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Abstract In functional linear regression, one conventional
approach is to first perform functional principal component
analysis (FPCA) on the functional predictor and then use
the first few leading functional principal component (FPC)
scores to predict the response variable. The leading FPCs
estimated by the conventional FPCA stand for the major
source of variation of the functional predictor, but these lead-
ing FPCs may not be mostly correlated with the response
variable, so the prediction accuracy of the functional lin-
ear regression model may not be optimal. In this paper, we
propose a supervised version of FPCA by considering the
correlation of the functional predictor and response variable.
It can automatically estimate leading FPCs, which represent
the major source of variation of the functional predictor and
are simultaneously correlatedwith the response variable. Our
supervised FPCA method is demonstrated to have a better
prediction accuracy than the conventional FPCA method by
using one real application on electroencephalography (EEG)
data and three carefully designed simulation studies.

Keywords Classification · Functional data analysis ·
Functional linear model · Functional logistic regression

Electronic supplementary material The online version of this
article (doi:10.1007/s11222-017-9758-2) contains supplementary
material, which is available to authorized users.

B Jiguo Cao
jiguo_cao@sfu.ca

1 Department of Statistics and Actuarial Science, Simon Fraser
University, Burnaby, BC V5A1S6, Canada

2 School of Statistics, Dongbei University of Finance and
Economics, Dalian 116025, China

1 Introduction

In this paper, we study the problem of predicting a scalar
response Y using the following functional linear model

E(Y |X (t)) = g

(
β0 +

∫
T

β(t){X (t) − μ(t)}dt
)

(1)

where β0 ∈ R is the intercept, X (t) is the functional pre-
dictor process with the mean function μ(t), β(t) is the slope
function, and both β(t) and X (t) are assumed to be smooth
and square integrable on the domain T . The link function g
is assumed to be monotonic and invertible. The parametric
form of g is chosen based on the distribution assumption on
Y . For instance, g(·) is usually chosen as the inverse logit
function if Y is a binary variable.

The above functional linear model has been widely used
to link a scalar response with an integral form of a functional
predictor. Compared with the classic regression problem in
which only scalar predictors are considered, the main chal-
lenge in this functional linear model is that even a single
functional predictor can lead to a saturated model due to its
high flexibility. A common strategy to address this problem is
through the functional principal component analysis (FPCA).
The FPCA method estimates the functional linear model (1)
in two steps: estimating the functional principal components
(FPCs) for the functional predictor and then using several
leading FPCs in the functional linear model. This topic has
been extensively studied in the literature such as Ramsay
and Silverman (2002), Yao et al. (2005), Ramsay and Silver-
man (2005), Ramsay et al. (2009) and Huang et al. (2009).
Furthermore, functional linear models have been naturally
extended to generalized functional linear regression when
the response variable is binary or multinomial. For example,
Ratcliffe et al. (2002) applied a functional logistic regression
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to predict the high-risk birth rate based on periodically stimu-
lated fetal heart rate tracings. Müller and Stadtmüller (2005)
related the responsewith the integral formof a functional pre-
dictor through a smooth function. Cardot et al. (2003) used a
multinomial functional regression model to predict the land
usage based on the temporal evolution of coarse resolution
remote sensing data.

However, a common limitation of the above methods is
that the estimation of FPCs in the first step is totally sepa-
rated from the regression model used to predict the response
variable Y in the second step. In the first step, the leading
FPCs mainly focus on explaining the maximum variation of
the functional predictor. Thus, the estimated FPCs may not
have the maximum prediction power for Y . Therefore, prac-
titioners usually have to include as many FPCs as possible
to fit the functional regression, which introduces excessive
variability into the model, especially when the sample size is
relatively small. Our goal is to borrow the information from
the response variable Y to estimate FPCs in the first step such
that the resulting FPCs have a better performance in terms
of predicting Y . This strategy is called supervised FPCA in
this manuscript.

Bair et al. (2006) introduced a supervised principal com-
ponent analysis (PCA) method in the context of classic
multivariate regression problem, especially when the num-
ber of predictors was much larger than the sample size.
They proposed a latent variable framework in which the
response variable is only associated with a subset of predic-
tors through a latent variable.More specifically, their method
consists of three steps: First, a pre-screening procedure is
employed to select those important predictors; then PCA is
performed on those selected predictors to estimate the latent
variable; finally a regression model is fitted with those esti-
mated PC scores. Li et al. (2015) proposed another version of
supervised PCA, namely, a supervised singular value decom-
position (SupSVD)model. Unlike Bair et al. (2006) focusing
on predicting the response variable Y , the primary interest of
the SupSVD model is to recover the underlying low-rank
structure of the predictor matrix with the supervision infor-
mation from Y . In addition, Li et al. (2015) could incorporate
a multi-dimensional response variable whereas Bair et al.
(2006) only considered a single scalar response variable.

