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a b s t r a c t

A mixed-effects ordinary differential equation (ODE) model is proposed to describe
complex dynamical systems. In order to make the inference of ODE parameters robust
against the outlying observations and subjects, a class of heavy-tailed distributions is
applied to model the random effects of ODE parameters and measurement errors in the
data. The heavy-tailed distributions are so flexible that they include the conventional
normal distribution as a special case. An MCMC method is proposed to make inferences
on ODE parameters within a Bayesian hierarchical framework. The proposed method
is demonstrated by estimating a pharmacokinetic mixed-effects ODE model. The finite
sample performance of the proposed method is evaluated using some simulation studies.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

Ordinary differential equations are widely used to model complex dynamical systems in many areas of science and
technology. For example, ODE models have been used in the study of HIV viral dynamics (Perelson et al., 1996; Perelson
and Nelson, 1999; Wu and Ding, 1999). Although ODE models are often proposed based on expert knowledge of the
dynamical process of interest, the values of the ODE parameters are rarely known. Estimating these parameters from
observational (noisy) data is an important but challenging statistical problem because most ODEs have no analytic
solutions, and it is often computationally intensive to solve ODEs numerically.

Several methods have been developed for estimating ODE parameters from the noisy data. For instance, Liang and
Wu (2008) proposed a two-step method and estimated the derivative using local polynomial regression. Ramsay et al.
(2007) and Cao et al. (2008) developed a generalized profiling approach to estimate the ODE parameters. Cao et al.
(2011) proposed a robust method for estimating ODE parameters when the data have outliers. Hall and Ma (2014)
suggested a class of fast, easy-to-use, genuinely one-step procedures for estimating unknown parameters in dynamical
system models. Brunel et al. (2014) developed a gradient matching approach for estimating ODE parameters. Li et al.
(2015) considered a regularization estimation issue of the time-varying parameters of an ODE system and developed a
modification of the parameter cascade approach (Ramsay et al., 2007). Chen and Wu (2008) and Cao et al. (2012) proposed
a local estimation method and a penalized least square method, respectively, for estimating time-varying parameters in
the ODE model. Wang et al. (2013) proposed a penalized spline method to estimate ANOVA models based on integro-
differential equations. Zhang et al. (2015) proposed a computationally inexpensive approach for selecting ODE models with
the combination of a least squares approximation and the adaptive Lasso. With the development of computing technology
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Fig. 1. The histogram and the normal Q–Q plot of the obtained residuals assuming normal distributions for observations and random effects in the
PK/PD experiment.

and MCMC algorithms, Bayesian approaches gain more and more attentions and are applied to estimate ODE models in
recent years. For example, Campbell and Steele (2012) proposed a Bayesian smooth functional tempering method for the
ODE models. Bhaumik and Ghosal (2015) considered the two-step estimation under the Bayesian framework. Dass et al.
(2017) suggested a Laplace approximation method for obtaining the posterior inference of ODE parameters.

Longitudinal dynamical systems, also called mixed-effects ODE models, have been studied by Li et al. (2002), Putter
et al. (2002), Huang and Wu (2006), Huang et al. (2006) and Guedj et al. (2007). For instance, Huang and Wu (2006)
proposed a parametric hierarchical Bayesian approach to model HIV dynamical data and provided an MCMC algorithm
to sample from the posterior distribution of ODE parameters. Guedj et al. (2007) used the maximum likelihood approach
directly to estimate unknown parameters in mixed-effects ODE models. Lahiri (2003) proposed a spline-enhanced
population model to study pharmacokinetics using a random time-varying coefficient ODE model. Lately, Fang et al. (2011)
proposed a fast two-stage estimating procedure for mixed-effects dynamical systems and applied it to study longitudinal
HIV virus data. Wang et al. (2014) proposed a semiparametric method to estimate a mixed-effects ODE model for the
HIV combination therapy study. A common fundamental assumption of these methods is that the observations for the
dynamical process follow a normal distribution, but this assumption may lack robustness and lead to biased inference
when outliers exist.

As an illustration, we consider the PK/PD experiment (see Wasmuth et al., 2004) which investigated the pharmacoki-
netics of antiretroviral drugs in order to understand the widely used protease inhibitor combinations of indinavir (IDV)
and ritonavir (RTV) for treating HIV-positive patients. Their study was designed to compare two different combinations
of IDV and RTV, and each combination was taken by healthy volunteers twice daily for two weeks before the serum
concentrations of IDV and RTV were measured at 13 unequally-spaced time points within twelve hours. Fig. 1 displays
the histogram and normal Q–Q plot of the obtained residuals by applying the conventional method which assumes the
observations and random effects follow normal distributions. Fig. 1 shows that the underlying distribution of serum
concentration may not follow the normal distribution. Hence, assuming normal distributions may be too restrictive to
accurately model the serum concentration of the IDV in ODE mixed-effects models. Moreover, by performing a Shapiro–
Wilk test of normality for the obtained residuals, the p-value is approximately 1.36 × 10−4, which confirms that the
normal distribution assumption is quite doubtful in this PK/PD data set.

To deal with this departure from normality, we propose to model the observations of the dynamical process and
random effects of ODE parameters with a class of heavy-tailed distributions, called the scale mixture of multivariate
normal distributions (SMN) (Andrews and Mallows, 1974), which includes the multivariate normal distribution as a special
case. In the literature, this class of heavy-tailed distributions has been applied to regression models (Lange and Sinsheimer,
1993; Liu, 1996), linear mixed-effects models (Choy and Smith, 1997; Rosa et al., 2003, 2004), and nonlinear mixed-effects
models (Meza et al., 2012; De la Cruza, 2014), to obtain robust estimates against outlying observations. However, there
is little study to apply this class of heavy-tailed distributions on the robust inferences of ODE parameters. This paper will
fill this gap and provide a robust inference approach for the ODE models.

To make robust inference on the ODE parameters, one possible approach is to implement a maximum likelihood
estimation (MLE) method. However, due to the complexity of dynamic systems, the solutions of ODEs generally have
no explicit expressions, which makes it difficult to maximize the likelihood function. In contrast, the Bayesian methods
are widely welcomed due to the convenient and efficient implementations.

This article has four main contributions. (i) We propose a mixed-effects ODE model, which considers the within-subject
and between-subject variations simultaneously and makes statistical inference by borrowing information from all subjects.
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(ii) Our method uses a class of heavy-tailed distributions for random effects and observations for the dynamical process,
which is robust against the outlying subjects and the outlying observations within individual subjects. (iii) Our method
can detect the subjects which are outliers or have outlying observations by estimating latent variables in the model.
(iv) We develop a highly efficient MCMC sampling scheme which allows to estimate complex dynamic models using the
hierarchical structure of the proposed approach.

The remainder of this article is organized as follows. Section 2 briefly reviews the scale mixture of multivariate normal
distributions. Section 3 introduces our proposed Bayesian estimation method for the mixed-effect ODE models. Section 4
demonstrates our proposed method in comparison with conventional methods by analyzing a real pharmacokinetics
application. Section 5 evaluates the finite sample performance of our proposed method using some simulation studies.
We end this article with conclusions and some discussions in Section 6. The Matlab codes for our simulation studies can
be downloaded at https://github.com/caojiguo/ODEHeavyTail.

2. A brief review of the scale mixture of multivariate normal distributions

In this section, we provide a brief review of the scale mixture of multivariate normal (SMN) distributions that will be
applied in our hierarchical models.

