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Abstract: Ordinary differential equations (ODEs) are popularly used to model complex dynamic systems by
scientists; however, the parameters in ODE models are often unknown and have to be inferred from noisy
measurements of the dynamic system. One conventional method is to maximize the likelihood function, but
the likelihood function often has many local modes due to the complexity of ODEs, which makes the opti-
mizing algorithm be vulnerable to trap in local modes. In this paper, we solve the global optimization issue
of ODE parameters with the help of the Stochastic Approximation Monte Carlo (SAMC) algorithm which is
shown to be self-adjusted and escape efficiently from the “local-trapping” problem. Our simulation studies
indicate that the SAMCmethod is a powerful tool to estimate ODE parameters globally. The efficiency of SAMC
method is demonstrated by estimating a predator-prey ODEs model from real experimental data.

Keywords: Dynamical model, stochastic approximation Monte Carlo, global optimization, system
identification
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1 Introduction
Ordinary differential equations are often used tomodel the rate of change of a dynamic process in time and/or
space (expressed as derivatives). They are widely applied to describe complex dynamic systems in many
areas of science and technology, such as engineering, physics, economics, pharmacokinetics, neurophysi-
ology, and systems biology. The forms of ODEs are usually proposed based on the expert knowledge of the
dynamic systems and scientific principles, such as conservation of mass and energy, and the parameters in
these ODEs generally have scientific interpretations. On the other hand, the values of these parameters are
typically unknown. One of the central problems in using ODEs is to estimate these parameters from the mea-
surements of these dynamic systems in the presence of measurement errors.

Some challenges exist in estimating ODE parameters. First of all, most ODEs are nonlinear and, with
a few exceptions, have no analytic solutions. Manymethods have been developed to solve ODEs numerically,
such as the Euler method and the Runge–Kutta method [5]. In addition, the ODE solutions are often sensitive
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to the values of ODE parameters. Consequently, the likelihood surface has many local modes, which will be
illustrated in our application and simulation studies. The goal of this paper is to solve the global optimization
issue with the help of Bayesian approaches.

A host of statistical approaches have been proposed to estimateODEparameters fromnoisy data. Bard [1]
and Biegler, Damiano and Blau [3] introduced a nonlinear least squares method, which searched for the
optimal values of ODE parameters by optimizing the fitting of the numerical solutions of the ODEs to the data.
Optimization is usually carried out with gradient-based methods such as the Newton–Raphson method, but
often suffers from convergence to local modes.

Varah [29] suggested a two-step estimating procedure based on some classic nonparametric smooth-
ing methods, which was later developed by Ramsay and Silverman [24], Poyton [21], Chen and Wu [11],
and Brunel [4]. This method avoids solving ODE numerically so that the burden of intensive-computations
is reduced. However, the estimated ODE parameters often have a large bias because the ODEs did not be
involved in when estimating the derivatives. Ramsay, Hooker, Campbell and Cao [23] developed a general-
ized profiling method, which used a nonparametric function to represent the dynamic process. This method
was shown to be able to obtain good estimates of the ODE parameters with the low computational load.
Qi and Zhao [22] proved that the generalized profiling estimates for ODE parameters are asymptotic efficient.
Cao, Wang and Xu [10] proposed a robust estimation method for estimating ODE parameters. Cao, Huang
and Wu [9] extended the generalized profiling method to estimate the time-varying parameters in ODEs. On
the other hand, the generalized profiling method usually uses gradient-based methods and is hard to obtain
globally optimized estimates for ODE parameters when the likelihood has multiple local modes.