However, neither of the above work can accommodate
functional predictors. The extension from supervised PCA
to functional data is nontrivial. Recently, Li et al. (2016)
extended the SupSVD model to functional principal compo-
nent analysis (FPCA) and proposed a method called super-
vised sparse functional principal component (SupSFPC).
They assume that the supervision data drive low-rank struc-
tures of the functional data of primary interest. The estimation
procedure is based on the penalized likelihood function that
imposes a smooth and sparsity penalty on PC loadings. The
difference between our work and theirs is that we mainly

focus on improving the prediction performance of FPCs,
while Li et al. (2016) focused on recovering the true FPCs.

The novelty of the paper is threefold. Firstly, we propose a
framework to utilize the scalar response variable, either con-
tinuous or categorical, to boost the prediction performance of
the estimatedFPCs.Ourmethod is particularly useful dealing
with ‘Large p, Small n’ problem when multiple functional
predictors exist. Secondly, unlike Bair et al. (2006) which
employs three steps, our approach does not require a pre-
screening procedure. Thirdly, our estimation algorithm is
based on eigenvalue decomposition which is much easier
to implement in comparison with the revised EM algorithm
used by SupSFPC. An R package “sFPCA” is developed to
implement our proposed supervised FPCA method.

The rest of the paper is organized as follows. A review of
conventional FPCA analysis is given in Sect. 2. Details of
our method is described in Sect. 3. Then we show one real
data application on electroencephalography (EEG) data in
Sect. 4. Three carefully designed simulation studies are used
to evaluate the finite sample performance of our proposed
method in Sect. 5. Section 6 provides concluding remarks.

2 Estimating functional linear models using FPCA

We first introduce the conventional FPCA method for esti-
mating the functional linear model (1), which is also called
unsupervised FPCA method in this article. Consider a
stochastic process X (t)on the domainT with themean func-
tion E(X (t)) = μ(t). Using the Karhunen–Loève expansion
Fukunaga andKoontz (1970), the stochastic process X (t) can
be expressed as

X (t) = μ(t) +
∞∑
j=1

α jξ j (t), i = 1, . . . , n, (2)

where ξ j (t), j = 1, . . . ,∞, are orthogonal to each other
and are also called functional principal components (FPCs),
and α j is called the j th FPC score. The FPC score α j are
uncorrelated random variables with mean 0 and variance λ j .
It can also be calculated as α j = ∫

T (X (t) − μ(t))ξ j (t)dt .
For the rest of this paper, we assume μ(t) ≡ 0 without loss
of generality.

In practice, we usually select the first several leading FPCs
to approximate each random curve X (t). Here we denote the
number of FPCs chosen as p and we will discuss how to
determine p later in this manuscript. Then the representation
in (2) reduces to

X (t) =
p∑

j=1

α jξ j (t) = αT ξ(t), (3)
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in which α = (α1, α2, . . . , αp)
T and ξ(t) = (ξ1(t), ξ2(t),

. . . , ξp(t))T . Substituting (3) into (1) gives

E(Y |X (t)) = g

(
β0 +

∫
T

β(t)

( p∑
j=1

α jξ j (t)

)
dt

)

= g

(
β0 +

p∑
j=1

α j

∫
T

β(t)ξ j (t)dt

)
. (4)

In the meanwhile, we can also express β(t) as a linear
combination of the p leading FPCs as

β(t) =
p∑

j=1

γ jξ j (t) = γ T ξ(t), (5)

in which γ = (γ1, γ2, . . . , γp)
T is an unknown coefficient

vector to be estimated from the data. Plugging (5) back into
(4), we have

E(Y |X (t)) = g

(
β0 + αT γ

)
. (6)

We can estimate the unknown coefficient vector γ by regress-
ing Y on the FPC scores α.

Determining an appropriate value of p is a difficult task in
practice. One common strategy is first choosing a large value
of p such that the leading p FPCs in (2) together explain
more than 99% of the total variation. More formally,

p = inf

{
k :

∑k
j=1 λ j∑∞
j=1 λ j

≥ 99%

}
.

If the resulting p is too large compared to the sample size,
one of the popular shrinkage techniques such as LASSO
and SCAD can be employed to do the variable selection.
However, this procedure’s prediction performance is still not
satisfying in many complex problems due to three reasons.
First, the prediction power of those FPCs might not coincide
with the amount of variation they account for. For instance,
the response variable might only depends on the tenth FPC
instead of any of the first 9 FPCs; second, given a small
sample size, a large value of p introduces excessive vari-
ability into the model, making the model selection a very
difficult task. Particularly, in practice when multiple func-
tional predictors exist in the model, even with only a small
number of FPCs selected for each functional predictors, this
large-p–small-n problem is still quite common. Thus, there
is necessity to boost the prediction power of the estimated
FPCs for each functional predictor.

