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a b s t r a c t

A novel approach is proposed based on the weighted empirical likelihood to construct
confidence intervals for dynamical correlation of random functions. The properties of the
proposed confidence interval are investigated for random functions with regular or irregu-
lar observations. It is shown that the confidence interval using our newapproachhas amore
accurate coverage probability than that using the traditional bootstrap method for ran-
dom functions with irregular observations. Furthermore, simulation studies demonstrate
that the new approach is considerably more efficient in computation than the bootstrap
method. The new approach is illustrated with three applications. The first application
investigates the dynamical correlation of air pollutants. The second application studies
the dynamical correlation of EEG signals in different regions of the brain in response to
some stimuli. The third application estimates thedynamical correlation of gene expressions
during the activation of T-cells.

© 2018 Elsevier B.V. All rights reserved.

1. Introduction

With the development of techniques in collecting data, analysis of data with complex structures has become increasingly
popular in statistical research. Functional data analysis has attracted extensive attention in fields like image analysis, disease
diagnostic and gene regulation (Ramsay and Silverman, 2002; Leng and Müller, 2005; Baladandayuthapani et al., 2008).
Particularly, analysis of univariate functional data analysis has been focused on for a long time. Among them, functional
regression and functional principal component analysis are two particularly important problems for researchers. For a more
comprehensive view of them, refer tomonographs like (Ramsay and Silverman, 2005; Ferraty and Vieu, 2006; Ferraty, 2011;
Horváth and Kokoszka, 2012). In contrast, multivariate functional data have not been studied popularly.

Dependence modeling plays a significant role in multivariate data analysis. Dependence structure among stochastic
processes likewise is worth studying for its own merit in functional data analysis. Heckman and Zamar (2000) proposed
the rank correlation coefficient between two random functions in cluster analysis. Dubin and Müller (2005) considered the
dynamical correlation of two random functions, which can be regarded as an extension of the correlation coefficient in
multivariate data. Yang et al. (2011) developed singular valued decomposition for pairs of functional data.

In this paper, we focus on the dynamical correlation, which summarizes the correlation of two functional variables over
their domain. There have been substantial applications related to this concept in the literature. For instance, a graphical
Gaussianmodel for functional datawas developed byOpgen-Rhein and Strimmer (2006) based on the dynamical correlation.
Liu et al. (2016) applied the dynamical correlation in a psychological study. The dynamical correlation was employed in
Bastidas et al. (2014) to study the mechanism when CD8+ T cells are activated in HIV-infected individuals.
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Dubin and Müller (2005) proposed a sample average estimator for dynamical correlation. However, the asymptotical
variance of this estimator is not tractable. Thus they recommended a bootstrap procedure to construct a confidence interval
for dynamical correlation based on the average estimator. Since a local linear regression is used to smooth functional data in
the pre-processing step, both fitted values and residualsmust be resampled in their proposed bootstrap procedure. This leads
to a computationally intensive procedure for inferring dynamical correlation, which may restrict its applications in practice.
Another concern of this estimator is that each subject makes an equal contribution to the final estimator. This may not be an
optimal treatment in practice since subjects with dense observations may provide a more accurate estimate of dynamical
correlation in comparisonwith subjectswith less dense observations. An estimatorwhich can adjustweights on each subject
is, therefore, more appealing than a simple average of the estimate from each subject. Actually Dubin andMüller (2005) also
considered such an estimator in applications under the bootstrap-based inference framework, even though this estimator
was not thoroughly investigated in the paper. Furthermore, we find in simulation studies that this bootstrap procedure is
unstable and cannot provide a reliable confidence interval for dynamical correlationwhen the functional data are irregularly
spaced.

Motivated by these observations, we propose a weighted average estimator for the dynamical correlation which can
adaptively adjust weights on each subject. Theweights are chosen via theweighted empirical likelihood. This new estimator
can be regarded as an alternative to that mentioned in applications of Dubin and Müller (2005). The statistical inference
framework, however, is different from the bootstrap-based analysis proposed by Dubin and Müller (2005). The main
advantage of this method is that we do not need to estimate the standard error of the estimator for statistical inference
since the test statistic itself is self-normalized under some regularity conditions. This improves computational efficiency
substantially for constructing confidence intervals, in comparison with the bootstrap-based method proposed by Dubin
and Müller (2005). This improvement will be demonstrated in our simulation studies presented in Section 4. The second
advantage of our method is that our proposed weighted empirical likelihood is possible to yield a confidence interval with
a more accurate coverage probability than its counterpart by the bootstrap method when functional data are irregularly
spaced. Our simulation studies show that the coverage probability of the proposed confidence interval is still close to the
nominal level even when the functional data are irregularly designed. In summary, the main advantage of our method in
statistical inference is well reflected when there exist great variations in the number of observations across subjects. Note
that our method cannot accommodate the case when functional data have sparse observations for every subject.