Recently, Bayesianmethodology is quickly developed andhas been applied in numerous fields because it
can answer complex questions cleanly and exactly and providemore intuitive andmeaningful inference [14].
The classic Markov chain Monte Carlo (MCMC) method in Bayesian statistics is then applied to infer the ODE
parameters from noisy data [13, 17]. However, it is well known that the classical MCMCmethod is vulnerable
to be trapped in local modes when the likelihood surface is rugged, i.e., has a lot of local modes. Moreover,
in high dimensions of many parameters to sample, the random walk becomes inefficient due to low rates of
acceptance, poormixingof the chain andhighly correlated samples. To overcome these obstacles, Calderhead
and Girolami [6] proposed a population-based MCMC sampling procedure called parallel tempering, which
enabled the sampler to efficiently escape local posterior modes and hence worked well for sampling from
multi-modal distributions. However, as stated in [7, Section 2.1], the posterior flattening strategies may lead
to slower mixing and larger burn-in in the sampling process. Moreover, parallel tempering may fail if the
prior information does not agree with the features of the observed data. As a remedy, Campbell and Steele [7]
proposed a smooth functional tempering, which combines parallel tempering and model-based smoothing
to define a sequence of approximations to the posterior. These methods treat the temperature as an auxiliary
variable. For high temperatures, the proposal distribution is broadened so that the problem of convergence
to local modes is mitigated by searching larger regions of the sampling space.

Different from the above approaches, in this article, we directly pursue the issue of maximizing the log-
likelihood function of ODE parameters from the point view of Monte Carlo optimization. The Monte Carlo
optimization approach enjoys a long history and numerous Monte Carlo optimization approaches have been
developed, which include the gradient method, simulated annealing [15, 26], and the stochastic approxi-
mation Monte Carlo (SAMC) method [19]. The gradient method requires a precise knowledge of the target
function and easy to trap in the local modes, while the main difficulty of using simulated annealing lies in
choosing the cooling temperature schedule.

In contrast, the SAMC method utilizes the past samples and, essentially, is a dynamic importance
sampling algorithm in which the trial distribution is learned dynamically from past samples. The SAMC
method can self-adjust to escape from “trapping in” local multi-modes by partitioning sample space, setting
desired sampling distribution, and choosing appropriate gain factors. It has been shown to be an extremely
efficient tool to solve the “local-trap” optimization problem. In this paper, we develop the SAMC method
to sample the posterior distribution of ODE parameters. In our simulation studies and real data analysis,
we show that the SAMC method works very well for inference of complex nonlinear ODEs models and its
implementation is very easy and convenient.
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The remainder of this article is organized as follows. Section 2 introduces a Bayesianmodel for statistical
inference of ODE parameters, which is estimated with the SAMC method. The SAMC method is then demon-
strated in Section 3 by estimating a predator-prey dynamic model from real experimental data. Simulation
studies are presented in Section 4 to illustrate the advantage of the SAMC method in comparison with the
MCMC method. Conclusions are given in Section 5.

2 Methodology
Consider the following dynamic ODEs model:

dXi(t)
dt = gi(X(t)|β), t ∈ [Ts , Te], i = 1, . . . , I, (2.1)

where X(t) = (X1(t), . . . , XI(t))T denotes the vector of ODE variables and β is an unknown vector of param-
eters of the ODEs model. Let Xi(t|θ), i = 1, . . . , I, denote the solutions of the ODEs of the form (2.1), where
θ = (αT , βT)T ∈ Θwith the ODE parameter values as β and the initial conditions as α. Let y = (y11, . . . , yInI )T
be the vector of all observations and let yij denote the observation for the i-thODE variable at tij, j = 1, . . . , ni,
i = 1, . . . , I, which is assumed to follow some probability distribution f(y|θ), for example, the normal distri-
bution with the mean Xi(tij|θ) and the variance σ2i .

A popular approach to estimate θ based on y is to maximize the likelihood function

L(θ|y) =
I
∏
i=1

ni
∏
j=1

f(yij|θ).