3 Method

We first consider the scenario when the response variable is
continuous and then extend to the case in which the response
variable is binary.

3.1 Supervised FPCA

Without loss of generality, we assume E(X (t)) = 0 and
E(Y ) = 0 in the following discussion. One can always
centralize X (t) and Y to satisfy these two assumptions. We
propose to estimate FPCs: ξ1(t), ξ2(t), . . ., such that the esti-
mate ξ̂k(t) maximizes

Q(ξ) = θ〈ξ, Ĉ ξ 〉 + (1 − θ)cov2(Y, 〈X, ξ 〉)
||ξ ||2 , (7)

subject to ||ξ || = 1, 〈ξ, ξ̂ j 〉 = 0, for every j < k, and 0 ≤
θ ≤ 1. Here the norm ||ξ || = √||ξ ||2 = √〈ξ, ξ 〉 and 〈 f, g〉
denotes the usualL 2 inner product 〈 f, g〉 = ∫

T f (t)g(t)dt .

In addition, Ĉ is denoted as the empirical covariance opera-
tor:

Ĉ ξ =
∫
T

Ĉ(·, t)ξ(t)dt,

where the empirical covariance function Ĉ(s, t) = 1
n

∑n
i=1

Xi (s)Xi (t), and Xi (t) is an independent realization of the
stochastic process X (t).

We take a closer look at the formalization of Q(ξ) shown
in (7). The first term in the numerator, 〈ξ, Ĉ ξ 〉, represents
the variation within the functional predictor X (t) that can
be explained by ξ(t); the second part in the numerator,
cov2(Y, 〈X, ξ 〉), represents the squared covariance between
the corresponding FPC score 〈X, ξ 〉 and the response vari-
able Y . The balance between these two terms is governed by
the weight parameter θ . Apparently, specifying θ = 1 will
give rise to unsupervised FPCA. On the other hand, specify-
ing θ less than 1 will lead to supervised FPCA. The weight
parameter θ can be treated as a tuning parameter and can be
determined using cross-validation.

It is also worth mentioning the main rationale behind
the ‘squared’ covariance, the second term on the numera-
tor in (7), is twofold. First, we wish to keep this term, which
describes the association between the estimated FPC score
and the response variable, of the numerator in Eq. (8) posi-
tive, since the variance of the FPC scores in the first term is
always positive. Second, the ‘squared covariance’ also help
to convert the estimation process into an eigenvalue decom-
position problem, which will be illustrated in more details in
Sect. 3.3
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3.2 Smooth supervised FPCA

The FPCs obtained using (7) might need to be further
smoothed or regularized. We define another type of norm
as || f ||λ = √|| f ||2 + λ||D2 f ||2, in which D2 f =∫
T f ′′(t)dt . The smooth estimate for the k-th supervised
FPC is obtained by maximizing

Q(ξ) = θ〈ξ, Ĉ ξ 〉 + (1 − θ)cov2(Y, 〈X, ξ 〉)
||ξ ||2λ

, (8)

subject to ||ξ ||λ = 1, 〈ξ, ξ̂ j 〉 = 0, for every j < k, and
0 ≤ θ ≤ 1. The smoothing parameter λ controls the degree
of smoothness. For instance, when λ = 0, there is no penalty
on the roughness of the estimated component ξ̂ (t) and the
smooth supervised FPCs will reduce to the regular super-
vised FPCs discussed in Sect. 3.1. On the other hand, a vary
large value of λ will force the estimated component ξ̂ (t)
taking a linear form. Moreover, this method is very easy to
implement once the smoothing parameter λ is determined. In
addition, Silverman et al. (1996) showed that under appro-
priate conditions the estimated FPCs were consistent. In the
rest of this section, we will focus on the details of estimating
the smooth supervised FPCs, which can be easily applied to
unsmooth supervised FPCs by setting λ = 0.