An m-dimensional random vector Y is said to follow a scale mixture of multivariate normal distribution with parameters
µ ∈ Rm, an m × m positive definite symmetric matrix Σ, and a univariate probability distribution function H(·; ν) with
H(0; ν) = 0, if the probability density function of Y is given by

p(y) =
1

√
|2πΣ|

∫
∞

0
um/2 exp(−

uD2(y)
2

)dH(u; ν), (1)

where D2(y) = (y−µ)TΣ−1(y−µ). We use the notation Y ∼ SMNm(µ,Σ,H) to indicate that Y has the density (1). When
the mixture distribution function H is degenerate, SMNm(µ,Σ,H) reduces to the usual multivariate normal distribution
Nm(µ,Σ).

Azzalini and Capitanio (2014) provided a convenient stochastic representation for the SMN distributions

Y = ξ + U−1/2Z, (2)

where Z ∼ Nm(0,Σ) is independent of the mixture variable U ∼ H(·; ν), and ν is a scalar or vector valued parameter.
Another convenient form is to use the following hierarchical representation

Y|U ∼ Nm(µ,U−1Σ), U ∼ H(·; ν). (3)

From (3), the mean and covariance of Y are given, respectively, by

E(Y) = E[E(Y|U)] = µ,

and

Cov(Y) = E(Cov(Y|U)) + Cov(E(Y|U)) = E(U−1)Σ.

Obviously, if E(U−1) < ∞, then Y has a finite positive definite covariance matrix.
The class of SMN distributions provides a group of heavy-tailed distributions that are often useful for robust inference. A

special distribution of the SMN class is the Student’s t distribution (Lange et al., 1989) that has been extensively applied
in robust regressions, which can be obtained by assuming a Gamma distribution with shape parameter ν/2 and rate
parameter ν/2 for U , i.e., U ∼ Ga(ν/2, ν/2), which has the following density

p(x) =
(ν/2)ν/2xν/2−1

Γ (ν/2)
exp

(
−

1
2
νx
)

, x, ν > 0,

where the parameter ν corresponds to the degrees of freedom of the Student’s t distribution. If letting ν → ∞, the
Gaussian distribution is recovered.

3. Estimating mixed-effects ODEs

3.1. Bayesian framework

Suppose that the dynamical process Xi(t), i = 1, . . . , n, for the ith subject is defined as
dXi(t)
dt

= f (Xi(t)|θi), (4)

where t is continuous in some interval [0, T ], f is a known parametric function, and θi is a q-dimensional vector of ODE
parameters for individual subjects. Without loss of generality, we assume that Xi(t) is one-dimensional dynamical curve in
this article. Let Xi = (Xi(ti1), . . . , Xi(tini ))

T with Xi(t) being the solution of the ODE (4) given the initial condition Xi(0) and

https://github.com/caojiguo/ODEHeavyTail


236 B. Liu, L. Wang, Y. Nie et al. / Computational Statistics and Data Analysis 137 (2019) 233–246

the ODE parameters θi. Generally, the ODE solution Xi(t) is often observed with noise in practice. Moreover, the initial
condition Xi(0) is always unknown and needed to be estimated. In this article, we incorporate the unknown condition
Xi(0) into θi and treat the initial condition Xi(0) as part of the unknown parameters θi. In other words, the first element
of θi denotes the unknown initial condition Xi(0) and the rest of θi are the ODE parameters.

Let Yi = (yi1, . . . , yini )
T denote the vector of observations or measurements for the ith subject at the observation time

ti = (ti1, . . . , tini )
T . The following hierarchical regression model is used:

Within − subject variation : Yi = h(Xi|θi) + ϵi, (5)
Between − subject variation : θi = ξ + bi, (6)

where h(·) is a known function (e.g., h(·) = log(·) in many statistical analyses), ϵi are measurement errors, ξ is a
q-dimensional fixed effect, and bi is a q-dimensional random effect which accounts for the within-subject correlation.

In conventional methods, a common assumption is that the random effect of ODE parameters bi and the data errors
ϵi both follow the multivariate normal distributions. However, as discussed in Section 1, such normality assumptions are
vulnerable in the presence of outlying observations, which can seriously affect the estimation accuracy of the mixed-effects
ODE model. Thus, more flexible distributions are necessary to replace the normality assumption. Therefore, we propose
to use the scale mixture of multivariate normal distributions for ODE random effects bi and within-subject data errors ϵi.
In other words, we assume that bi ∼ SMNq(0,Σ,H1) and ϵi ∼ SMNni (0, σ

2
ϵ Ini ,H2).

Applying the stochastic representation (3), our proposed mixed-effects ODE model can be written as the following
hierarchical structure

Yi|θi,Ui, σ
2
ϵ

ind.
∼ Nni (h(Xi|θi),U−1

i σ 2
ϵ Ini ) ,

θi|Wi,Σ
ind.
∼ Nq(ξ,W−1

i Σ) ,

Ui
ind.
∼ H1(κ) ,

Wi
ind.
∼ H2(ν) ,

(7)

where Ui and Wi are two latent variables with distributions H1 and H2, respectively, and σ 2
ϵ and Σ have pre-specified

priors, σ−2
ϵ ∼ Ga(a0, b0) and Σ ∼ IW (S0, df ), respectively, where the Gamma distribution Ga(a0, b0) has the shape

parameter a0 and the rate parameter b0, and the Inverse Wishart distribution IW (S0, df ) has the scale matrix S0 and
degrees of freedom df . The hyper-parameters a0, b0, S0 and df are pre-specified. One popular choice for H1 and H2 is
to use the gamma distribution; other possible choices are discussed in Azzalini and Capitanio (2014). When Ui and Wi
have degenerate distributions, model (7) reduces to the conventional model with the normal distribution assumption.
However, when some U−1

i has a large value, it indicates that the ith subject may have outlying observations. When some
W−1

i has a large value, it indicates that the ith subject may be an outlying subject with outlying ODE parameters. This
outlier detection will be demonstrated in our applications at Section 4. Hence, our proposed model (7) is more flexible
than the conventional model with the normal distribution assumption.

The ODE model (4) often has no analytical solutions, and can be obtained numerically after specifying the values of
ODE parameters and initial conditions. It is well known that, the ODE solution is very sensitive to the values of ODE
parameters, and we have to solve ODEs repeatedly over thousands candidate values of ODE parameters, which leads
to intensive computation. Therefore, we propose to estimate the ODE solution Xi(t) with a linear combination of basis
functions.

Let φi(t) = (φ1(t), . . . , φKi (t))
T be a vector of basis functions with dimension Ki. We estimate the ODE solution Xi(t)

with a linear combination of basis functions, i.e.

Xi(t) =

Ki∑
k=1

cikφk(t) = cTi φi(t) , (8)

where ci = (ci1, . . . , ciKi )
T is a vector of basis coefficients which needs to be estimated from the noisy data. We choose

cubic B-splines as basis functions, because any B-spline basis function is only positive over a short subinterval and zero
elsewhere. To ensure the desired flexibility, a number of basis functions has to be large enough. Our numerical studies
show that the proposed approximation obtains similar results when the number of basis functions is large enough.

