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Abstract

Motivation: For families, kinship coefficients are quantifications of the amount of genetic sharing

between a pair of individuals. These coefficients are critical for understanding the breeding habits

and genetic diversity of diploid populations. Historically, computations of the inbreeding coefficient

were used to prohibit inbred marriages and prohibit breeding of some pairs of pedigree animals.

Such prohibitions foster genetic diversity and help prevent recessive Mendelian disease at a popu-

lation level.

Results: This paper gives the fastest known algorithms for computing the kinship coefficient of a

set of individuals with a known pedigree, especially for large pedigrees. These algorithms outper-

form existing methods. In addition, the algorithms given here consider the possibility that the

founders of the known pedigree may themselves be inbred and compute the appropriate

inbreeding-adjusted kinship coefficients, which has not been addressed in literature. The exact kin-

ship algorithm has running-time Oðn2Þ for an n-individual pedigree. The recursive-cut exact kinship

algorithm has running time Oðs2mÞ where s is the number of individuals in the largest segment of

the pedigree and m is the number of cuts. The approximate algorithm has running-time O(nd) for

an n-individual pedigree on which to estimate the kinship coefficients of
ffiffiffiffi
n
p

individuals of interest

from
ffiffiffiffi
n
p

founder kinship coefficients and d is the number of samples.

Availability and implementation: The above polynomial-time exact algorithm and the linear-time

approximation algorithms are implemented as PedKin in Cþþ and are available under the GNU

GPL v2.0 open source license. The PedKin source code is available at: http://www.intrepidnetcom

puting.com/research/code/.

Contact: bbkirk@intrepidnetcomputing.com or lwa68@sfu.ca

1 Introduction

Computing the kinship coefficients is fundamental to understanding

breeding relationships and human genealogies (Thompson, 1985).

The kinship coefficients have been used for correcting GWAS case–

control studies for known relationships and for reducing spurious

signals in case–control and quantitative trait association studies (Eu-

Ahsunthornwattana et al., 2014; Kang et al., 2010; Rakovski and

Stram, 2009; Yu et al., 2006). They have also been used for pedigree

case–control disease association (Thornton and McPeek, 2007). The

legal permissibility of marriages can be defined using kinship coeffi-

cients that prevent inbreeding. When breeding pedigree animals

such as dogs, cats, horses, cows or endangered species, using kinship

coefficients to prevent inbreeding would foster the genetic diversity.

This genetic diversity is important, because it prevents excessive

homozygosity and the raise of recessive Mendelian disease in the

population as a whole (Woods et al., 2006). There is some confusion

as to how quickly kinship coefficients can be computed (Abney,

2009). The kinship coefficients are defined by counting paths of gen-

etic transmission of alleles. The popular recursive algorithm

described in Karigl (1981) was implemented in Zheng and Bourgain

(2009).

There are two ways to obtain kinship coefficients. One is the em-

pirical kinship coefficient estimated using genetic data without

knowing the pedigree graph, and the other is based on defining the
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kinship coefficient as a function of a pedigree graph. The topic of es-

timation from data is outside the scope of this paper. This paper

focuses on computing and approximating the kinship coefficient as

a function of a pedigree graph.

While there exists a nice set of recursive equations, the algorith-

mic properties have needed more treatment in the literature. This

paper aims to fill this gap by introducing three fastest known kinship

algorithms: two exact algorithms and one approximate algorithm.

Our numerical studies show that our proposed algorithms are sev-

eral orders of magnitude faster than Zheng and Bourgain (2009)

and faster than Abney (2009) when the number of individuals per

generation is large.