3.3 Computational details

In this subsection, we give the computational details on
how to estimate the smooth supervised FPC ξ(t) given a
set of value for (θ, λ). To distinguish them, we call θ and
λ as the weight and smoothing parameters, respectively. To
ease the computation, we use the same B-spline basis func-
tions φ1(t), φ2(t), . . . , φM (t) to represent both the smooth
supervised FPC ξ j (t) and the functional predictor Xi (t), in
which M denotes the total number of basis functions. Note
that our method is not restricted to B-spline basis system
and can be extended to other basis systems as well. Let
Φ(t) denote the column vector (φ1(t), φ2(t), . . . , φM (t))T ,
and rewrite (X1(t), X2(t), . . . , Xn(t))T = SΦ(t), where S
is an n × M coefficient matrix. In addition, we represent
ξ(t) = ∑M

m=1 βmφm(t) = βTΦ(t), in which β denotes
the coefficient vector (β1, β2, ..., βM )T . Then the empirical
covariance function can be expressed as

Ĉ(s, t) = 1

n
Φ(t)T (s)STSΦ(t).

Thus the first term in the numerator of (7) is given by

〈ξ,C ξ 〉 = 1

n
βTWSTSWβ, (9)

where W is an M × M matrix with elements wi j =
〈φi (t), φ j (t)〉.

As for the second term in the numerator in (7), we first
derive the form of the FPC score 〈Xi , ξ 〉. For each Xi (t), the
FPC score 〈Xi , ξ 〉 is written as

〈Xi , ξ 〉 = βTWSi = βTWi ,

where Si is the i-th row of the coefficient matrix S, andWi =
WSi . Thus, combining all the scores for each Xi (t)

(〈X1, ξ 〉, 〈X2, ξ 〉, . . . , 〈Xn, ξ 〉)T = SWβ.

Finally the covariance term between Y and the FPC score is
written as

cov(Y, 〈X, ξ 〉) = 1

n
βT

n∑
i=1

YiWi = 1

n
βTWSTY,

in which Y = (Y1,Y2, . . . ,Yn)T .

The squared covariance between Y and the FPC score is
given as

cov2(Y, 〈X, ξ 〉) = βTMMTβ

n2
, (10)

in which M = WSTY.

For the denominator part in (7), the norm of ξ(t) is given
by

||ξ ||2λ = βTWβ + λβTDβ = βTGβ, (11)

where D denotes a M × M matrix with element di j =
〈D2φi (t),D2φ j (t)〉 and G = W + λD.

Putting (9), (10) and (11) together, Q(ξ) in (8) is recast
into

Q(ξ) = βTUβ

βTGβ
,

where

U = θ

n
WSTSW + 1 − θ

n2
MMT .

Let δ = G
1
2 β, maximizing Q(ξ) is equivalent to maximizing

δT (G−1/2)TUG−1/2δ subject to δT δ = 1. Then δ1, . . . , δJ
will be the leading J eigenvector of the matrix

(G−1/2)TUG−1/2.

Consequently, one can derive β̂ j = (G1/2)−1δ j . The cor-
responding smooth supervised FPC is ξ̂ j (t) = β̂T

j Φ(t) for
j = 1, . . . , J.
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3.4 Binary response variable

When the response variable Y is binary, we suggest to
replace cov2(Y, 〈X, ξ 〉) in Q(ξ) defined in (8) with the
between-group variation of the FPC scores. Formally, let
Y = (Y1,Y2, . . . ,Yn)T , in which Yi ∈ {0, 1}, i = 1, . . . , n,
and n j is the number of Yi satisfying Yi = j for j = 0, 1.
Let α = (α1, α2 . . . , αn)

T denote the vector of FPC scores
for one FPC ξ(t), in which αi = 〈Xi , ξ 〉, and ᾱ j =
1
n j

∑
{i :Yi= j} αi . Since in this article we assume the mean

function of the functional predictor, E(X (t)) = μ(t) = 0,
the expectation of the FPC score E(α) = 〈μ, ξ 〉 = 0. The
between-group variation of the FPC scores is

R(ξ) =
1∑
j=0

n j (ᾱ j − E(α))2 = n1ᾱ
2
1 + n0ᾱ

2
0

= 1

n1

(
n∑

i=1

Yiαi

)2

+ 1

n0

(
n∑

i=1

((1 − Yi )αi )

)2

.

Note that
∑n

i=1 Yiαi = αTY = βTWSTY, thus

1

n1

(
n∑

i=1

Yiαi

)2

= 1

n1
βTM1MT

1 β,

in which M1 = WSTY. Similarly,

1

n0

(
n∑

i=1

((1 − Yi )αi )

)2

= 1

n0
βTM2MT

2 β,

in which M2 = WST (In − Y). Eventually, the between-
group variation R(ξ) can be expressed as a quadratic form
of β:

R(ξ) = 1

n1
βTM1MT

1 β + 1

n0
βTM2MT

2 β

= βT
(

1

n1
M1MT

1 + 1

n0
M2MT

2

)
β

Then the smooth estimate for the k-th supervised FPC is
obtained by maximizing

Qb(ξ) = θ〈ξ, Ĉ ξ 〉 + (1 − θ)R(ξ)

||ξ ||2λ
= βTUbβ

βTGβ
, 0 ≤ θ ≤ 1,

subject to ||ξ ||λ = 1, 〈ξ, ξ̂ j 〉 = 0, for every j < k, where

Ub = θ

n
WSTSW + (1 − θ)

(
1

n1
M1MT

1 + 1

n0
M2MT

2

)
.