Under the Gaussian assumption of yij ∼ N(Xi(tij|θ), σ2i ), i = 1, . . . , I, j = 1, . . . , ni, the likelihood function
of θ based on y is given by

L(θ) =
I
∏
i=1

ni
∏
j=1
(σ2i )
− 12 exp{−

(yij − Xi(tij|θ))2

2σ2i
}. (2.2)

Define

U(θ) =
I
∑
i=1

ni
∑
j=1

{yij − Xi(tij|θ)}2

σ2i
; (2.3)

then finding the maximum likelihood estimate (MLE) of θ based on (2.2) is equivalent to minimizing the
function U(θ).

Adopting the idea of Monte Carlo optimization, instead of minimizing (2.3) by classical approaches (e.g.,
gradient-basedmethods), in this article, we suggest to apply the SAMCmethod to simulate a trial distribution
which is proportional to exp{−U(θ)}. Firstly, we partition the domain space Θ into some subregions and seek
to draw samples from each of the subregionswith a pre-specified frequency. If this goal can be achieved, then
the local-trap problem can be avoided successfully. Assume that the parameter space Θ is partitioned intoM
disjoint subregions, which are denoted by

E1 = {θ : U(θ) ≤ u1},
E2 = {θ : u1 < U(θ) ≤ u2},

...
EM−1 = {θ : uM−2 < U(θ) ≤ uM−1},
EM = {θ : U(θ) > uM−1},

where u1, . . . , uM−1 are pre-specified real numbers by users. In practice, the maximum difference in each
subregion should be bounded by a reasonable number, say, 2, which ensures that the local MHmoves within
the same subregion have a reasonable acceptance rate.

Define g = (g1, . . . , gM)T , where gm = ∫Em exp{−U(θ)}dθ for m = 1, . . . ,M. To present the idea clearly,
we temporarily assume that gm > 0 for allm = 1, . . . ,M, but it is allowed for some subregions with gm = 0 in
practice. Define apre-specified frequency, sayπ = (π1, . . . , πM)with 0 < πm < 1and∑Mm=1 πm = 1. Generally,
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a uniform sequence of πm = 1
M , m = 1, . . . ,M, is chosen, as in all examples of this article. If this goal can be

achieved, then the local-trap problem is avoided essentially. To achieve this goal, we try to sample θ from the
following trial distribution:

fg(θ) ∝
M
∑
m=1

πm exp{−U(θ)}
gm

I(θ ∈ Em),

where I( ⋅ ) is an indicator function.
Obviously, the value of gm affects the probability of θ being sampled in the subregion Em at each iteration.

If a subregion is visited, say, Em, then g will be updated according to some mechanism (see the details dis-
cussed later) such that the subregion Em has a smaller probability to be revisited and other subregions have
larger probabilities to be visited in the next iteration. This mechanism enables the algorithm to escape from
local multi-mode very quickly.

In practice, gm is always unknown in sampling implementation, but it can be estimated together with
sampling θ iteratively. Hence, the whole sampling procedure consists of two steps: sampling in Step 1
and updating weights in Step 2. More detailed, let g(k)m denote the estimate of gm at the k-th iteration,
g(k) = (g(k)1 , . . . , g(k)M )T , and θ(k) denote the sample of θ at the k-th iteration; then we perform the following
procedures in the (k + 1)-st iteration:

(a) Sampling: Sample θ(k+1) by a single Metropolis–Hastings update from the distribution

fg(θ) ∝
M
∑
m=1

πm exp{−U(θ(k))}
g(k)m

I(θ ∈ Em)

in the following three steps:
(1) Generate θ∗ in the sample space Θ according to a proposal distribution q(θ∗; θ(k)).
(2) Calculate the ratio

r =
fg(θ∗)
fg(θ(k))

q(θ(k); θ∗)
q(θ∗; θ(k))

.

(3) Set

θ(k+1) =
{
{
{

θ∗, with the probability min(1, r),
θ(k), otherwise.