2 Background

The pedigree graph, P ¼ ðV;EÞ, is the canonical descriptor of

known relationships. This is a directed acyclic graph with individu-

als as vertices, V, and each vertex having a gender, either male or fe-

male. The graph has edges, E, directed from parent to child

indicating direct relationship. The graph is acyclic, meaning that no

individual can be their own ancestor. The graph has in-degree at

most two with one parent of each gender, meaning that each indi-

vidual has at most two parents, one of each gender. Let I � V be the

individuals of interest, or the individuals whose relationships we

would like to quantify. Let there be n individuals in the pedigree,

meaning that n ¼ jVj.
A pedigree graph is a complete description of relationships be-

tween individuals, because it includes every parent–child edge.

Many interesting quantifications of pedigree relationships are NP-

complete to compute. Most crucially, the pedigree likelihood

(Kirkpatrick, 2011; Piccolboni and Gusfield, 2003), which is the

basis of many other pedigree calculations, is NP-complete. This

means that the pedigree and its quantities are inefficient. We now

turn our attention to more efficient representations.

There are a variety of ways to summarize the relationships in a

pedigree in condensed forms. One can look at a pair-wise pedigree

relationships and describe those using the language of family rela-

tionships: parent, child, nephew, cousin, etc. One can look at pair-

wise genetic relationships and ask whether two alleles are inherited

from an identical allele in an ancestor, i.e. whether the alleles are

identical-by-descent (IBD). One can look at the k-wise relationships

describing the probability of 2k alleles being IBD which is general-

ized kinship coefficient (Abney, 2009). One can also summarize a

pair-wise relationship by the probability of two random alleles being

IBD; this is the kinship coefficient, sometimes called the coefficient

of relationship. This last summary of relationships, called the kin-

ship coefficient, is the subject of this paper. This paper discusses the

kinship coefficient, as it is defined, as a function of a pedigree graph.

Formally, for two individuals in a pedigree, define identity-by-

descent (IBD) as the event that both individuals inherited an allele

from the same ancestor. For two individuals i and j, there are four

alleles, two for individual i, a1 and a2 and two for individual j, b1

and b2. In complete generality, there are 15 ways for these 4 alleles

to be IBD (Jacquard, 1972). We draw these 15 possibilities as graphs

on 4 alleles, as in Figure 1. There is an edge between every pair of

alleles that is IBD. For example, allele a1 and a2 can be IBD while

none of the other alleles are IBD, see row 3 of Figure 1. As another

example, alleles a1, b1 and b2 could be IBD while allele a2 is not

related to the others, see row 7 of Figure 1. Mathematically, the kin-

ship coefficient of two individuals i and j in a pedigree is the prob-

ability of IBD between two randomly drawn alleles, one from each

person. Let the matrix / contain all the pair-wise kinship

coefficients in a pedigree. Entries /ij, for i 6¼ j, are kinship coeffi-

cients, and entries /ii are related to inbreeding coefficients. Label

the alleles of individuals i and j with distinct labels: (a1, a2) and (b1,

b2), respectively. By the definition of the kinship coefficient,

/ij ¼ ð1=4ÞPr½a1 � b1� þ ð1=4ÞPr½a1 � b2�
þð1=4ÞPr½a2 � b1� þ ð1=4ÞPr½a2 � b2�;

where this ‘�’ operator means IBD. Unlike the IBD probabilities

which can apply to specific alleles in data, the kinship coefficients

are an expectation over the structure of the pedigree and are inde-

pendent of the data. The kinship coefficients are often defined as an

expectation over all possible inheritance paths (or all possible joint

assignments to the segregation indicators of a pedigree), this paper

will develop the equivalence with an expectation over the identity

states and their probabilities.

Suppose that we consider only out-bred IBD possibilities

(defined as having /ii ¼ 1=2 for all i). The identity states encode all

the possibilities for IBD, including inbreeding possibilities, and

Figure 1 has three rows indicating they are out-bred (rows 1, 2, 5).