The paper is organized as follows. The definition of dynamical correlation is reviewed in Section 2. Then a new method
of constructing confidence intervals for dynamical correlation based on the weighted empirical likelihood is proposed. For
comparison, we introduce the bootstrapmethod for constructing confidence intervals for dynamical correlation proposed by
Dubin and Müller (2005) later. Some theoretical properties of the proposed inference tool are given in Section 3. The proofs
are deferred toAppendix B. Section 4 compares the performances of theweighted empirical likelihood-basedmethod and the
bootstrap method in associated confidence intervals for dynamical correlation via simulation studies. The proposedmethod
is illustrated with three applications in Section 5. Section 6 concludes the paper. We write our own code to implement the
bootstrap method and the weighted empirical likelihood method. The computing codes used in our simulation studies and
three applications are available at https://github.com/caojiguo/WEL.

2. Confidence intervals for dynamical correlation

We propose the weighted empirical likelihood method to estimate confidence intervals for the dynamical correlation of
two random functions. First, we introduce the definition of the dynamical correlation of two random functions. We then
introduce our method. Last, the point estimator and the bootstrap confidence interval for dynamical correlation proposed
by Dubin and Müller (2005) are reviewed.

2.1. Dynamical correlation

The dynamical correlation was firstly proposed by Dubin and Müller (2005) to use a single measure to describe the
correlation between two longitudinal curves. As noted by them, it is simpler and more efficient, compared with functional
canonical correlation (He et al., 2003; Ramsay and Silverman, 2005), which is well defined provided restrictive assumptions.

Let fj, j = 1, . . . , p, be p random functions defined over a compact interval I. Suppose they belong to L2(dw), the collection
of all square integrable functions with respect to a measure dw = wdt . That is, E{

∫
I f 2j (t)w(t)dt} < ∞, j = 1, . . . , p, where

the weight function w(t) defined over I satisfies (i) w(t) ≥ 0, t ∈ I, (ii)
∫
I w(t)dt = 1, (iii)

∫
I w2(t)dt < ∞. For any two

functions f , g ∈ L2(dw), the inner product of them is defined by ⟨f , g⟩ =
∫
I f (t)g(t)dw.

These random functions can be expressed as

fj(t) = µ0,j + µj(t) + ξ0,j +

∞∑
l=1

ξl,jφl(t), j = 1, . . . , p, (1)

where the fixed intercept µ0,j = E(⟨fj, 1⟩), µj(t) is the fixed mean function with µj(t) ∈ L2(dw) and ⟨µj(t), 1⟩ = 0, and
ξ0,j serves as a random intercept. Let φ0(t) ≡ 1 and we assume that the fixed functions, {φl(t)}∞l=0, constitute a complete
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orthonormal basis of the space L2(dw); that is, ⟨φi, φi′⟩ = 0 if i ̸= i′ and 1 otherwise. The other random components, ξl,j’s,
are the coefficients when the random function fj is represented in terms of this orthonormal basis. We assume that ξl,j’s are
uncorrelated with ξ0,j for l ≥ 1, and they satisfy E(ξl,j) = 0, Var(ξl,j) = σ 2

l,j < ∞, l ≥ 0 and 0 <
∑

∞

l=0σ
2
l,j < ∞. Note that the

expansion given in (1) is not the Karhunen–Loève expansion of fj(t). The random coefficients, ξl,j’s (l ≥ 1), are not required
to be uncorrelated with each other. Furthermore, the fixed functions µj(t) and φl(t)’s are assumed to be twice continuously
differentiable over I.

LetMj = ⟨fj, 1⟩. Then Mj = µ0,j + ξ0,j and fj(t) − Mj = µj(t) +
∑

∞

l=1ξl,jφl(t). The standardized fj’s are defined as

f ⋆
j (t) =

fj(t) − Mj − µj(t)(∫
I(fj(t) − Mj − µj(t))2dw

) 1
2
. (2)

The dynamical correlation between fj1 and fj2 , 1 ≤ j1, j2 ≤ p, is defined as the expected inner product of f ⋆
j1
and f ⋆

j2
,

ρj1j2 = E⟨f ⋆
j1 , f

⋆
j2⟩.