Let δ = G
1
2 β. It is equivalent tomaximize δT (G−1/2)TUb

G−1/2δ, subject to δT δ = 1. Then δ1, . . . , δJ will be the
leading J eigenvector of the matrix

(G−1/2)TUbG−1/2.

Consequently, one can derive the estimate for the vector of
basis coefficients β̂ j = (G1/2)−1δ j . The corresponding esti-
mate for the j-th smooth supervised FPC is ξ̂ j (t) = β̂T

j Φ(t)
for j = 1, . . . , J.

3.5 Functional regression

With the estimated first leading p FPCs, i.e., ξ̂1(t), ξ̂2(t), . . . ,
ξ̂p(t), one can fit a functional regression model between the
functional predictor X (t) and the response Y as discussed in
Sect. 1. More specifically,

E(Y |X (t))) = g

(
β0 +

∫
T

β(t)X (t)dt

)
, (12)

in which g(·) is the link function. It is usually chosen as the
inverse logit function ifY is binary and the identify function if
Y is continuous. One can follow the same strategy described
in Sect. 1 to express the unknown coefficient function

β(t) = γ T ξ̂ (t),

in which the unknown coefficient vector γ can be estimated
by maximizing the likelihood function of Y with the mean
expressed in terms of FPCs and FPC scores

E(Y |X (t)) = g

(
β0 +

p∑
j=1

γ j

∫
T

ξ̂ j (t)μ(t)dt + αT γ

)
.

The number of FPCs, denoted by p, used in the func-
tional regression can be considered as a tuning parameter.
We recommend to determine the value of p in the following
way. We start with the number of FPCs p = 1 and obtain
the cross-validation error as p increases. Our experience sug-
gests choosing the value of p when the cross-validation error
stops decreasing significantly. For example, one can conduct
a paired t test between the cross-validation errors for p and
p+1. If no significant improvement is observed,we choose p
as the optimal value. This rule is valid because the estimated
first supervised FPC always has larger prediction ability than
the second supervised FPC, and so forth.

Our method can also be extended to accommodate mul-
tiple function predictors. Suppose there are Q functional
predictors: X (1)(t), . . . , X (Q)(t), and then themultiple func-
tional regression model can be expressed as
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Fig. 1 The readings of the brain activities at the AF1 channel for 15 randomly selected alcoholic subjects (panel a) and 15 randomly selected
control subjects (panel b). All of them are exposed to two non-matching stimuli in an EEG case study on genetic predisposition to alcoholism

E(Y ) = g

(
β0 +

Q∑
q=1

∫
T

β(q)(t)X (q)(t)dt

)
.

We can conduct the smooth supervised FPCA for each
functional predictor X (q)(t), q = 1, . . . , Q and estimate
the FPCs for X (q)(t). We denote the first qp estimated
FPCs for the functional predictor X (q)(t) as ξ̂ (q)(t) =
(ξ̂

(q)
1 (t), . . . , ξ̂ (q)

qp (t)) with the corresponding score vector

α(q) and the coefficient function β(q)(t) = (γ (q))T ξ̂ (q)(t).
Then the unknown coefficient vector γ (q), q = 1, . . . , Q,

can also be estimated by maximizing the likelihood function
of Y with the mean expressed in terms of FPCs and FPC
scores

E(Y ) = g

(
β0 +

Q∑
q=1

qp∑
j=1

γ
(q)
j

∫
T

ξ̂
(q)
j (t)μ(q)(t)dt

+
Q∑

q=1

(α(q))T γ (q)

)
, (13)

in which μ(q)(t) represents the mean trajectory for Xq(t).
In practice, when multiple functional predictors exist, the

number of total FPCs is sometimes close or larger than the
sample size. In this case, we recommend to employ one of
those popular variable selection tools such as LASSO or
SCAD to estimate the model. We will demonstrate this pro-
cedure in our real data application with a binary response
variable.

4 Application

We apply our method to analyze an electroencephalography
(EEG) dataset. The EEG dataset, collected by Zhang et al.
(1995), is used to study the genetic predisposition to alco-
holism. The original dataset is available in UCI machine
learning repository (https://archive.ics.uci.edu/ml/datasets/
EEG+Database). In total 122 subjects are separated into two
groups: alcoholic and control. Each subject is exposed to two
non-matching stimuli, i.e., two different pictures. In addition,
64 electrodes are placed on each subject’s scalp to record the
brain activities. Each electrode is sampled at 256Hz for 1
second. Our goal here is to classify alcoholic and control
subjects based on their brain activities.