These correspond to the a pair of individuals, i and j sharing zero,

one or two alleles IBD, respectively. In this case, we can denote the

probability of each of these event as f ij
0 ; f ij

1 and f ij
2 respectively. In

this particular case, the kinship coefficients are simple to compute

/ij ¼ ð2f ij
2 þ f ij

1 Þ=4:

Assume that there might be inbreeding in the pedigree. Now, we

wish to compute all the kinship coefficients in one computation. The

recursive algorithm for computing this was developed in detail in

Thompson (1985) and Karigl (1981). This section will only give the

recursive equations which are a top-down recursion on the pedigree.

For all founders f, the matrix is initialized as

/ff ¼ 1=2; and
/fj ¼ 0; for any j that is not a descendant of f :

Fig. 1. Identity states. Each identity state is a graph with four alleles of two

individuals drawn as the nodes and edges appearing between every pair of

IBD alleles. The 15 identity states are grouped so that each row corresponds

to 1 of the 9 condensed identity states. The number of founder alleles for

each identity state is listed, along with whether the identity state is out-bred
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Let the mother and father of i be denoted m and p. Then use the

kinship coefficient between j and i’s parents to compute

/ij ¼ ð/mj þ /pjÞ=2;

where i is not an ancestor of j and i 6¼ j.

In a similar manner, we compute the kinship coefficient for i

from its parents,

/ii ¼ ð1þ /mpÞ=2;

where this function of /mp accounts for the probability of picking

the same allele when uniformly choosing two alleles from the same

person.

Some researchers write the kinship matrix as given by the output

of the above recursion. Others transform the matrix, so that it con-

tains the inbreeding coefficients for each individual instead of the

kinship coefficients. This transformation, applied only to the diag-

onal, is

Uij ¼ /ij for all i 6¼ j; and

Uii ¼ 2/ii � 1:

We find it convenient to represent the inbreeding coefficient on

the diagonal, and this is the convention used in this paper.

3 Materials and methods

Before introducing the details of the algorithms, we need to develop

some mathematical methods that ease the task of algorithm develop-

ment. First, the kinship recursion can be initialized in several ways.

If the founders are known to be inbred, it is appropriate to initialize

the recursion with that information, for more accurate computation

of kinship coefficients. Second, the kinship coefficients can be repre-

sented in terms of identity state coefficients. This relationship is use-

ful for developing a sampling algorithm that samples identity states.

3.1 Generalized initialization of the kinship recursion
We relate the kinship to inbreeding coefficients estimated for unre-

lated individuals. The founders of a pedigree have an ancestry that

relates them, even if that ancestry is not recorded in the pedigree

graph.

Let W be the kinship coefficients for the founders, i.e. a matrix of

F�F where F is the number of founders. We initialize the algorithm

using the kinship coefficients of the founders as follows:

/ff ¼ ð1þWff Þ=2;
/fg ¼ Wfg for founders f 6¼ g; and

/fj ¼ 0; for non�founder; not a founder child;

j that is not a descendant of f ;

(1)

where Wff is the inbreeding coefficient for founder f. Recall that the

diagonal elements of W are the inbreeding coefficients. The recursive

equations also need to be slightly modified, by the addition of the

following case for founder children c not descended from f:

/fc ¼ /cf ¼ ð/mðcÞ;f þ /pðcÞ;gÞ=2;

for founder mðcÞ or pðcÞ and founder f :

It may be difficult to obtain the kinship coefficients on the

founders if their genealogy is unknown. More feasibly, we can esti-

mate the inbreeding coefficient from the homozygosity in

Leutenegger et al. (2003). We modify the above recursion in

Equation (1) to initialize it with the average inbreeding among all

the founders using the average inbreeding coefficient for founders h,

/fg ¼ 1=F
P

h Whh for founders f and g, f 6¼ g. The change to the re-

cursive equations is still relevant.

If the kinship coefficients of the founders are not properly taken

into account, then the kinship will be computed assuming that the

founders are out-bred. Thus, it will inaccurately represent the genet-

ic relationships between the individuals whose ancestry contains

inbreeding in the founders.