(b) Weight update: Set
g(k+1) = g(k) exp{γ(k)(e(k) − π)},

where γ(k) is called the gain factor in the context of stochastic approximation [25]. In practice, as in this
article, we often choose

γ(k) = T0
max(T0, k)

, k = 1, 2, . . . , (2.4)

for some specified value of T0 > 1. The indicator vector e(k) = (e(k)1 , . . . , e(k)M )T with e
(k)
m = 1 if θ(k+1) ∈ Em and

0 otherwise.

A large value of T0will force the sampler to reach all subregions quickly, even in the presence ofmultiple local
modes. Therefore, T0 should be set to a large value for a complex problem. For the nonempty subregion Em,
let fm be the realized sampling frequency, and let ̄f be the average sampling frequency. Define

ϵf = min{ fm̄f
: m = 1, . . . ,M, Em ̸= 0}.

An appropriate choice of T0 and the total iteration number N are chosen such that the sampling frequency of
each nonempty subregion is not less than 80% of the average sampling frequency, that is, ϵf ≥ 80%. Once
a runwas checkednot to converge,we re-run the above iterationswith a larger value ofN and/or a larger value
of T0. In this article, the following scheme is adopted to update T0 and N: the number of total iteration N is
increased to 2N, and T0 defined in (2.4) is increased to 1.5T0.

Our method can give some estimation of the mean square error which cannot be made smaller. Our
method first partitions the parameter space according to the range of the mean square errors, U(θ), and then
seeks to draw samples from each of the subregions with a pre-specified frequency. At the same time, our
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method allows for some subregions to be empty, i.e., some subregions are never visited in a long sampling
run. For example, if the subregions

E1 = {θ : U(θ) ≤ u1},
E2 = {θ : u1 < U(θ) ≤ u2},

...
EK = {θ : uK−1 < U(θ) ≤ uK}

are never visited in a long run, and EK+1 = {θ : uK < U(θ) ≤ uK+1} is visited with some samples, then we can
claim that the minimummean square error is probable between uK and uK+1.

3 Application
It is of great interest in ecology to study the predator-prey interactions among species [18, 28]. Nonlinear
ODE models display a similar set of dynamic behaviors as ecological populations, such as coexistence at an
equilibrium and a limit cycle [2], and hence are popularly used to model the predator-prey dynamic systems
[20].

For example, an aquatic laboratory community containing two microbial species has studied in [12, 27,
30]. This dynamic system is a nutrient-based predator-prey food chain, in which the growths of unicellular
green algae, Chlorella vulgaris, are limited by the supply of nitrogen, and Chlorella are eaten by planktonic
rotifers, Brachionus calyciflorus. The prey, Chlorella, and the predator, Brachionus, are growing together in
replicated, experimental flow-through cultures, called chemostats. Nitrogen continuously flows into the sys-
tem with the concentration N∗ at the dilution rate δ, and all components of the dynamic system are removed
from the chemostats at the same rate δ.

Fussmann, Ellner, Shertzer and Hairston Jr. [12] proposed a set of nonlinear ODEs to model consumer-
resource interactions between Chlorella, Brachionus, and the nitrogen resource. The nonlinear ODEs model
can be expressed as follows:

dN(t)
dt = δ(N

∗ − N(t)) − FC(N(t))C(t),

dC(t)
dt = FC(N(t))C(t) −

FB(C(t))B(t)
ϵ

− δC(t),

dR(t)
dt = FB(C(t))R(t) − (δ + m + α)R(t),

dB(t)
dt = FB(C(t))R(t) − (δ + m)B(t),

(3.1)

where N(t), C(t), R(t), B(t) are concentrations of nitrogen, Chlorella, reproducing Brachionus, and total Bra-
chionus, respectively,

FC(N) =
bCN
kC + N

and FB(C) =
bBC
kB + C

are two functional responses (with bC and bB the maximum birth rates of Chlorella and Brachionus; kC and
kB the half-saturation constants of Chlorella and Brachionus), and ϵ, α, andm are the assimilation efficiency,
thedecayof fecundity, and themortality of Brachionus, respectively. The sevenparameters ϵ, α,m, bC, bB, kC,
and kB in the above ODEsmodel all have interesting biological interpretations, but their values are unknown
and need to be estimated from measurements of the dynamic system.