The number of trials with two non-matching stimuli
ranges from10 to30 fromsubject to subject. Figure 1displays
the measurements averaged over all trials for 15 randomly
selected subjects in both alcoholic and control groups at 256
time points at one sensor called the AF1 channel.

For each subject, we randomly select 2/3 of the total trials
as the training trials and the rest 1/3 of the trials as the test
trials. Then, the training and test observations are computed
as the average of all training and test trials, respectively. We
then apply our smooth supervised FPCA method to estimate
the first leading p FPCs for each sensor.

Next, we fit a multiple functional logistic regression

logit{P(Y = 1)} = β0 +
Q∑

q=1

∫
T

β(q)(t)X (q)(t)dt, (14)
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Table 1 The means and standard deviations of the classification error
on testing set in 100 random data splitting using both supervised FPCA
and unsupervised FPCA in the EEG data application

Method Classification error # of FPCs
1 2 3 4

sFPCA Mean 0.208 0.200 0.180 0.166

SD 0.018 0.020 0.031 0.024

FPCA Mean 0.266 0.217 0.207 0.212

SD 0.024 0.024 0.032 0.026

Here sFPCA and FPCA stand for supervised FPCA and unsupervised
FPCA, respectively

where Y = 0, 1 correspond to the control and alcoholic sub-
ject, respectively, and X (q)(t) is the brain activity for the q-th
sensor. Following themethod outlined in Sect. 3.5, we add an
L1 penalty on the coefficients for the slope function β(q)(t).
In the context of a binary response, Eq. (13) becomes

logit{P(Y = 1)} = β ′
0 +

Q∑
q=1

(α(q))T γ (q),

where β ′
0 = β0 + ∑Q

q=1

∑p
j=1 γ

(q)
j

∫
T ξ̂

(q)
j (t)μ(q)(t)dt .

Then the penalized log likelihood function is written as

l(β ′
0, γ1, . . . , γq) = 1

n

(
n1 log(pi ) + n0 log(1 − pi )

)

+ λL

(
|β ′

0| +
Q∑

q=1

p∑
j=1

|γ (q)
j |

)

where pi = Pr(Yi = 1|X (1)
i (t), . . . , X (Q)

i (t)) = inv-logit

(β ′
0+∑Q

q=1(α
(q))T γ (q)) and n1 = ∑

Yi . The tuning param-
eter, λL , in the LASSO penalty is chosen using a fivefold
cross-validation. For supervised FPCA, theweight parameter
θ and the smoothing parameter λ are selected from a 9-by-
6 meshgrid, i.e., [0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9] ×
[1, 10, 102, 103, 104, 105]. Both of them are determined
by a fivefold cross-validation using the training data set
simultaneously with the sparsity parameter, λL , in the
LASSO penalty. We also apply the unsupervised FPCA
method, in which the weight parameter θ is always set
to be 1, and the smoothing parameter λ is selected from
[1, 10, 102, 103, 104, 105]byafivefold cross-validation simul-
taneously with the sparsity parameter, λL , in the LASSO
penalty. After obtaining the estimate β̂0 and β̂(q)(t) for the
multiple functional logistic regression (14), we classify the
subjects on the test data and obtain the corresponding clas-
sification error.

We repeat the above process for 100 replicates of random
data splittings and summarize the test classification errors.
Table 1 shows the mean and standard deviation of the clas-

sification errors when the number of FPCs is selected for
each sensor varies from 1 to 4 for supervised FPCA and
unsupervised FPCA. It shows that supervised FPCA has a
higher classification accuracy than unsupervised FPCA. For
instance, supervised FPCA improves the classification accu-
racy by about 20%, when just using one FPC, in comparison
with unsupervised FPCA. As one reviewer points out, it is
not clear whether the difference of the misclassification rate
between FPCA and sFPCA is statistically significant.

5 Simulation studies

Three different simulations are conducted to evaluate the
proposed method. We first briefly introduce the generation
mechanism for the functional predictor X (t) in the begin-
ning of this section, since this generation mechanism stays
the same across different simulations. Then we discuss each
simulation in details.We also do twomore simulation studies
to compare our proposed supervisedFPCAmethodwith three
alternative methods including supervised PCA proposed by
Bair et al. (2006), SupSVD (Li et al. 2015) and SupSFPC (Li
et al. 2016). The results for these two additional simulation
studies are provided in the supplementary files.