3.2 Relating identity states and the kinship coefficient
To relate the identity coefficients into kinship coefficients, we take

an expectation over the identity states. Since there is a deterministic

mapping between the condensed identity states and the identity

states, the expectation can be written in terms of the condensed

identity states. The proof for this approach takes as a first step the

expression of the kinship as an expectation over inheritance paths

(Kirkpatrick, 2012), which is easily converted into an expectation

over identity states.

For an identity state, let t 2 faa; ab;bbg denote an edge type, for

example, ab indicates any edge between the alleles in two different

individuals a and b, i.e. and edge between one of the nodes fa1; a2g
and one of the nodes fb1; b2g. Another example, aa, indicates an

edge between nodes a1 and a2 within the same individual. Recalling

that the identity state is a graph on nodes fa1; a2; b1; b2g, we let

e(s, t) be a function of identity state s and edge type t which gives the

number of edges of type t in identity state s. For example, in

Figure 1, row 8, column 1, eðs; aaÞ ¼ 1; eðs; abÞ ¼ 2; eðs;bbÞ ¼ 0.

The kinship coefficient Ua;b between individuals a 6¼ b is related

to the identity states and their coefficients via the following expect-

ation over the set of 15 possible identity states (a set that we denote

by S):

Ua;b ¼
X

s2S

eðs; abÞ
4

P½S ¼ s�: (2)

In this equation, eðs; abÞ=4 can be interpreted as the fraction of

the 4 possible edges between one node in fa1; a2g and one node in

fb1; b2g that are present in the identity state s.

The inbreeding coefficient Ua;a is computed slightly differently

via:

Ua;a ¼
X

s2S
eðs; aaÞP½S ¼ s�; (3)

where e(s, aa) indicates whether the single possible edge between

nodes a1 and a2 exists.

The transformation to obtain the kinship coefficient from

Equation (3) is /a;a ¼ ð1þUa;aÞ=2: The convention in this paper is

to use Ua;a.

4 Efficient implementations

We will discuss three algorithms for obtaining kinship coefficients

which are efficient in different scenarios. Recall that there are n indi-

viduals in our pedigree. The first scenario is exact computation in

time polynomial to the size of the pedigree (i.e., running-time

Oðn2Þ), and the second scenario is approximate computation in lin-

ear time [i.e., running-time O(n)].

First, the recursions given, above, can be implemented efficiently

in an Oðn2Þ-time algorithm. The challenging portion of the recursive

equations is the check for which individuals are ancestors of each

other. This can be done in constant time, provided that the correct
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data structure tabulates the ancestry information. The details of this

algorithm are given in Section 4.1.

Second, when the individuals of interest are a subset of the indi-

viduals in the pedigree, then we can use a divide-and-conquer ap-

proach for applying the first exact algorithm. In this approach we

recursively cut the pedigree graph to obtain sub-pedigrees on which

to apply the full exact algorithm. As long as the individuals of inter-

est all reside in a single sub-pedigree, this approach is more efficient

than the first exact algorithm. Details are given in Section 4.2.

Third, when a linear algorithm is desired and the kinship coeffi-

cients of a subset of individuals are needed, there is a sampling algo-

rithm that samples identity states. Given sample size d and the

kinship of
ffiffiffi
n
p

founders, the sampling algorithm works in O(nd)

time and the kinship of
ffiffiffi
n
p

of the individuals is computed. A smaller

version of this sampling algorithm that estimates the kinship of one

pair of individuals has previously been introduced (Sun et al., 2014).

That algorithm was evaluated for sampling error, and it was discov-

ered that several thousand identity states are needed for very large

pedigrees. Details of this algorithm appear in Section 4.3.

4.1 Efficient, exact algorithm
There is an Oðn2Þ-time implementation of the kinship calculation

where n is the number of individuals in the pedigree, and I¼V.