We measure the fidelity of the nonparametric function Xi(t) to the ODE model by defining a penalty term

F (Xi(t)|θi) =

∫ T

0
[LXi(t)]2dt, (9)

where a differential operator LXi(t) = dXi(t)/dt − f (Xi(t)|θi). Then, given any values of θi, Xi(t) is estimated by minimizing

∫ T

0
[LXi(t)]2dt =

∫ T

0

[
cTi φ̇i(t) − f (cTi φi(t)|θi)

]2
dt , (10)
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where φ̇i(t) denotes the derivative dφi(t)/dt . This idea was first proposed by Ramsay et al. (2007), who showed that using
this approximated ODE solution made the optimization iterations converge faster than using the numerical ODE solution
directly.

The integration in (10) usually does not have a closed-form expression and needs to be evaluated using numerical
quadrature. We use the composite Simpson’s rule (Burden and Douglas, 2000), which provides a good approximation
to the exact integral. Let Q be an even integer. The interval [0, T ] is partitioned by equally-spaced quadrature points
0 = s0 < s1 < · · · < sQ = T . Then, by the composite Simpson’s rule, we have∫ T

0

[
cTi φ̇i(t) − f (cTi φi(t)|θi)

]2
dt

≈
T
3Q

⎧⎨⎩[cTi φ̇i(s0) − f (cTi φi(s0)|θi)
]2

+ 2
Q/2−1∑
q=1

[
cTi φ̇i(s2q) − f (cTi φi(s2q)|θi)

]2
+4

Q/2∑
q=1

[
cTi φ̇i(s2q−1) − f (cTi φi(s2q−1)|θi)

]2
+
[
cTi φ̇i(sQ ) − f (cTi φi(sQ )|θi)

]2⎫⎬⎭ .

To make the approximation accurate, Q needs to be reasonably large, for example, Q = 10Ki. The above optimization
procedure can be implemented by the Matlab function ‘‘lsqnonlin’’ conveniently.

Denote Θ = (θT
1, . . . , θ

T
n )

T . Let U = (U1, . . . ,Un)T and W = (W1, . . . ,Wn)T be the latent variables. Then the joint
likelihood can be expressed explicitly as

L(Y,Θ,U,W|ξ,Σ, σ 2
ϵ , κ, ν)

=

n∏
i=1

Li(Yi, θi,Ui,Wi|ξ,Σ, σ 2
ϵ , κ, ν),

where Li(·|·) is the likelihood function of the ith subject, which is given by

Li(Yi, θi,Ui,Wi|ξ,Σ, σ 2
ϵ , κ, ν)

= Li(Yi,Ui|θi, σ
2
ϵ , κ)Li(θi,Wi|ξ,Σ, ν),

with

Li(Yi,Ui|θi, σ
2
ϵ , κ) = p(Yi|Ui, θi, σ

2
ϵ )H1(Ui|κ),

and

Li(θi,Wi|ξ,Σ, ν) = p(θi|ξ,Σ,Wi)H2(Wi|ν).

To complete the Bayesian specification of the proposed model, the following prior distribution is assigned on the
fixed-effects: ξ ∼ Nq(ξ0,Ω0), where the hyper-parameters ξ0 and Ω0 are pre-specified. Following the recommendations
of Massuia et al. (2017), the prior distributions for κ and ν are chosen as an exponential distribution with the
hyperparameters λκ and λν , respectively. Furthermore, we assign a restriction of (2.0, ∞) on both κ and ν, because the
values of κ and ν must be greater than 2.0 to ensure E(U−1) < ∞ and E(W−1) < ∞ which further lead to both Yi and
θi have finite positive definite covariance matrices. The hyper-priors for λκ and λν are set as the Uniform distributions
U(c, d) given the values of c and d.

The joint posterior distribution of the parameters of the model conditional on the data is obtained by combining
the joint likelihood and the prior distributions using the Bayes’ theorem. The full conditional posterior distributions are
presented in Appendix A. They are sampled using the Monte Carlo methods.

3.2. Model comparison

To compare the candidate models, in this article, we apply the following measures of model adequacy: the conditional
predictive ordinate (CPO; Chen et al., 2000), the deviance information criterion (DIC; Spiegelhalter et al., 2002) and the
Widely Applicable Information Criterion (WAIC; Watanabe, 2010). In this section, we briefly review the theory of these
model selection criteria under the general Bayesian hierarchical framework.

Assume that we have a sample y = (y1, . . . , yn)T . Let y−i = (y1, . . . , yi−1, yi+1, . . . , yn)T be the (n − 1) × 1 vector,
with yi omitted. Let f (yi|ϑ) denote the density function of yi that depends on some unknown parameters ϑ. Then, the
conditional predictive distribution for yi is defined by

CPOi = f (yi|y−i) =
f (y)
f (y−i)

=

∫
f (yi|ϑ, y−i)p(ϑ|y−i)dϑ,
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which gives the likelihood of each data point conditional on the remainder of the data. We estimate CPOi based on the
MCMC samples of ϑ (Carlin and Louis, 2008). Let ϑ1, . . . ,ϑM be the posterior samples from the posterior distribution
p(ϑ|y) with the size M after the burn-in. A Monte Carlo estimate of CPOi is given by

ĈPOi =

{
1
M

M∑
ℓ=1

1
f (yi|ϑℓ)

}−1

,

where {ϑℓ}
M
ℓ=1 are the posterior samples of ϑ (De la Cruza, 2014). Finally, the common summary statistic of CPOi’s is

defined as LCPO =
∑n

i=1 log(ĈPOi), which is often called the logarithm of the pseudo Bayes factor. A larger value of LCPO
indicates a better model.

The DIC statistic measures the fit and the complexity of the model considered. Define the deviance

D(ϑ) = −2 log f (y|ϑ) + 2 log g(y),

where f (y|ϑ) is the likelihood function of y and g(y) is the normalized constant. Then the DIC statistic is defined as

DIC = D(ϑ) + pD = 2 D(ϑ) − D(ϑ̄),

where D(ϑ) = Eϑ|y[D(ϑ)] = Eϑ|y[−2 log f (y|ϑ)] is the posterior expectation of the deviance, pD = D(ϑ) − D(ϑ̄) is the
effective number of parameters, and ϑ̄ is the posterior mean of ϑ. A smaller DIC value indicates a better model.

The third comparison criterion is to use the Widely Applicable or Watanabe–Akaike Information Criterion (WAIC)
which was first proposed by Watanabe (2010). In Bayesian models, the WAIC can be viewed as an improvement on the
DIC and it is asymptotically equal to Bayesian cross-validation. Define the log point-wise predictive density (LPPD)

LPPD =

n∑
i=1

log
∫

p(yi|ϑ)ppost (ϑ)dϑ.

Then the WAIC is given by (Gelman et al. 2014)

WAIC = −2LPPD + 2pWAIC,

where the penalty term, pWAIC, is used to correct the effective number of parameters. There are two different approaches
to calculate this correction. Here, following the suggestion of Gelman et al. (2014), we use the variance version,

pWAIC =

n∑
i=1

varpost (log p(yi|ϑ)),

which can be estimated by

p̂WAIC =

n∑
i=1

VM
ℓ=1(log p(yi|ϑℓ)),

where ϑ1, . . . ,ϑM are the posterior MCMC sample of ϑ and VM
ℓ=1aℓ =

1
M−1

∑M
ℓ=1(aℓ − ā)2 with ā =

1
M

∑M
ℓ=1 aℓ. Moreover,

the log pointwise predictive density, LPPD, is calculated by

L̂PPD =

n∑
i=1

log

(
1
M

M∑
ℓ=1

p(yi|ϑℓ)

)
.