In order to make the simulation setting similar to real data,
we use four FPCs, shown in Figure S1 in the supplementary
document, to generate sample functional predictors. They
are the first four leading FPCs estimated from the Canadian
weather data (Ramsay et al. 2009), which consist of daily
temperature measurements at 35 weather stations across
Canada. Each functional predictor Xi (t), i = 1, . . . , n, is
simulated as: Xi (tk) = α1iξ1(tk) + α2iξ2(tk) + α3iξ3(tk) +
α4iξ4(tk), k = 1, 2, . . . , 365, where ξ j (tk) is the j-th true
FPCs, j = 1, . . . , 4. The simulated FPC score is simulated

as: αT
i = (α1i , α2i , α3i , α4i )

T i.i.d∼ MV N (0,Σ), in which
Σ = diag(100, 80, 50, 30). Figure S2 in the supplementary
document displays 50 random curves simulated under these
settings.

5.1 The first simulation study

The first simulation study is designed to evaluate the pro-
posed method when the response variable is binary. Here we
generate 1000 sample curves, Xi (t), i = 1, . . . , 1000. The
response variable Y is generated as:

Yi ∼ Bernoulli(pi ),

logit(pi ) =
∫
T

β(t)Xi (t)dt, i = 1, . . . , 1000,

in which β(t) = ξ4(t). In other words, the binary response
Y is only related to the fourth FPC ξ4(t). We randomly
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Fig. 2 Boxplots of the classification errors for 100 simulation runs when using the first p FPCs estimated by supervised and unsupervised FPCA
in the first simulation study when the response variable is binary

select 200 samples as the test set and used the other 800
samples as the training set. For supervised FPCA method,
the weight parameter θ and the smoothing parameter λ are
selected on a 5-by-3 meshgrid, i.e., [0.1, 0.3, 0.5, 0.7, 0.9]×
[10, 103, 105], through a fivefold cross-validation using
those 800 training samples only. For unsupervised FPCA
method, the weight parameter θ is fixed to be 1 under dif-
ferent values of λ and the smoothing parameter was selected
from 10, 103 and 105 using a fivefold cross-validation as
well.

We compare the prediction performance of supervised
FPCA with unsupervised FPCA in terms of classification
errors on the test data in 100 simulation. Figure 2 summarizes
the classification errors. Supervised FPCA yields a much
lower classification error than unsupervised FPCA when the
number of FPCs used, p, is less than 3. More specifically,
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Fig. 3 The first FPC estimated with supervised and unsupervised
FPCA in one simulation run of the first simulation study when the
response variable is binary

the mean test classification error of unsupervised FPCA is
slightly less than 50% unless choosing four FPCs, whereas
the mean classification error of supervised FPCA is con-
stantly less than 14% even when the number of FPCs is less
than 3. This shows that supervised FPCA is able to detect
the FPCs that are most related with the response variable in
advance and our method can well accommodate the binary
response.

To gain some insight, in Fig. 3, we compare the first FPC
ξ̂1(t) estimated by supervised and unsupervised FPCA in one
simulation run, along with the true FPC used to simulate the
response variable. We can see that the first FPC estimated
by supervised FPCA method is much closer to the true FPC,
in comparison with the first FPC estimated by unsupervised
FPCA method.

5.2 The second simulation study

We conduct three simulation scenarios to evaluate the pro-
posed method in different settings when the response vari-
able is continuous. Here we generate 100 sample curves,
Xi (t), i = 1, . . . , 100, in the same way as discussed in the
beginning of this section. The response variable Y is gen-
erated using the functional linear regression model (1) with
β(t) being specified as β(t) = γ1ξ1(t) + γ2ξ2(t)ξ j (t) +
γ3ξ3(t) + γ4ξ4(t) = γ T ξ(t), where γ = (γ1, γ2, γ3, γ4)

T

and ξ(t) = (ξ1(t), ξ2(t), ξ3(t), ξ4(t))T . In addition, the link
function g(·) is the identity function. Without loss of gener-
ality we set β0 = 0.