Note that any implementation that touches every cell of the kinship

matrix requires running-time at least Oðn2Þ. Any implementation of

the kinship that represents the full kinship matrix requires Oðn2Þ
space.

We define Ai, the ancestor set for individual i in the pedigree, as

the set containing i and all its ancestors. This object can easily be

computed in Oðn2Þ time. The ancestor set allows us to do the ances-

try check in the kinship recursion in constant time.

The ancestor sets are computed in a top-down recursion on the

pedigree graph. Initialize the recursion with Af ¼ ffg, where f 2 V

is a founder in the pedigree, meaning the individual has no parents.

Now, the remaining individuals’ ancestor sets are computed

from their parents’ using Ai ¼ fig [ AmðiÞ [ Af ðiÞ, where m(i) is the

mother of i and f(i) is the father of i.

The top-down order is obtained by creating a topological sort of

the graph. This is done by creating a queue of individuals, initializ-

ing the queue with the founders, and popping an individual from the

front of the queue while simultaneously adding their children to the

end of the queue. This produces an order such that each individual

is considered after all of their parents.

The recursion from Section 2 can now be implemented in Oðn2Þ
time, using the ancestor sets. The ancestor sets can be queried quick-

ly, if they are stored in a look-up table. This makes the recursion a

double loop over the individuals in the pedigree, when those individ-

uals are considered in the top-down order. Algorithm 1 gives the

details of the recursive loops.

4.2 Faster, recursive-cut exact algorithm
In the case where we require the kinship coefficients of a subset of

the pedigree individuals, I � V, we can improve the running-time

for the exact calculation. Recall from Section 3.1, that a correct kin-

ship computation can be done after initializing the founders of a

pedigree with their known kinship coefficients.

Consider a large pedigree, which is a directed acyclic graph with

the founders as sources and the leaves as sinks. Informally, we can

segment the large graph by taking vertex cuts that run ‘horizontally’

and create a generation. The individuals in the cut become the leaves

of the upper segment and the founders of the lower segment of the

pedigree. This splits the pedigree in half at the cut, and allows us to

apply the exact algorithm from Section 4.1 to each segment of the

pedigree.

Formally, a vertex cut is defined as a partition of the vertices of

the graph into two sets such that the cut vertices, when removed,

disrupt every path from any source to any sink. A vertex cut

produces two edge-disjoint subgraphs. In our application the sub-

pedigrees will share the vertices of the cut set, but will be edge-

disjoint. In one sub-pedigree, the cut vertices will be the leaves, and

in the other sub-pedigree, the cut vertices will be the founders.

A pedigree cut for the purposes of this algorithm will be defined

as a set of cut vertices which defines a generation of individuals.

Algorithm 1 Oðn2Þ Exact Kinship Algorithm

01: Let A be an n�n matrix initialized with all zeros.

02: for all the founders i 2 V do

03: Let Aii ¼ 1

04: end for

05: for each i 2 V with parents mðiÞ; f ðiÞ such that their A

row is set do

06: for each j 2 pðiÞ do

07: for each v 2 V do

08: Aiv ¼ AmðiÞv AND Af ðiÞv
09: if v ¼¼ i then

10: Aii ¼ 1

11: end if

12: end for

13: end for

14: end for

15: Let U be an n�n matrix initialized with –1.

16: for every founder f 2 V do

17: Uf ;f ¼ ð1þWff Þ=2
18: end for

19: for every pair of founders f ; g 2 V with f 6¼ g do

20: Uf ;g ¼ Wfg

21: end for

22: for every founder f and every non-founder j 2 V, j not

founder child do

23: if Ajf ¼¼ 0 then

24: Ufj ¼ 0

25: end if

26: end for

27: for every i 2 V whose parents have been assigned kin-

ship do

28: for every j 2 V whose parents have been assigned kin-

ship do

29: if i ¼¼ j then

30: Uii ¼ ð1þ UmpÞ=2
31: else

32: if Aji ¼¼ 0 then

33: Uij ¼ ðUmj þ UpjÞ=2
34: end if

35: end if

36: end for

37: end for

38: for every i 2 V do

39: Uii ¼ ð2 � UiiÞ � 1

40: end for
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Any pedigree cut separates the pedigree into two sub-pedigrees, one