Figure 1 displays the experimental measurements for the concentrations of Chlorella and Brachionus in
the predator-prey dynamic system collected by [30] when the dilution rate δ = 0.65, and the inflow nitro-
gen concentration N∗ = 80. Both populations of Chlorella and Brachionus show oscillation behavior, and
it is interesting to estimate the parameters in the ODEs model (3.1) from these data. Notice that we have
no observations for two variables, the concentrations of nitrogen and reproducing Brachionus, in the ODEs
model (3.1), which increases the challenge for parameter estimation.
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Figure 1: The experimental measurements for the concentrations of Chlorella and Brachionus in the predator-prey dynamic
system when the dilution rate δ = 0.65 and the inflow nitrogen concentration N∗ = 80.

Let
β = log(ϵ, α,m, bC , bB , kC , kB)T

be the logarithms of the vector of ODE parameters and let

α = log(N(t0), C(t0), R(t0), B(t0))T

be the logarithms of the vector of initial conditions of the ODEs model (3.1), where t0 is the starting time
point in the predator-prey experiment. Let Xi(t|θ), i = 1, . . . , 4, denote the solution of the ODEs model (3.1)
in the time domain [t0, tn], where θ = (αT , βT) is a vector of length 11, and denote θk, k = 1, . . . , 11, as the
element of θ. Let y2j and y4j, j = 1, . . . , n, denote the measured concentrations of Chlorella and Brachionus,
respectively. We assume yij, i = 2, 4, is distributed with N(Xi(tij|θ), σ2i ). Then the log-likelihood function of θ
and σ2 = (σ22, σ24)T is given by

ℓ(θ, σ2) = − ∑
i=2,4

n
2 log(σ2i ) −

1
2 ∑i=2,4

σ−2i
n
∑
j=1
{yij − Xi(tij|θ)}2.

Define
U(θ) = ∑

i=2,4

n
∑
j=1

ŵi{yij − Xi(tij|θ)}2,

where the weights ŵi = 1
var(yi) , yi = (yi1, . . . , yin)

T for i = 2, 4. Figure 2 displays the surface of −U(θ) by vary-
ing the values of m and ϵ in [0.4, 0.8] and [0.1, 0.3], respectively, while setting other parameter values as
estimates obtained in [8]. It can be seen that the surface of −U(θ) has multiple local modes, and it is not easy
to arrive at the global mode using traditional optimization approaches.

Instead, we will develop the SAMC method to search the minimum of U(θ) in this article. Let Θ be the
sample space for the ODE parameters, which is partitioned according to the values of U(θ) into the following
subregions: E1 = {θ : U(θ) < u1}, E2 = {θ : u1 ≤ U(θ) < u2}, . . . , Em = {θ : U(θ) > um−1}with an equal band-
width, where u1 and um−1 are pre-specified real numbers. We set u1 = 20 and um−1 = 36 withm = 50 and T0
defined in (2.4) is set as T0 = 5, 000.

After burning in the first 105 iterations, the SAMC method is continued to run for 105 iterations. Table 1
displays the summary of SAMC estimation for the seven parameters in the ODEs model (3.1). The mean and
standard deviation of posterior samples are used as the parameter estimates and standard errors with the
SAMC method, respectively. The parameter estimates with the SAMC method is consistent to the generalized
profiling estimates obtained in [8]. On the other hand, the SAMCmethodhas larger standard errors for param-
eter estimates than the generalized profiling method, because the latter are given for a fixed value of the
smoothing parameter. The SAMCmethod can also easily provide the 95% posterior credible intervals for the
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Figure 2: The surface of −U(θ) by varying the values of m and ϵ in [0.4,0.8] and [0.1,0.3] while setting other parameter values
as estimates obtained in [8].