Finally, the estimated WAIC criterion is given by

ŴAIC = −2L̂PPD + 2̂pWAIC.

A smaller WAIC value indicates a better model.

3.3. Bayesian case influence diagnostics

Our proposed hierarchical models may be sensitive to the underlying model assumptions, so it is of interest to deter-
mine which subjects/observations may be influential for the analysis. Let D be the full data and D(−i) be the data with the
ith subject deleted. Let P denote the posterior distribution of ϑ based on full data and P(−i) denote the posterior distribution
of ϑ based on the data D(−i). Define the K–L divergence between P and P(−i) by K {P, P(−i)} =

∫
p(ϑ|D) log{ p(ϑ|D)

p(ϑ|D(−i))
}dϑ.

Following the work of Peng and Dey (1995), K {P, P(−i)} can be expressed as log Eϑ|D[{f (yi|ϑ)}−1
] + Eϑ|D[log{f (yi|ϑ)}] =

− log(CPOi)+Eϑ|D[log{f (yi|ϑ)}], where Eϑ|D(·) denotes the expectation with respect to the joint posterior p(ϑ|D). A Monte
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Table 1
The logarithm of the pseudo Bayes factor LCPO =

∑n
i=1 log(ĈPOi), the DIC and the WAIC for the

pharmacokinetic mixed effects ODE model (11). A larger value of LCPO or a smaller value of DIC/WAIC
indicates a better model.
Distribution of
data

Distribution of ODE
random effects

LCPO DIC WAIC

Normal Normal −221.02 420.46 421.65
SMN SMN −193.35 373.56 386.58

Carlo estimate of K {P, P(−i)} (Cancho et al., 2011; Lachos et al., 2011) is given by

ˆK {P, P(−i)} = − log(ĈPOi) +
1
M

M∑
ℓ=1

log{f (yi|ϑℓ)}, i = 1, . . . , n.

A large value of the K–L divergence indicates that the subject/observation is influential for the analysis.

4. Applications: A pharmacokinetic study

In this section, we utilize our proposed approach to revisit the pharmacokinetic study of the HIV combination
therapy (Wasmuth et al., 2004). This experiment follows a crossover design with subjects randomized to two treatments
with different combinations of IDV and RTV. For illustration, we only consider the data collected for one treatment with
the combination of 600 mg IDV and 100 mg RTV. In this data set, the serum concentration of IDV was measured at 0, 0.5,
1.0, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 8.0, 10.0 and 12.0 h for 14 healthy volunteers after they took the combination of IDV and
RTV twice daily for two weeks. The following PK/PD dynamical model has been extensively considered (Wasmuth et al.,
2004; Wang et al., 2014),

dCi(t)
dt

= −KeiCi(t) +
DiKeiKai

Cli
exp(−Kait), i = 1, . . . , n, (11)

where Di denotes the known cumulative amount of unabsorbed drug at t = 0 for the ith subject (in this data set, Di = 600),
Cli denotes the rate of the total body drug clearance, and Kai and Kei denote the drug absorption and elimination rates,
respectively.

In order for the ODE parameters (Kai, Kei, Cli)T to be meaningful, they must be positive. Therefore, we reparameterized
them in the logarithmic scales to remove the positivity constraints. The initial condition Ci(0) is also estimated together
with the ODE parameters. Let θi = (ln(Ci(0)), ln(Kai), ln(Kei), ln(Cli))T . We assume that θi follows the scale mixture of
multivariate normal distributions SMN4(ξ,Σ,H1), where ξ is the fixed effect of the ODE model, and the distribution
H1 is chosen as a gamma distribution with the shape parameter ν/2 and rate parameter ν/2. Using the hierarchical
representation (3), this is equivalent to assume that θi|Wi ∼ N4(ξ,W−1

i Σ) with Wi ∼ Ga(ν/2, ν/2). Let Ci =

(Ci(ti1), . . . , Ci(tini ))
T be the true drug concentrations at observation times ti = (ti1, . . . , tini )

T and Yi = (yi1, . . . , yini )
T

be the noisy measurements of Ci with ni = 13. We assume that the data follow the scale mixture of multivariate
normal distributions Yi ∼ SMNni (Ci, σ

2
ϵ Ini ,H2) where the distribution H2 is chosen as a gamma distribution with the shape

parameter κ/2 and rate parameter κ/2. This is equivalent to assume a hierarchical representation Yi|Ui ∼ Nni (Ci,U−1
i σ 2

ϵ Ini )
with Ui ∼ Ga(κ/2, κ/2).

We apply the proposed Bayesian method to estimate the mixed-effects ODE (11) from the data. We use cubic B-
splines with 13 equally-spaced knots in [0, 12] to approximate the ODE solution. We set a gamma prior Ga(a, b) for
σ−2

ϵ , an Inverse Wishart prior IW (S0, f0) for Σ, a multivariate normal prior N4(ξ0,Ω0) for ξ, and a Uniform prior U(c, d)
for λκ and λν . Moreover, we choose the following values for the hyper-parameters: ξ0 = (0, −0.30, −1.0, 3.0)T , Ω0 =

diag(1000, 1000, 1000, 1000), S0 = diag(0.01, 0.01, 0.01, 0.01), f0 = 5, a = 1, b = 0.01, c = 0.02, and d = 5.
The proposed MCMC algorithm is run for 20,000 iterations. With the ‘burn-in’ of the first 10,000 samples, we choose

1000 equally-spaced samples from the rest of the iterations. We compare our proposed model using the scale mixture
of multivariate normal (SMN) distributions with the conventional model which assumes that both the ODE parameter θi
and the data Yi follow the normal distributions.

Table 1 shows that our proposed model using the SMN distribution has smaller values of DIC and WAIC and a larger
value of LCPO =

∑n
i=1 log(ĈPOi) than the conventional model assuming that the ODE parameters and the data follow the

normal distributions; hence our proposed model is better than the conventional method. Table 2 displays the posterior
means, the standard errors and the corresponding 95% equal-tail credible intervals for the fixed-effects (Ka, Ke, Cl)T using
our proposed model. As a comparison, an MLE method is implemented on typical PK compartment model of (11) assuming
normal distributions and the results are also displayed in Table 1. Compared with Bayesian methods, the maximum
likelihood estimates based on normality assumptions have large standard deviations. Our method can also detect the
outlying subjects by studying the values of the weights Ui andWi in our proposed model. Notice that the prior expectations
of Ui and Wi are both set to be 1. Hence, the posterior value of Ui substantially below 1 indicates that the ith subject has
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Table 2
A summary of the estimated posterior means and posterior standard deviations (STD) of the population
ODE parameters (Ka, Ke, Cl)T in the pharmacokinetic mixed effects ODE model (11) and the corresponding
95% equal-tail credible/confidence intervals when assuming that ODE parameters and noisy data follow
the scale mixture of multivariate normal distributions. Here, LCI and RCI denote the left and right sides
of the 95% credible/confidence intervals.
Parameters Method Mean STD LCI RCL

Ka Bayesian-SMN 0.591 0.051 0.492 0.694
Bayesian-Normal 0.579 0.042 0.502 0.685
MLE 0.743 0.235 0.282 1.203

Ke Bayesian-SMN 0.372 0.027 0.319 0.429
Bayesian-Normal 0.381 0.034 0.319 0.458
MLE 0.271 0.022 0.228 0.314