containing the cut vertices as leafs which we will refer to as the

upper, or older, sub-pedigree, and one containing the cut vertices as

founders which we will refer to as the lower, or younger, sub-

pedigree. In Figure 2, the two individuals through which the dash-

dotted line passes are in the cut set. The upper sub-pedigree, by the

placement of the pedigree cut, now has new leaf individuals, which

are the cut vertices. Let the cut set be set Ci � V. Let the older sub-

pedigree be for individuals Vi and the younger sub-pedigree be for

individuals Viþ1 In this case, we know that Ci � Vi and Ci � Viþ1.

We can recursively bipartition the pedigree and sub-pedigrees

many times to get a reasonable running time of the exact kinship al-

gorithm on any single sub-pedigree. The finest recursive partitioning

will produce generational sub-pedigrees, but with the flexibility of

definitions to allow staggered generations. The number of genera-

tions puts a lower bound on the number of recursive cuts that are

possible. Also, the individuals of interest all need to appear in a sin-

gle sub-pedigree, if we are to obtain all their pair-wise kinship coeffi-

cients from this algorithm.

Now, we apply the exact kinship algorithm for the sub-pedigrees

from the top down. The kinship coefficients for the leafs of each sub-

pedigree are used to initialize the founder kinship coefficients for the

next sub-pedigree. This is done iteratively down the pedigree, until the

kinship coefficients of the individuals of interest are obtained.

When applied to a generational pedigree drawn using the diploid

Wright-Fisher model, the pedigree has jCij ¼ 2N individuals per

generation for all generations 0 	 i 	 G and Vi ¼ Ci. This

recursive-cut kinship algorithm runs on this generational pedigree in

OðN2GÞ time. More generally if we cut an arbitrary pedigree into m

partitions with the maximum partition having s ¼ jVij individuals,

then the running-time of the recursive-cut kinship algorithm is

Oðs2mÞ. When n is the number of individuals in the pedigree, this is

an improvement on the Oðn2Þ running-time of the exact method,

since s 	 n=m.

The main disadvantage of both these exact algorithms is that

they are only polynomial in running time and perhaps may not be

fast enough for applications on very large pedigrees. For very large

pedigrees, we need a linear-time algorithm for scalability.

4.3 Efficient, approximate algorithm
There is a linear-time approximate algorithm. Recall that n is the

number of individuals in the pedigree. The approximate algorithm

runs in O(nd)-time algorithm for I � V where jIj ¼ Oð
ffiffiffi
n
p
Þ; F ¼

Oð
ffiffiffi
n
p
Þ for number of founders and d is the sample size.

Fig. 2. Recursive cut. The two individuals through which the dash-dotted line

passes are in the cut set. The older sub-pedigree has those two individuals as

leaves and has two components. The younger pedigree has those two indi-

viduals as founders

Algorithm 2 O(nd) Approximate Kinship Algorithm when

jVj ¼ n; jIj ¼ Oð
ffiffiffi
n
p
Þ; F ¼ Oð

ffiffiffi
n
p
Þ and d is the number of

samples.

01: Let U be the n�n matrix initialized with zeros.

02: for s in 1 to d do

03: for i 2 V do

04: Flip 2 {m, f}-labeled coins, and assign their values

to ðxm
i ; x

f
i Þ.

05: end for

06: Initialize all ci ¼ ð0;0Þ; Let counter ¼ 1.