As argued by Dubin and Müller (2005), the dynamical correlation satisfies |ρj1j2 | ≤ 1 for any two random functions which
are square integrable with respect to dw.

2.2. Confidence interval via the weighted empirical likelihood

As mentioned in Section 1, Dubin and Müller (2005) proposed an estimator which averages the point estimate for
each subject to estimate dynamical correlation. They demonstrated that the performance of this estimator is satisfactory
when random functions are densely and regularly observed. However, they did not explore its performance when random
functions are irregularly observed.

Random functions are more often observed at different time points for different subjects, which is called the irregular
design in this paper. For simplicity, we assume that for the same subject, p random functions are observed at the same
time points, though the method presented in the following can be extended to deal with more general cases as well. More
specifically, we have observations {(f1(ti1), . . . , fp(ti1)), . . . , (f1(tini ), . . . , fp(tini ))} for the ith subject, i = 1, . . . , n, where n
denotes the number of subjects. Furthermore, we assume that these observations may also have measurement errors.

Nowwe introduce a novel approach to construct confidence intervals for dynamical correlation of two random functions
under the irregular design. Inspired by the idea of Dubin andMüller (2005), we first employ local linear regression to smooth
each random function for all subjects. For i = 1, . . . , n, 1 ≤ j1 ̸= j2 ≤ p, let f Si,j1 (t) and f Si,j2 (t) denote smoothed fi,j1 (t) and
fi,j2 (t) with local linear smoothing, respectively. To define a sample version of (2), we introduce f̃ Si,j(t) = f Si,j(t)−1/n

∑n
i=1f

S
i,j(t)

and M̃S
i,j = ⟨f̃ Si,j, 1⟩, i = 1, . . . , n, j = j1, j2. Hence f̃ Si,j(t) − M̃S

i,j = f Si,j(t) − MS
i,j − 1/n

∑n
i=1(f

S
i,j(t) − MS

i,j). The standardized
random function in the ith subject, defined by

f̂ S⋆i,j (t) =
f̃ Si,j(t) − M̃S

i,j(∫
I(f̃

S
i,j(t) − M̃S

i,j)2dw
) 1

2
, (3)

therefore provides a reasonable estimate of f ⋆
j (t) defined in (2). As a result, the point estimate of dynamical correlation of

random functions fj1 and fj2 provided by the ith subject can be defined as

ρ̂S
i,j1j2 = ⟨f̂ S⋆i,j1 (t), f̂

S⋆
i,j2 (t)⟩. (4)

Using (4), we are able to obtain a point estimate of dynamical correlation of each pair of random functions for each subject.
In the Estimation section, Dubin and Müller (2005) estimated dynamical correlation by averaging these point estimates.
However, this may not be an optimal strategy to make use of all ρ̂S

i,j1j2
’s. Since different subjects have different numbers of

measurements, their contributions to the final estimate of dynamical correlation may not be equally important. As a result,
a simple average of ρ̂S

i,j1j2
’s may not be an optimal choice. Dubin and Müller (2005) pointed out and addressed this issue in

applications by using weighted averages to estimate dynamical correlation.
A natural problem about choosing appropriate weights arises. Another interesting problem is to construct a valid

confidence interval for dynamical correlation based on ρ̂S
i,j1j2

’s. To solve these problems, we borrow the idea of the weighted
empirical likelihood proposed by Wu (2004). The log weighted empirical likelihood is defined as l(F ) = Tn

∑n
i=1ci{log(pi) −

npi}, where ci is the weight put on the ith subject, Tn = n/
∑n

i=1ci and pi is probability put on ρ̂S
i,j1j2

satisfying
∑n

i=1pi = 1.
Obviously l(F ) achieves its maximum when p1 = p2 = · · · = pn = 1/n. The log likelihood ratio is then as

l(F ) − max
F

l(F ) = Tn
n∑

i=1

ci{log(pi) − npi} − Tn
n∑

i=1

ci{− log(n) − 1} = Tn
n∑

i=1

ci{log(npi) − npi + 1}.
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Given the additional constraint that E(ρ̂S
i,j1j2