Estimates Standard Errors 95% C.I.

ϵ 0.192 0.015 (0.162, 0.222)
α 0.796 0.022 (0.753, 0.838)
m 0.459 0.027 (0.406, 0.513)
bC 3.876 0.404 (3.084, 4.667)
bB 4.72 0.323 (4.083, 5.372)
κC 7.065 1.778 (3.579, 10.550)
κB 28.461 4.173 (20.282, 36.640)

Table 1: The summary of Bayesian estimation for the seven parameters in the ODEs model (3.1),
where C.I. denotes the posterior credible interval of the ODE parameters.

ODE parameter estimates based on the posterior sampling sequence, which is the most appealing feature of
the SAMC method in comparison with the generalized profiling method.

4 Simulation
A simulation study is implemented to illustrate the advantage of the SAMC method in comparison with the
Metropolis–Hastings method when estimating parameters in an ODEs model from the noisy measurements
of the dynamic system.

Goodwin [16] introduced a mathematical model that was able to simulate physiological oscillation on
the basis of a negative feedback in cellular systems such as circadian rhythms and enzymatic regulation.
A simple Goodwin model can be expressed in form of a set of ODEs

{{{
{{{
{

dX1(t)
dt =

72
36 + X2(t)

− κ1,

dX2(t)
dt = κ2X1(t) − 1,

(4.1)

where X1(t) and X2(t) are the levels of mRNA and protein in the system, respectively. The parameter κ1 is the
degradation rate constant, and κ2 is the synthesis rate constant.

The simulated data of Goodwin ODEs model are generated as follows. The Goodwin ODEs model is first
numerically solved at 120 equally-spaced time points in the time interval [0, 60] by setting the true ODE
parameters κ1 = 2 and κ2 = 1, and the initial conditions X1(0) = 7 and X2(0) = −10. The simulated data are

Authenticated | jiguo_cao@sfu.ca author's copy
Download Date | 4/14/18 5:28 AM



8 | B. Liu, L. Wang and J. Cao, Estimating ODE models

0 20 40 60
−10

0

10

 Time

 X
1(

t)

0 20 40 60
−50

0

50

 Time

 X
2(

t)

Figure 3: The data simulated by adding white noises to the numerical solutions of the Goodwin ODE (4.1). The solid lines are
the ODE solutions by setting parameter, κ1 = 2 and κ2 = 1, and initial conditions X1(0) = 7, X2(0) = −10.
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Figure 4: The surface of the log-likelihood of (κ1 , κ2)T given in (4.2).

then generated by addingwhite noises fromN(0, diag(1, 16)) to theODEnumerical solutions. Figure 3 shows
one set of simulated data along with the ODE solutions. The ODE solutions display the cyclic behavior and
have roughly two cycles in the whole time interval [0, 60].

Let yi = (yi1, . . . , yini )T , i = 1, 2, denote the simulated data at the time point ti = (ti1, . . . , tini )T with
ni = 120. Define a vector of ODE parameters, θ = (κ1, κ2)T , and denote the ODE solutions to be

X(t|θ) = (X1(t|θ), X2(t|θ))T .

The data yi is assumed to follow a normal distribution with the mean Xi(ti|θ) and the variance-covariance
matrix σ2i Ini , i = 1, 2. The log-likelihood function of θ and σ2 = (σ21, σ22)T based on observations y1, y2 is
given by

ℓ(θ, σ2) = −1202

2
∑
i=1

log(σ2i ) −
2
∑
i=1

120
∑
j=1

1
2σ2i
{yij − Xi(tij|θ)}2. (4.2)

Figure 4 displays the surface of the log-likelihood function (4.2) when σ21 = 1 and σ22 = 16. This surface has
several strong ripples which form a number of ridges on the log-likelihood surface. These ridges will raise the
difficulty of global optimization of the likelihood function.
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Figure 5: The sampling sequences for (κ1 , κ2)T in the ODEs model (4.2) using the Metropolis–Hastings method (upper panels)
and the SAMC method (lower panels) with three starting values chosen randomly. The true values of the two ODE parameters
are κ1 = 2.0 and κ2 = 1.0, marked with circles. The panels from left to right correspond to three starting values (marked with
squares) of the two ODE parameters chosen randomly as: (3.1, 2.4), (1.3, 0.5), (0.2, 0.5).