07: for l 2 V where l is a leaf do

08: Let ðcm
i ; c

f
i Þ ¼ ðcounter; counterþ 1Þ

09: counter ¼ counterþ 2

10: end for

11: for each i 2 V provided all of i’s children have been

processed do

12: for p 2 fm; fg and j 2 V being the appropriate gen-

dered parent do

13: if c
xp

i

j < cp
i then

14: c
xp

i

j ¼ cp
i

15: end if

16: end for

17: end for

18: for every pair of founders r and q do

19: flip a coin for edges ða1;b1Þða2; b2Þ or ða1; b2Þða2;b1Þ,
a¼0 or a¼1, respectively

20: for x 2 fm; fg, and let y 2 fm; fg n x do

21: Let u 2 ½0; 1� be a uniform random variable

22: if u 	 Wrq then

23: if a ¼¼ 0 then

24: cx
r ¼ cx

q

25: else

26: cx
r ¼ cy

q

27: end if

28: end if

29: end for

30: end for

31: for each i 2 V provided all i’s parents have been proc-

essed, denote ip as i’s parent do

32: cp
i ¼ c

x
p
i

ip

33: end for

34: for each i 2 I do

35: for each j 2 I do

36: Create the identity state graph for

ðci; cjÞ ¼ ðcm
i ; c

f
i ; c

m
j ; c

f
j Þ

37: if i ¼¼ j then

38: if cm
i ¼¼ cf

i then

39: Uii ¼ Uii þ 1
d

40: end if

41: else

42: Uij ¼ Uij þ e
4d, where e is the number edges

between ci and cj in the identity state graph.

43: end if

44: end for

45: end for

46: end for
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This algorithm quickly estimates the kinship coefficients by sam-

pling identity states and using the expectations in Equations (2)

and (3).

Recall that in diploid individuals, each individual has two alleles

at every site in the genome. Of these two alleles, one comes from the

father, and one from the mother. From each parent, the allele is cop-

ied either from the grand-father or from the grand-mother. This bin-

ary choice of grand-paternal origin is usually stored in segregation

indicators, xi ¼ ðxm
i ;x

f
i Þ, for individual i where xp

i 2 fm; fg. An in-

heritance path consists of the segregation indicators of all the indi-

viduals in the pedigree.

Consider the graph of all the alleles of all the individuals at one

site with edges connecting the alleles that are inherited from parent

to child (i.e., the edges indicated by the segregation indicators). This

is a graph of the inheritance path, and it has connected components.

The connected component is the set of inherited copies of a particu-

lar ancestral allele, which is the root of the connected component.

Let the Connected Component (CC) membership of each allele be

given by a tuple of integers, ci ¼ ðcm
i ; c

f
i Þ, for individual i.

Our method, Algorithm 2, will sample an inheritance path with

one pass through the pedigree. When considering each individual,

the algorithm flips a coin to set the segregation indicators for that in-

dividual. Later, these indicators will be used to determine which

alleles are identical-by-descent for this inheritance path.

Two more passes through the pedigree will be used to set the CC

membership with consistent values. The leaf alleles of the pedigree

are populated with distinct integers representing their putative CC

membership. The first pass proceeds from the bottom of the pedi-

gree to the top, and processes each child before their parents. For

each allele in each individual, their CC membership integer is copied

to the allelic ancestor given by the segregation indicator. If two chil-

dren give two different CC memberships to the parent, the tie is bro-

ken with the largest integer value. To account for founder

inbreeding, we merge founder CC memberships randomly according

to the probabilities given by the initialization kinship coefficients.

The second pass proceeds from top to bottom, and the tie-broken

CC membership integers are simply copied back down the path of

allelic inheritance. After these two passes, every allele in a connected

component of the inheritance path graph will have the same CC

membership, and every pair of alleles from different CC’s will have

distinct CC membership unless the CC’s were randomly merged by

founder inbreeding.

Finally, for every pair of individuals of interest, we can use the

CC membership to obtain the identity state. This identity state can

be used to update the estimated kinship with the appropriate terms

from Equations 2 and 3.