Cl Bayesian-SMN 20.898 1.836 17.520 24.763
Bayesian-Normal 19.970 1.893 16.637 23.956
MLE 16.484 1.290 13.955 19.014

Table 3
The estimated weights in the pharmacokinetic mixed-effect ODE model (11) under the assumption that the ODE
parameters and noisy data follow the scale mixture of multivariate normal distributions.
Subject 1 2 3 4 5 6 7

Residual errors (Û−1
i ) 0.647 1.791 0.671 3.955 2.906 2.712 0.830

Random effects (Ŵ−1
i ) 13.903 3.655 1.439 2.457 2.235 1.518 2.688

Subject 8 9 10 11 12 13 14

Residual errors (Û−1
i ) 6.880 1.946 3.363 0.668 3.207 2.094 0.495

Random effects (Ŵ−1
i ) 1.662 2.637 1.263 1.266 3.826 2.977 3.607

Fig. 2. The numerical solution of the pharmacokinetic mixed-effect ODE model (11) using the estimated ODE parameters and initial conditions for
two subjects under the assumption that the ODE parameters and noisy data follow the scale mixture of multivariate normal distributions. The circles
are the measured drug concentration. (a) Subject 1; (b) Subject 8.

outliers. Similarly, the posterior value of Wi substantially below 1 indicates that the ith subject is an outlying subject. The
estimates of U−1

i and W−1
i for our proposed model are displayed in Table 3. Subject 1 has a large value of Ŵ−1

i , which
indicates that subject 1 may be an outlying subject with outlying ODE parameter estimates. However, subject 1 has a small
value of Û−1

i which indicates that subject 1 has no outlying observations. On the other hand, subjects 8 has a large value
of Û−1

i , which indicates that subject 8 may have outlying observations. Fig. 2 displays the estimated serum concentration
profiles of these two subjects. Subject 8 has an observed peak drug concentrations higher than the numerical solution of
the mixed-effects ODE model using the estimated ODE parameters and the initial condition. Hence, our proposed method
has a capability to detect the outlying subject and/or outlying observations.

To determine possible influential observations, we computed the K–L divergence measures for the Normal model and
SMN model. The left panel in Fig. 3 shows that subjects 1, 4, 5, 8 and 12 have much larger K {P, P(−i)} in the Normal model
in comparison with the SMN model. As expected, the effect of these influential observations on the posterior estimates
of ODE parameters was attenuated using the SMN distributions. Hence, our method is robust for estimating mixed-effect
ODE models with possible influential observations.



B. Liu, L. Wang, Y. Nie et al. / Computational Statistics and Data Analysis 137 (2019) 233–246 241

Fig. 3. Index plots of K {P, P(−i)} for the IDV600 data set. The left panel is based on normal distributions and the right panel is based on the SMN
distributions.

As suggested by the referee, we considered the other prior distributions to study the sensitivity of our method. Gelman
(2006) discussed the effects of prior distributions on variance parameters in hierarchical models. Instead of using the
inverse-gamma distributions as the ‘‘noninformative’’ priors of variance parameters, they suggested to use the half-t family
such as half-normal distribution or half-Cauchy distribution. Following this idea, we considered a half-normal prior on σϵ .
The fitted results were displayed in Table of the supplement file. On the other hand, we also considered an informative
priors, called the Penalised Complexity (PC) priors, for κ and ν. The PC priors were first developed by Simpson et al. (2017)
which are general enough to be used in realistically complex statistical models and are straightforward enough to be used
by general practitioners. The fitted results were displayed in Tables S1–S4 of the supplement file, which are similar to the
results by assuming an inverse gamma prior on σ 2

ϵ and gamma priors on κ and ν.

5. Simulation studies

In this section, we implement some simulation studies to evaluate the finite sample performance of our proposed
hierarchical ODE model.

We consider a simple mixed-effects ODE model:

dXi(t)
dt

= −θi1Xi(t) + θi2, t ∈ [0, 1]. (12)

The true fixed effect is set as ξ1 = 3.0 and ξ2 = 10.0. We generate the individual ODE parameters θi = (θi1, θi2)T =

(ξ1, ξ2)T + Σ1/2(bi1, bi2)T where Σ = (Σ1/2)2 and Σ = (σij)2×2 with σ11 = σ12 = 0.25 and σ22 = 1.0, and bi1, bi2 are
independent and identically distributed (i.i.d.) in standardized distribution F (·) for n = 50 or 100 subjects. We considered
five scenarios for F (·):

(i) The Student’s t distribution with the degrees of freedom 4;
(ii) The generalized hyperbolic distribution with location = 0.0, scale = 1.0, skewness = 0.0, shape = 1.0 and tail = 5.0;
(iii) The mixture of Student’s t distribution, 0.6 · t(3) + 0.4 · t(6);
(iv) The inverse Gaussian distribution with location = 1.0 and scale = 1.0;
(v) The Birnbaum–Saunders distribution with shape = 0.5 and scale = 0.5.

The individual initial condition Xi(0), i = 1, . . . , n, are independently generated from the same distribution F (·). Then,
our simulated data are generated as Yi(tij) = Xi(tij)+ ϵij, where Xi(tij) is the numerical solution of ODE (12) via the fourth-
order Runge–Kutta algorithm evaluated at 21 equally-spaced time points on [0, 1], and ϵij’s are generated independently
from the standardized Student’s t distribution with the degrees of freedom 4. We then estimate the mixed-effects ODE
(12) by assuming the ODE parameter θi and the measurement error ϵij follow the scale mixture of multivariate normal
(SMN) distributions. We also compare this proposed model with the conventional model which assumes both θi and ϵij
follow the normal distributions. With the ‘burn-in’ of the first 10,000 samples, we obtain 1000 equally-spaced posterior
samples from the rest of the iterations. The above procedure is repeated for 100 simulation replicates.

Due to the limits of space, we only show the simulation results when F (·) is the Student’s t distribution at here. The
simulation results with respect to other distributions are provided in Tables S5–S6 and Figure S1 of the supplementary file.
Table 4 displays the posterior means, standard deviations as well as the mean absolute deviation errors (MADE) for the
fixed effect (ξ1, ξ2)T . It shows that our proposed model using the SMN distribution has smaller standard deviations and
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Table 4
The mean, standard deviation (SD) and mean absolute deviation error (MADE) of estimates for the fixed effects of the
mixed-effects ODE model (12) in 100 simulation replicates when assuming the ODE parameters and the data errors
follow the scale mixture of multivariate normal (SMN) distributions or the normal distributions. The true values of
(ξ1, ξ2)T are (3.0, 10.0)T .
n Fixed-effects Distribution assumptions

SMN distributions Normal distributions

Mean SD MADE Mean SD MADE

50 ξ1 3.020 0.233 0.182 3.009 0.357 0.283
ξ2 10.037 0.621 0.466 10.013 0.948 0.751

100 ξ1 2.969 0.183 0.148 2.977 0.238 0.187
ξ2 9.903 0.499 0.405 9.911 0.636 0.510

Fig. 4. The boxplot of model comparison criteria using the scale mixture of multivariate normal distributions and the traditional normal distributions
in Simulation 1, where ∆LCPO = LCPOSMN − LCPONormal , ∆DIC = DICSMN − DICNormal and ∆WAIC = WAICSMN − WAICNormal .