Alternatively, we can maximize (4.2) by Monte Carlo optimization. However, these ridges are still sus-
pected to cause the poor mixing and local trapping of the Metropolis–Hastings method which is shown in
the next.

Define
U(θ) = ∑

i=1,2

n
∑
j=1

ŵi{yij − Xi(tij|θ)}2,

where the weights ŵi = 1
var(yi) , i = 1, 2. To minimize U(θ), we construct a trial distribution exp{−U(θ)}. We

sample θ from exp{−U(θ)} via the Metropolis–Hastings method and SAMC method, respectively.
The Metropolis–Hastings method is used to sample 50,000 iterations for the two ODE parameters

(κ1, κ2)T based on the trial distribution exp{−U(θ)}, in which the starting value of θ was randomly chosen.
The sampling sequences for the two ODE parameters are displayed in the upper panels of Figure 5, which
shows that the sampling sequences are trapped at a local mode and are hard to converge to the true param-
eter values. In contrast, the SAMC method is also applied to sampling 50,000 iterations for the two ODE
parameters with the same starting value of θ using the same simulated data. Let Θ be the sample space for
the two ODE parameters. We partition Θ according to the values of the objective function U(θ) into the sub-
regions E1 = {θ : U(θ) < u1}, E2 = {θ : u1 ≤ U(θ) < u2}, . . . , Em = {θ : U(θ) > um−1}, where uℓ = 7 + 0.592ℓ,
ℓ = 1, . . . ,m, and m = 50. The sampling sequences for the two ODE parameters are displayed in the lower
panels of Figure 5. It shows that the SAMC method is able to escape the local trapping mode efficiently and
converge to the true ODE parameters quickly.

5 Conclusions and discussion
Ordinary differential equations are popular models to elucidate complex dynamic system. Parameters in
ODEs usually have important scientific interpretations, but require to be estimated from noisymeasurements
of the dynamic system.Most ODEs have no analytic solutions and can only be solved using numericmethods,
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such as Runge–Kutta methods. Besides some frequentist methods, such as the two-step method and gener-
alized profiling method, Bayesian methods are gained extensive attentions to estimating ODE parameters,
which have the natural advantage in making statistical inferences for ODE parameters such as confidence
intervals and hypothesis tests.

One popular Bayesian method is using the MCMC method to sample the posterior distribution of ODE
parameters, which is easy to understand and implement. However, it is well known that the classical MCMC
method is easy to be trapped in local modes of posterior distributions. Because ODE solutions are sensitive
to ODE parameters, the posterior distribution of ODE parameters often has many local modes. Therefore, the
MCMC method is found to often be stuck in local modes when sampling for ODE parameters.

In this paper, we suggest a Bayesian approach to solve the global optimization problem of the ODEswhen
the likelihood functionhasmultiple localmodes. To sample theposterior distributions ofODEparameters,we
develop the stochastic approximation Monte Carlo (SAMC) method which is a self-adjusting mechanism and
canupdate automatically the probabilities of subregions being visited in the sampling process. By performing
numerical simulations, the advantage of the SAMC method is illustrated, in which the SAMC method more
efficiently escapes from localmodes than the classicalMCMCmethod. TheSAMCmethod is alsodemonstrated
by estimating a popular nutrient-based predator-prey dynamic model from the experimental data.
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