The details of these procedures are left to Algorithm 2. We will

explore the convergence properties of this sampling algorithm using

simulations in Section 4.4.

4.4 Simulation results
The diploid Wright-Fisher model is used to generate pedigree data in

our simulation study. To assess the convergence of our approximate

kinship algorithm, we simulate a scenario with 2N ¼ 20 individuals

per generation, and G¼10 generations in total. The sample size d

ranges from 1000 to 400 000. We measure the error of estimates in

the L1 form. The left panel in Figure 3 shows that the running time

increases almost linearly with number of iterations. The right panel

Fig. 3. Simulation results of the approximate algorithm. The left panel represents the relationship between of running time (seconds) and number of iterations

and the right panel represents the relationship between L1 error and number of iterations

Fig. 4. Comparison of running time. two panels describe the relationship between the running time (in seconds) and the number of generations G
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in Figure 3 indicates that L1 form error decreases rapidly before the

sample size reaches 3000. The L1 error is 1:6� 10�2 when the sam-

ple size d¼3000 and keeps decreasing with the the sample size d

increases.

KinInbcoef (Zheng and Bourgain, 2009) is a Cþþ program that

computes inbreeding and kinship coefficients for general pedigrees

using the recursion algorithm mentioned in Section 2, IdCoefs

(Abney, 2009) is a C program that computes the generalized kinship

coefficients and condensed identity coefficients. Both programs will

be used as the competitors in following simulations.

To compare the running time of our exact algorithm and ap-

proximate kinship algorithm with KinInbcoef and IdCoefs, we simu-

late two scenarios of pedigree data: one is 20 individuals per

generation and another is 40 individuals per generation. We con-

sider a sequence of numbers of generations for both scenarios. The

simulations were carried out on the Grex SGI Altix XE 1300 cluster

of Westgrid. The results show both our exact and approximate algo-

rithms can handle large pedigrees efficiently.

We compare our exact algorithm with the two competitors.

Figure 4 shows our exact method is several orders of magnitude

faster than the KinInbcoef, and it is faster than IdCoefs when the

number of individuals per generation is not too small. Shown on the

right panel, IdCoefs requires a large RAM size to run efficiently.

Note that its performance becomes much worse if we decrease the

RAM size from 10 000 to 1000 MB. Therefore, IdCoefs cannot scale

to large pedigrees.

The approximate method is not only efficient but also accurate.

As shown in Figure 4, the time cost of our approximate method is lin-

ear with number of generations. We use the sample size d¼10 000. It

runs faster than the exact algorithm when the pedigree is larger, for

example, when (2N ¼ 20, G>1000) and (2N ¼ 40, G>400). The

corresponding accuracy of the estimate is to 3 decimal digits.

5 Discussion

The above kinship algorithms are applicable to large pedigrees, since

they either have efficient polynomial or linear running-times.

This paper gives two exact algorithms and one approximation algo-

rithm. The fastest known exact algorithm for kinship computations

is the recursive-cut exact algorithm. All these algorithms are easily

run using the source code that is published in tandem with this

paper. All of the algorithms in this paper have running times that

are parameterized by the number of individuals. Since the kinship

coefficients are defined by inheritance paths which correspond to

edges in the pedigree graph, it is possible that the number of edges in

a pedigree graph provides the true lower-bound on the number of

operations needed to compute the exact kinship coefficients. We

leave it as an open problem whether there is an efficient algorithm,

perhaps along the lines of the recursive-cut algorithm, that has

running-time parameterized by the number of edges in the pedigree

graph. Another open problem is whether there is a sparse algorithm

for computing the kinship. This type of algorithm would only com-

pute the non-zero entries in the kinship matrix. If designed properly,

such an algorithm would need far less space, since it would not need

to represent the entire kinship matrix. We believe that such an algo-

rithm does exist and has yet to be discovered.
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