MADEs than the conventional model using the normal distribution, although their posterior means have similar biases.
Moreover, the standard deviations and MADEs of fixed effects for both models decrease when the sample size increases
from n = 50 to n = 100. In addition, with simulated data where n = 50, we use the LCPO, DIC and WAIC criteria to
evaluate the efficiency of model selection when using our method and the conventional methods. To do this, we define

∆LCPO = LCPOSMN − LCPONormal,

∆DIC = DICSMN − DICNormal,

∆WAIC = WAICSMN − WAICNormal.

The results are displayed in Fig. 4. Remember that a larger value of LCPO or a smaller value of DIC/WAIC indicates a better
model. Hence, the proposed method based on the SMN distributions outperforms the conventional method based on the
normal distributions.

As suggested by one reviewer, we also evaluate the prediction accuracy of our method. After obtaining the estimates
for ODE parameters and initial conditions from the simulated data in [0,1], we can solve the ODE numerically in [0,3].
The obtained ODE solution, Ĉi(t), t ∈ [1, 3] can be viewed as the prediction of future observations. Let Ci(tj) be the true
dynamical process at m equally-spaced grid points in [1,3]. The prediction accuracy is quantified with the mean absolute
prediction error (MAPE) and the mean squared prediction error (MSPE):

MAPE =
1
mn

n∑
i=1

m∑
j=1

|Ĉi(tj) − Ci(tj)|, MSPE =
1
mn

n∑
i=1

m∑
j=1

(Ĉi(tj) − Ci(tj))2.

We choose m = 201 in this simulation study. Table 5 displays the means and standard deviations of MAPE and MSPE for
the ODE model (12). It shows that our proposed model using the SMN distribution has smaller prediction errors than the
conventional model using the normal distribution.
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Table 5
The means and standard deviations (displayed within brackets) of MAPE and MSPE for the mixed-
effects ODE model (12) in 100 simulation replicates when assuming the ODE parameters and the
data errors follow the scale mixture of multivariate normal (SMN) distributions or the normal
distributions.
n Distribution assumptions Prediction accuracy criterion

MAPE MSPE

50 SMN 0.219(0.033) 0.374(0.136)
Normal 0.223(0.034) 0.386(0.140)

100 SMN 0.158(0.015) 0.071(0.034)
Normal 0.168(0.024) 0.080(0.035)

The number of observed time points plays an important role in modeling ordinary differential equations systems.
Further, we considered the simulation of (12) where ni = 5, 10, 15. The simulation results are provided in Tables S7–S8
of the supplement file, which demonstrated that our proposed method works very well. When there are only 3 or 4 time
points, our method breaks since that it is impossible to accurately recover the ODE solutions from 3 or 4 observations.

6. Conclusions and discussions

Ordinary differential equations (ODEs) are elegant and popular models for describing the mechanism of complex
dynamical systems. In this paper, we propose a mixed-effects ODE model, which considers the within-subject and
between-subject variations simultaneously. We propose to use a class of scale mixture of multivariate normal distributions
to model the random effects of ODE parameters and measurement errors in the data to obtain a robust estimation for the
ODE parameters when the outlying subjects and the outlying measurement errors exist in the data.

Our proposed model can be framed in a Bayesian hierarchical model by introducing two latent variables. We propose
an MCMC algorithm to estimate the ODE parameters. The estimated latent variables enable us to identify outlying subjects
and outlying measurement errors. Our proposed method is demonstrated by estimating a mixed-effects ODE model in a
pharmacokinetic study. We show that our proposed model using the scale mixture of multivariate normal distribution is
preferred in comparison with the conventional model using the normal distribution. Our simulation studies also show that
our proposed model can obtain more robust estimation for ODE parameters when using the scale mixture of multivariate
normal distributions.

It is common to encounter outlying observations in statistical analysis. To deal with the outlying observations, we
consider a class of more flexible distributions like the scale mixtures of normal distributions for data. Another method is
to model the distributions with the semiparametric approach, e.g., using the Dirichlet process or a combination of splines
and wavelets. This semiparametric approach is more flexible in modeling the skewed or multi-mode distributions. For
instance, Castro et al. (2018) proposed a Bayesian semiparametric modeling framework for HIV longitudinal data with
censoring and skewness. We will investigate this semiparametric approach in our future research. Another interesting
work under investigation is to consider the robust estimations of semiparametric mixed-effect ODE models using heavy-
tailed distributions with applications in gene regulatory activities. In this project, the ODE model has not only parametric
parameters but also time-varying parameters.

Acknowledgments

The authors are very grateful to the Editor, the Associate Editor and a reviewer for their very constructive comments.
These comments are extremely helpful for us to improve our work. This research was supported by the Liaoning Provincial
Education Department, China (No. LN2017ZD001) to B. Liu and the discovery grants from the Natural Sciences and
Engineering Research Council of Canada (NSERC) to J. Cao and L. Wang.

Appendix A

We use the Markov chain Monte Carlo (MCMC) methods which consist of the Metropolis–Hastings algorithm and
the Gibbs sampling method to sample the parameters θi, ξ, Σ, σ−2

ϵ , Ui, Wi, κ , ν, λκ , and λν . In this appendix, the
symbol ∥a∥2

A denotes aTAa for the vector a and the matrix A. When A = I, a symbol ∥a∥2 is used instead. Define
Xi = (Xi(ti1), . . . , Xi(tini ))

T , i = 1, . . . , n. The full conditional distributions for θi, ξ, Σ, σ−2
ϵ , Ui, Wi, κ , ν, λκ and λν are

displayed as follows (where ∼ denotes all variables except the one to be sampled):
(a) Full conditional distributions of θi for i = 1, . . . , n.

p(θi|∼) ∝ exp
{
−

Ui

2σ 2
ϵ

∥Yi − Xi∥
2
}
exp

{
−

Wi

2
∥θi − ξ∥2

Σ−1

}
.
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(b) Full conditional distributions of ξ and Σ.

p(ξ|∼) ∝

n∏
i=1

exp
{
−

Wi

2
∥θi − ξ∥2

Σ−1

}
exp

{
−

1
2
∥ξ − ξ0∥

2
Ω0

}
,

p(Σ|∼) ∝ |Σ|
−n/2 exp

{
−

1
2

n∑
i=1

Wi∥θi − ξ∥2
Σ−1

}
|Σ|

−(df+q+1)/2 exp
{
−

1
2
tr(S0Σ−1)

}
.

Then the full conditional posterior distribution of ξ is a multivariate normal distribution with mean vector µξ =

B(
∑n

i=1 WiΣ
−1θi + Ω0ξ0) and covariance matrix B = (

∑n
i=1 WiΣ

−1
+ Ω0)−1. The full conditional posterior distribution

of Σ is an Inverse Wishart distribution with the scale matrix S0 +
∑n

i=1 Wi∥θi − ξ∥2 and degrees of freedom n + q + 2.
(c) Full conditional distributions of Ui and Wi.

p(Ui|∼) ∝ H1(Ui; κ)Uni/2
i exp

{
−

Ui

2σ 2
ϵ

∥Yi − Xi∥
2
}

,

p(Wi|∼) ∝ H2(Wi; ν)W q/2
i exp

{
−

Wi

2
∥θi − ξ∥2

Σ−1

}
.