) ≈ ρj1j2 under some regularity conditions provided in Theorem 2 in Dubin and
Müller (2005), the profile log weighted empirical likelihood ratio is defined as

R̃(ρ) = Tn
n∑

i=1

ci{log(npi) − npi + 1}, (5)

where pi’s maximize l(F ) subject to pi ≥ 0, i = 1, . . . , n,
∑n

i=1pi = 1 and
∑n

i=1piρ̂
S
i,j1j2

= ρ. To account for the effect of
different numbers of observations for different subjects, we choose

ci =
1
ni

(6)

in (5) when applying the weighted empirical likelihood. Wu (2004) suggested χ2
1 to calibrate the asymptotic distribution

of the log weighted empirical likelihood ratio. Likewise, we propose a 1 − α confidence interval for the true dynamical
correlation ρj1j2 : {ρ : −2R̃(ρ) < χ2

1 (1 − α)}, where χ2
1 (1 − α) denotes the 1 − α quantile of χ2 distribution of one degree

of freedom. Numerical studies presented in Section 4 show that χ2
1 approximates −2R̃(ρj1j2 ) reasonably well. As shown in

Owen (1988) and Wu (2004), the logarithms of both the unweighted and weighted empirical likelihood ratio converge to a
chi-squared distribution under some regularity conditions. But as argued in Wu (2004), these two methods have different
performances in statistical inference for samples with a small size. The superiority of the weighted method is demonstrated
via a simulation study inWu (2004), which shows that even though the lengths are similar, the confidence interval generated
from theweighted empirical likelihood has a coverage probability closer to the nominal level than its counterpart, especially
when the sample size is small.

Next we consider another scenario in which random functions are observed over a common grid of time points
across all subjects. This scenario is called the regular design in this paper. We assume that observations consist of
{(fi,1(tk), . . . , fi,p(tk)), i = 1, . . . , n, k = 1, . . . ,m}, where t1, t2, . . . , tm arem distinct points of I. Without loss of generality,
we assume that t1 < t2 . . . < tm. Using the same idea as in irregular design, the corresponding log weighted empirical
likelihood ratio becomes

R̃(ρ) =

n∑
i=1

log(npi), (7)

where pi’s maximize
∏n

i=1pi subjects to pi ≥ 0, i = 1, . . . , n,
∑n

i=1pi = 1 and
∑n

i=1piρ̂
S
i,j1j2

= ρ. If ρ̂S
i ’s were identically

and independently distributed, R̃(ρ) is actually the same as the log empirical likelihood ratio defined by Owen (1988). We
employ χ2

1 to calibrate the asymptotic distribution of−2R̃(ρj1j2 ) as well. This chi-square calibrationwill be investigated both
theoretically and numerically later. Numerical studies show that {ρ : −2R̃(ρ) < χ2

1 (1−α)} is a reasonable 1−α confidence
interval for ρj1j2 .

2.3. Confidence intervals for dynamical correlation via bootstrap

The point estimator for dynamical correlation between fj1 (t) and fj2 (t) proposed by Dubin and Müller (2005) is given by

ρ̂j1j2 =
1
n

n∑
i=1

ρ̂S
i,j1j2 . (8)

They considered confidence intervals for dynamical correlation based on ρ̂S
i,j1j2

’s as well. Provided some regularity conditions
and assumingµj(t) is known, j = j1, j2, they proved that the estimator in (8) is asymptotically normal if 0 < |ρj1j2 | < 1. Based
on this theoretical result, a confidence interval for the dynamical correlation would be immediately available if we are able
to find a plausible estimate of the variance of the estimator. However, they argued that the variance of ρ̂j1j2 is rather involved
and there is no straightforward estimate of it. They hence suggested employing the bootstrap to obtain a confidence interval.
To account for the uncertainty introduced by the pre-smoothing step via a local linear smoother, they proposed to sample
the fitted values and residuals from the pre-smoothing step separately. Additionally, a relatively large number, B = 500
of bootstrap samples were recommended to obtain a plausible confidence interval. To implement the above procedure to
compute the point estimator and the bootstrap confidence interval for dynamical correlation, a package called dynCorrwas
developed by Dubin et al. (2017).