5.2.1 Scenario 1

In the first scenario, we set the true γ = (0, 0, 0, 1)T such
that the true slope function β(t) = ξ4(t). In other words, the
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Fig. 4 Boxplots of the prediction RAMSEs for 100 simulation runs using the first p FPCs estimated by supervised and unsupervised FPCA in
Scenario 1 of the second simulation study when the response variable is continuous

response variable Y is only related to the fourth leading FPC
ξ4(t). In addition, the noise term ε follows a normal distribu-
tion N (0, 30ρ), in which ρ denotes the signal-to-noise ratio.
We set ρ = 5% and 50%. We randomly select 20 samples
as the test set and treat the other 80 samples as the training
set. Both the smoothing parameter and the weight parame-
ter are chosen via fivefold cross-validation using the training
samples only on the samemeshgrid used in the previous sim-
ulation. As for the unsupervised FPCs, the weight parameter
θ is set to be 1. The smoothing parameter λ is selected from
{10, 103, 105} using a fivefold cross-validation. For unsu-
pervised FPCA method, the weight parameter θ is set to be
1. We compare the prediction performance of the supervised
FPCs with that of the unsupervised FPCs using 500 simu-
lation runs. The prediction error is evaluated using relative
mean squre error (RAMSE) defined as

RAMSE =
∑n

�=1(ŷ� − y�)2∑n
�=1(ȳ − y�)2

. (15)

Here y� and ŷ� denote the observed �th response in the test set,
respectively, and ȳ represents the average of those observed
responses the training set.

Figure 4 summarizes the prediction RAMSEs for 100
repeated runs when the noise-to-signal ratio ρ = 5%. As we
can see, supervised FPCA method consistently give lower
RAMSE compared with unsupervised FPCA when p is less
than 3. More specifically, when p < 4, the unsupervised
FPCs perform no better than simply using the sample mean
of the training set as the average prediction error is constantly
around 100%. In contrast, the supervised FPCs is able to cap-
ture the information of the response variable and improve
its prediction performance accordingly. For example, even
restricting only one FPC in the functional linear regression,
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Fig. 5 The first FPC estimated with supervised and unsupervised
FPCA at one simulation run in Scenario 1 of the second simulation
study when the response variable is continuous

the average RAMSE is less than 45%, only half of the average
RAMSE of the unsupervised FPCs.

To gain some insight, Fig. 5 displays the first FPC ξ̂1(t)
estimated by supervised and unsupervised FPCA along with
the true FPC related to the response variable when the noise-
to-signal ratio of the data is ρ = 5%. We can see the first
FPC estimated by supervised FPCA is much more closer
to the true FPC compared with the first FPC estimated by
unsupervised FPCA. This indicates that supervised FPCA is
able to detect the FPC that is truly related to the continuous
response variable.

Figure S3 in the supplementary document displays the
boxplots of the prediction RAMSEs when the simulation data
have the noise-to-signal ratio as ρ = 50%. It shows that
supervised FPCA yielded a more robust estimator since the
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Fig. 6 Boxplots of the prediction RAMSEs for 100 simulation runs using the first p FPCs estimated by supervised and unsupervised FPCA in
Scenario 2 of the second simulation study when the response variable is continuous

mean RAMSE is only increased about 20% when the noise-
to-signal ratio of the simulated data is increased from 5 to
50%. The detailed results are available in the supplementary
materials.

5.2.2 Scenario 2

The only difference between this scenario and the previous
one in Sect. 5.2.1 is that we specify γ = (0.25, 0.73, 0.29,
0.56)T , such that the response variable Y is related to a linear
combination of all ξi (t), i = 1, 2, 3, 4. In practice, this case
might be more realistic compared to the scenario when the
response is only related to a single FPC.

Figure 6 summarizes the prediction errors for 100 simula-
tion runswhen the noise-to-signal ratio of the data isρ = 5%.
It shows that supervised FPCA still outperforms unsuper-
vised FPCA when using up to 3 FPCs. More specifically,
when just using one FPC, i.e., p = 1, unsupervised FPCA
only performs slightly better than simply using the sample
mean of the training set as the average RAMSE is about 91%,
because unsupervised FPCA only successfully recovers the
first FPC, while the response variable is correlated with all
four FPCs. In contrast, the average RAMSE using supervised
FPCA is only 14.6%when just using one FPC, which is quite
satisfying.

The two scenarios in the second simulation study show
that the prediction performance of supervised FPCA seems
quite satisfactory no matter whether the response variable is
related to a single FPC or a linear combination of several
FPCs.

6 Concluding remarks

In this paper, we consider the problem of predicting a scalar
response variable by using one or several functional pre-

dictors. The conventional FPCA method focuses on finding
FPCs that maximize the variation of FPC scores and ignores
the response variable. We have proposed a one-step super-
vised FPCA to detect those FPCswhose scores are correlated
with the response variable. The resulting FPCs have a better
prediction performance compared to the conventional FPCA
method.

Through our real data application and simulations, we
demonstrate that our method can accommodate both con-
tinuous and binary response variable. Even through we only
show examples with binary response variable, we believe
that our method can be easily extended to predicting multi-
nomial response variable. Lastly, our method is also quite
user-friendly. An R package “sFPCA” has been developed to
implement supervised FPCA and is available in the supple-
mentary material.
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