Assuming that Ui ∼ Ga(κ/2, κ/2), then the full conditional posterior distribution of Ui is still a Gamma distribution with
shape parameter ni/2+ κ/2 and rate parameter κ/2+

1
2σ2

ϵ
∥Yi −Xi∥

2. Similarly, the full conditional posterior distribution
of Wi is a Gamma distribution with shape parameter ν/2 + q/2 and rate parameter ν/2 +

1
2∥θi − ξ∥2

Σ−1 .
(d) Full conditional distributions of κ and ν.

p(κ|∼) ∝ p(κ)
n∏

i=1

H1(Ui; κ),

p(ν|∼) ∝ p(ν)
n∏

i=1

H2(Wi; ν).

Assuming that Ui ∼ Ga(κ/2, κ/2) and a truncated exponential prior exp(−λκ · κ)I(κ > 2.0) is assigned on κ , then the full
conditional posterior distribution of κ is proportional to (κ/2)κ/2/Γ (κ/2)

∏n
i=1 U

κ/2−1
i exp(−κUi/2) exp(−λκ ·κ)I(κ > 2.0).

This is not a standard distribution; however, we can apply the Metropolis–Hastings algorithm to sample it. In the same
way, under the assumption of Wi ∼ Ga(ν/2, ν/2) and the prior p(ν) ∝ exp(−λν ·ν)I(ν > 2.0), the full conditional posterior
distribution of ν is given by

p(ν|∼) ∝ (ν/2)ν/2/Γ (ν/2)
n∏

i=1

W ν/2−1
i exp(−νWi/2) exp(−λν · ν)I(ν > 2.0),

which is also sampled by the Metropolis–Hastings algorithm.
(e) Full conditional distributions of λκ and λν .

p(λκ |∼) ∝ p(κ|λκ ) · p(λκ ),
p(λν |∼) ∝ p(ν|λν) · p(λν).

Assuming that a truncated exponential prior exp(−λκ · κ)I(κ > 2.0) for κ and a Uniform prior distribution U(c, d) for λκ ,
then the full conditional posterior distribution of λκ is a truncated Gamma distribution Ga(2, κ)I(c, d). Similarly, under
the assumption of p(ν|λν) ∝ exp(−λν · ν)I(ν > 2.0) and a Uniform prior distribution U(c, d) for λν , the full conditional
posterior distribution of ν is a truncated Gamma distribution Ga(2, ν)I(c, d).

(f) Sample σ−2
ϵ .

p(σ−2
ϵ |∼) ∝ p(σ−2

ϵ )(σ−2
ϵ )N/2 exp

{
−

1
2σ 2

ϵ

n∑
i=1

Ui∥Yi − Xi∥
2

}
.

Assuming that σ−2
ϵ has a Gamma prior Ga(a0, b0), then the full conditional posterior distribution of σ−2

ϵ is a Gamma
distribution with shape parameter a0 + N/2 and rate parameter b0 +

1
2

∑n
i=1 Ui∥Yi − Xi∥

2 where N =
∑n

i=1 ni.
Generally, in the above Gibbs sampler algorithm, the full conditional distribution in (a) has no closed form. We

apply the Metropolis–Hastings method to sample θi. The details are as follows: in the ℓth iteration, a candidate, θcand
i ,

is generated from a proposal distribution, q(·|θ(ℓ−1)
i ), like a multivariate normal distribution, N(θ(ℓ−1)

i , σ 2
0 Iq), where σ 2

0 > 0
is a pre-specified scalar to control the acceptance rate. Then, the acceptance probability is calculated by α(θcand

i |θ
(ℓ−1)
i ) =

min{1, p(θcandi |∼)q(θ(ℓ−1)
i |θcandi )

p(θ(ℓ−1)
i |∼)q(θcand|θ(ℓ−1)

i )
}. However, this acceptance probability depends on the ODE solution Xi(t) which generally has

no explicit expression and has to be obtained numerically. Conditioning on θi, Xi(t) is estimated by minimizing Equation
(10) numerically.
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Appendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.csda.2019.03.001.
Some additional simulation results are included in the supplementary document, which is available with this paper at

the Computational Statistics & Data Analysis website on Wiley Online Library.

References

Andrews, D.F., Mallows, C.L., 1974. Scale mixtures of normal distributions. J. Roy. Stat. Soc. Ser. B 36, 99–102.
Azzalini, A., Capitanio, A., 2014. The Skew-Normal and Related Families. Chapman and Hall, London.
Bhaumik, P., Ghosal, S., 2015. Bayesian two-step estimation in differential equation models. Electron. J. Stat. 9, 3124–3154.
Brunel, N.J., Clairon, Q., d’Alché Buc, F., 2014. Parametric estimation of ordinary differential equations with orthogonality conditions. J. Amer. Statist.

Assoc. 109, 173–185.
Burden, R.L., Douglas, F.J., 2000. Numerical Analysis. Brooks/Cole Publishing Company, Pacific Grove, California.
Campbell, D., Steele, R.J., 2012. Smooth functional tempering for nonlinear differential equation models. Stat. Comput. 22, 429–443.
Cancho, V., Dey, D., Lachos, V., Andrade, M., 2011. Bayesian nonlinear regression models with scale mixtures of skew normal distributions: Estimation

and case influence diagnostics. Comput. Statist. Data Anal. 55, 588–602.
Cao, J., Fussmann, G., Ramsay, J.O., 2008. Estimating a predator-prey dynamical model with the parameter cascades method. Biometrics 64, 959–967.
Cao, J., Huang, J.Z., Wu, H., 2012. Penalized nonlinear least squares estimation of time-varying parameters in ordinary differential equations. J. Comput.

Graph. Statist. 21, 42–56.
Cao, J., Wang, L., Xu, J., 2011. Robust estimation for ordinary differential equation models. Biometrics 67, 1305–1313.
Carlin, B.P., Louis, T.A., 2008. Bayesian Methods for Data Analysis, third ed. Chapman/Hall, London.
Castro, L.M., Wang, W.L., Lachos, V.H., Ináio de Carvalho, W., Bayes, C.L., 2018. Bayesian semiparametric modeling for hiv longitudinal data with

censoring and skewness. Stat. Methods Med. Res. http://dx.doi.org/10.1177/0962280218760360.
Chen, M.-H., Shao, Q.-M., Ibrahim, J.G., 2000. Monte Carlo Methods in Bayesian Computation. Springer-Verlag Inc., New York.
Chen, J., Wu, H., 2008. Efficient local estimation for time-varying coefficients in deterministic dynamic models with applications to HIV-1 dynamics.

J. Amer. Statist. Assoc. 103 (481), 369–383.
Choy, S.T.B., Smith, A.F.M., 1997. Hierarchical models with scale mixtures of normal distributions. Test 6, 205–221.
De la Cruza, R., 2014. Bayesian analysis for nonlinear mixed-effects models under heavy-tailed distributions. Pharm. Stat. 13, 81–93.
Dass, S.C., Lee, J., Lee, K., Park, J., 2017. Laplace based approximate posterior inference for differential equation models. Stat. Comput. 27, 679–698.
Fang, Y., Wu, H., Zhu, L.X., 2011. A two-stage estimation method for random-coefficient differential equation models with application to longitudinal

hiv dynamic data. Statist. Sinica 21, 1145–1170.
Gelman, A., 2006. Prior distributions for variance parameters in hierarchical models. Bayesian Anal. 1, 515–534.
Gelman, A., Hwang, J., Vehtari, A., 2014. Understanding predictive information criteria for bayesian models. Stat. Comput. 24, 997–1016.
Guedj, J., Thiébaut, R., Commenges, D., 2007. Maximum likelihood estimation in dynamical models of hiv. Biometrics 63, 1198–1206.
Hall, P., Ma, Y., 2014. Quick and easy kernel based one-step estimation of parameters in differential equations. J. R. Stat. Soc. Ser. B Stat. Methodol.

