. Table 3 displays the
parameter estimates, together with their estimated standard errors. In Scenario 1, when the coefficients
(
1 ¼ 
2 ¼ 1:00) of the intercept (�i1) and the slope (�i2) are same, the estimated coefficient 
̂1 for the model in
Tseng et al.14 has the same sign as the true value 
1, although there is a relatively large gap between them. In
Scenario 2 when the coefficients (
1 ¼ 1:00 and 
2 ¼ �1:00) are different, the estimated coefficient 
̂1 from model
(8) is completely different from the true value. In summary, the results from Table 3 demonstrate that model (8)
cannot describe both the relationship between the intercept (�i1) and the slope (�i2) of the longitudinal outcome
with the time-to-event outcome by a single parameter 
1. Especially in Scenario 2 when the intercept and the slope
are in an opposite relationship with the time-to-event outcome (
1 ¼ 1:00 and 
2 ¼ �1:00), it is impossible to
describe the two relationships by a single parameter 
1. This simulation example shows the advantages in our
proposed joint model by using the features from the longitudinal submodel in the survival submodel.

The second advantage of our proposed joint model is that the estimated results offer a straightforward
interpretation. For example, in Scenario 2, if patients have a higher baseline, i.e. a larger �i1, then patients are
more likely to have the time-to-event outcome. So physicians can tell patients which level they are in and
the corresponding risk to have the time-to-event given a baseline value. Similarly, if patients have a larger
value of the slope, i.e. a larger �i2, then patients are less likely to have a time-to-event outcome. So physicians
can tell patients the trend of the longitudinal outcome and the corresponding risk to have a time-to-event given the
value of the slope.

5.3 Simulation 3

In this section, we investigate the effect of misspecification of the distribution of random effects on parameter
estimates. A mixed-effects model is chosen to mimic the longitudinal trajectories

YiðtÞ ¼ �i1 þ �i2tþ �i

where the random effects �i1 and �i2 are sampled in two scenarios. In the first scenario, �i1 and �i2 are sampled
from the normal distribution �i1 ¼ �1 þ bi1, bi1 �Normalð0, 	21Þ, �i2 ¼ �2 þ bi2, bi2 �Normalð0, 	22Þ, i ¼ 1, . . . , n.
Here we set the true values for these parameters as �1 ¼ 2:50, 	1 ¼ 1, �2 ¼ �0:20, and 	2 ¼ 0:02. In the second
scenario, �i1 and �i2 are sampled from a bimodal mixture of normal distributions, where we set
�i1 � 0:55 �Nð3, 0:72Þ þ 0:45 �Nð1, 0:52Þ and �i2 � 0:55 �Nð�0:3, 0:032Þ þ 0:45 �Nð�0:1, 0:012Þ. The random
measurement error �i � Normalð0, 1Þ, i ¼ 1, . . . , n. The number of subjects is set to be n¼ 100. The preliminary
scheduled measurement times of the longitudinal outcome are set at the sequence year ð1, 2, . . . , 12Þ for each
subject, but there are no measurements available after the date of time-to-event outcome or censoring time.
The time-to-event Ti is specified as follows

LogðTiÞ ¼ 
1�i1 þ 
2�i2 þ �i

where 
1 ¼ 1:00, 
2 ¼ 1:00, and the random error �i � Gumbel (0, 1).
We estimate the joint model (1) with the Monte Carlo EM algorithm from the simulated data. Therefore, the

first scenario has the correct model assumption and the second scenario has the misspecified model assumption.

Table 3. Means and standard deviations (STD) of the parameter estimates for our proposed joint model (1) and the model (8) in

Simulation 2.

Scenario 1 Scenario 2

Mean (STD) Mean (STD) Mean (STD) Mean (STD)

Parameters 
1 
2 
1 
2

True value 1.00 1.00 1.00 �1.00

Fitted value in Modelð1Þ 0:98ð0:05Þ 1:00ð0:05Þ 1:02ð0:05Þ �0:98ð0:01Þ

Fitted value in Modelð8Þ 0:64ð0:03Þ – �0:24ð0:06Þ –
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The simulation procedure is repeated for 100 replicates. The average number of steps till convergence is 30. Table 4
displays the summary of the simulation results in the two scenarios. In comparison with the simulation results
when the distribution for the random effects is correctly specified, the simulation results are similar when the
distribution for the random effects is incorrectly specified as the bimodal mixture of normal distributions.

6 Conclusions and discussion

This paper is motivated by a longitudinal and time-to-event transplant data set. Our proposed joint model has a
longitudinal submodel and an AFT sub-model, and both submodels share a vector of latent variables with each
other. Our proposed joint model has three major advantages. First, as shown in Table 3, the model14 cannot
correctly describe the relationships between the time-to-event outcome and the longitudinal process when the
intercept and the slope of the longitudinal process are in an opposite relationship with the time-to-event outcome.
Second, it is one of few joint models with an AFT regression rather than Cox regression. To calculate the dynamic
hazard ratio curve when the proportional hazards assumption is not satisfied, this joint model includes a piecewise
linear function in the AFT regression. Finally, this model can estimate the parameters of the longitudinal
component by incorporating the time-to-event information through censoring, and similarly, the estimation of
the time-to-event accommodates the longitudinal data information.

The proposed joint model is demonstrated with a real clinical transplantation application. The estimation
results from our proposed joint model provide at least two useful guidelines for the clinical practice. First, it
confirms that the latent baseline and slope of GFR trajectories are significantly related to ACGL. The slope of
GFR is negatively correlated with ACGL, which means that patients are more likely to have ACGL when GFR
decreases. In addition, patients with a lower baseline GFR are more likely to have ACGL. Second, the hazard
ratio curve of the effect of pancreas transplant on ACGL helps to understand the risk process of the pancreas
transplant for clinical physicians. For example, the hazard ratio is very high in the beginning because of the clinical
surgery or acute rejection, decreases to 1 at 152 days post pancreas transplant, and then becomes less than 1. From
the time point when the hazard ratio is equal to 1, the pancreas transplant starts to have some survival benefit in
comparison with no pancreas transplant. Our proposed joint model can also be applied to other areas, although it
is motivated by a clinical data of multiple organ transplantations.
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Table 4. The mean, bias, standard deviation (STD), and root mean squared error (RMSE) of the parameter

estimates for the joint model (1) when the model assumption is correct or misspecified in Simulation 3.

Model Assumption
Correct Misspecified

Parameters 
1 
2 
1 
2

True value 1.000 1.000 1.000 1.000

Mean 0.984 1.002 0.986 0.996

Bias –0.016 0.002 –0.014 –0.004

STD 0.053 0.049 0.051 0.053

RMSE 0.055 0.048 0.053 0.053

95%CI 96% 95% 96% 96%
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