76, 735–748.
Huang, Y., Liu, D., Wu, H., 2006. Hierachical bayesian methods for estimation of parameters in a longitudinal HIV dynamic system. Biometrics 62,

413–423.
Huang, Y., Wu, H., 2006. A bayesian approach for estimating antiviral efficacy in hiv dynamic models. J. Appl. Stat. 33, 155–174.
Lachos, V.H., Bandyopadhyay, D., Dey, D.K., 2011. Linear and nonlinear mixed-effects models for censored hiv viral loads using normal/independent

distributions. Biometrics 67, 1594–1604.
Lahiri, S.N., 2003. A necessary and sufficient condition for asymptotic independence of discrete fourier transforms under short- and long-range

dependece. Ann. Statist. 31, 613–641.
Lange, K.L., Little, R.J.A., Taylor, J.M.G., 1989. Robust statistical modeling using the t distribution. J. Amer. Statist. Assoc. 84, 881–896.
Lange, K., Sinsheimer, J., 1993. Normal/independent distributions and their applications in robust regression. J. Comput. Graph. Statist. 2, 175–198.
Li, L., Brown, M.B., Lee, K.H., Gupta, S., 2002. Estimation and inference for a spline-enhanced population pharmacokinetic model. Biometrics 58,

601–611.
Li, Y., Zhu, J., Wang, N., 2015. Regularized semiparametric estimation for ordinary differential equations. Technometrics 57, 341–350.
Liang, H., Wu, H., 2008. Parameter estimation for differential equation models using a framework of measurement error in regression. J. Amer. Statist.

Assoc. 103, 1570–1583.
Liu, C., 1996. Bayesian robust multivariate linear regression with incomplete data. J. Amer. Statist. Assoc. 91, 1219–1227.
Massuia, M.B., Garay, A.M., Lachos, V.H., Cabral, C.R., 2017. Bayesian analysis of censored linear regression models with scale mixtures of skew-normal

distributions. Statist. Interface 10, 425–439.
Meza, C., Osorio, F., De la Cruz, R., 2012. Estimation in nonlinear mixed-effects models using heavy-tailed distributions. Stat. Comput. 22, 121–139.
Peng, F., Dey, D.K., 1995. Bayesian analysis of outlier problems using divergence measures. Canad. J. Statist. 23, 199–213.
Perelson, A.S., Nelson, P.W., 1999. Mathematical analysis of hiv-1 dynamics in vivo. SIAM Rev. 41, 3–44.
Perelson, A.S., Neumann, A.U., Markowitz, M., Leonard, J.M., Ho, D.D., 1996. Hiv-1 dynamics in vivo: virion clearance rate, infected cell life-span, and

viral generation time. Science 271, 1582–1586.
Putter, H., Heisterkamp, S.H., Lange, J.M., De Wolf, F., 2002. A bayesian approach to parameter estimation in hiv dynamical models. Stat. Med. 21,

2199–2214.
Ramsay, J.O., Hooker, G., Campbell, D., Cao, J., 2007. Parameter estimation for differential equations: a generalized smoothing approach (with

discussion). J. R. Stat. Soc. Ser. B Stat. Methodol. 69, 741–796.
Rosa, G.J.M., Gianola, D., Padovani, C.R., 2004. Bayesian longitudinal data analysis with mixed models and thick-tailed distributions using mcmc. J.

Appl. Stat. 31, 855–873.
Rosa, G.J.M., Padovani, C.R., Gianola, D., 2003. Robust linear mixed models with normal/independent distributions and bayesian mcmc implementation.

Biom. J. 45, 573–590.
Simpson, D., Rue, H., Riebler, A., Martins, T.G., Sørbye, S.H., 2017. Penalising model component complexity: a principled, practical approach to

constructing priors. Statist. Sci. 32, 1–28.
Spiegelhalter, D.J., Best, N.G., Carlin, B.P., van der Linde, A., 2002. Bayesian measures of model complexity and fit. J. Roy. Stat. Soc. Ser. B 64, 583–639.
Wang, X., Cao, J., Huang, J.Z., 2013. Analysis of variance based on integro-differential equations. J. Agric. Biol. Environ. Stat. 18, 475–491.
Wang, L., Cao, J., Ramsay, J.O., Burger, D., Laporte, C., Rockstrohk, J., 2014. Estimating mixed-effects differential equation models. Stat. Comput. 24,

111–121.

https://doi.org/10.1016/j.csda.2019.03.001
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb1
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb2
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb3
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb4
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb4
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb4
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb5
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb6
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb7
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb7
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb7
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb8
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb9
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb9
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb9
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb10
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb11
http://dx.doi.org/10.1177/0962280218760360
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb13
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb14
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb14
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb14
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb15
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb16
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb17
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb18
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb18
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb18
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb19
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb20
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb21
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb22
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb22
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb22
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb23
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb23
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb23
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb24
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb25
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb25
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb25
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb26
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb26
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb26
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb27
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb28
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb29
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb29
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb29
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb30
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb31
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb31
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb31
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb32
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb33
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb33
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb33
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb34
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb35
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb36
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb37
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb37
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb37
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb38
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb38
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb38
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb39
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb39
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb39
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb40
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb40
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb40
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb41
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb41
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb41
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb42
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb42
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb42
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb43
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb44
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb45
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb45
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb45


246 B. Liu, L. Wang, Y. Nie et al. / Computational Statistics and Data Analysis 137 (2019) 233–246

Wasmuth, J., la Porte, C.J., Schneider, K., Burger, D.M., Rockstroh, J.K., 2004. Comparison of two reduced-dose regimens of indinavir (600 mg vs. 400
mg twice daily) and ritonavir (100 mg twice daily) in healthy volunteers (coredir). Int. Med. Press 2, 1359–6535.

Watanabe, S., 2010. Asymptotic equivalence of bayes cross validation and widely applicable information criterion in singular learning theory. J. Mach.
Learn. Res. 11, 3571–3594.

Wu, H., Ding, A., 1999. Population hiv-1 dynamics in vivo: applicable models and inferential tools for virological data from aids clinical trials.
Biometrics 55, 410–418.

Zhang, X., Cao, J., Carroll, R.J., 2015. On the selection of ordinary differential equation models with application to predator-prey dynamical models.
Biometrics 71, 131–138.

http://refhub.elsevier.com/S0167-9473(19)30060-X/sb46
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb46
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb46
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb47
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb47
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb47
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb48
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb48
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb48
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb49
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb49
http://refhub.elsevier.com/S0167-9473(19)30060-X/sb49

	Bayesian inference of mixed-effects ordinary differential equations models using heavy-tailed distributions
	Introduction
	A brief review of the scale mixture of multivariate normal distributions
	Estimating mixed-effects ODEs
	Bayesian framework
	Model comparison
	Bayesian case influence diagnostics

	Applications: A pharmacokinetic study 
	Simulation studies
	Conclusions and discussions
	Acknowledgments
	Appendix A 
	Appendix B Supplementary data
	References