There are several issues associated with the estimator ρ̂j1j2 and the bootstrap strategy, whichmay flaw their applications.
First of all, each ρ̂S

i,j1j2
makes equal contribution to ρ̂j1j2 in (8), the final estimator ofρj1j2 . As pointed out in Section 2.2, thismay

not be an optimal treatment under irregular design. Noting this fact, Dubin and Müller (2005) suggested using a weighted
average of ρ̂S

i,j1j2
’s to estimate ρj1j2 to accommodate the irregular design in applications. Second, the bootstrap procedure

was proposed to account for the uncertainty in the pre-smoothing step and to estimate the variance of the average point
estimator. But the proposed bootstrap procedure is computationally intensive when the pre-smoothing step is included and
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Table 1
Summary of coverage probabilities of two confidence intervals under the irregular design: ‘‘B’’ and ‘‘E’’ stand for the bootstrap and the weighted empirical
likelihood based confidences, respectively. The bandwidth used in the local linear smoother is denoted by h and the coverage probabilities are calculated
from the 100 Monte Carlo simulations.

Data n Method h

.01 .035 .06 .085 .11 .135 .16 .185 .21 .235 .26 .285 .31 .335 .36

Irregular
50 B .90 .79 .70 .67 .63 .63 .60 .62 .59 .66 .63 .57 .67 .63 .59

E .33 .88 .91 .96 .93 .91 .94 .96 .91 .94 .97 .91 .95 .95 .96

100 B .47 .58 .49 .43 .41 .38 .40 .39 .42 .35 .44 .33 .46 .35 .43
E .12 .87 .97 .96 .93 .94 .92 .93 .96 .94 .91 .98 .91 .95 .96

data are resampled B = 500 times. Last but not least, the performance of the bootstrap method is not satisfactory under
irregular design. The last issue will be demonstrated in numerical studies presented in Section 4. The weighted empirical
likelihood, however, can circumvent estimating the variance since the log weighted likelihood ratio statistics itself is self-
normalized with the chi-square as the limiting distribution. Unlike the bootstrap method, this chi-square calibration based
on the weighted empirical likelihood results in a confidence interval with an appealing coverage probability even under the
irregular design.

3. Theoretical properties

Let ρj1j2 denote the true dynamical correlation between fj1 (t) and fj2 , 1 ≤ j1, j2 ≤ p, and j1 ̸= j2. Then we have

Theorem 1. Under the assumptions listed in Appendix A, if 0 < |ρj1j2 | < 1, and both E(fj1 (t)) and E(fj2 (t)) are known, then
−2R̃(ρj1j2 ) → χ2(1) in distribution, where R̃(·) is defined in (7).

The proof is deferred to Appendix B.

4. Simulation studies

In this section, several simulation scenarios are considered to compare the confidence intervals for dynamical correlation
of two random functions based on the bootstrap method and the weighted empirical likelihood. Our main concern consists
of computational time and coverage probabilities of these types of confidence intervals.

We generate n identically and independently copies of two random functions, f1 and f2, on [0, 1]. Here n = 50 or 100. Let
Yij(t) denote the measurement of fj of ith copy at time t . More specifically, Yij(t) = fij(t)+ eij(t), i = 1, . . . , n, j = 1,2, where

1. The random function is defined as fij(t) = 1 +
∑2

l=0ξl,jφl(t). In other words, µj(t) ≡ 0 and µ0,j = 1 for j = 1,2. In
addition, there are only three random components in both random functions.

2. The fixed orthogonal functions φl’s take the following form: φ0(t) = 1, φ1(t) = 2
√
3(t − 1/2) and φ2(t) =

6
√
5(t − 1/2)2 −

√
5/2.

3. The random components are generated from a centered multivariate Gaussian distribution with a covariance
matrix as follows: Σ =

(
Σ11 Σ12
Σ21 Σ22

)
, where each block submatrix is defined as Σ11 = diag(1, 1/2, 1/3), Σ12 =

diag(1/3, 1/4, 1/6) and Σ22 = diag(1/2, 1/3, 1/4).
4. eij(t) ∼ N(0, 1/4) denotes the measurement error of the observation of fj from the ith copy evaluated at time t . These

measurement errors are assumed to be independent of each other.

Under this setup, the true dynamical correlation between f1 and f2 is 0.5. The above simulation setups are the same as in
Dubin and Müller (2005).

To compare the performances of the bootstrap method and the weighted empirical likelihood method in associated
confidence intervals for dynamical correlation, both irregular and regular designs are considered. In both designs, a grid
of equally-spaced bandwidths {.01, .035, . . . , .36} is chosen in the local linear smoother in the pre-smoothing step. The
weight functionw(t) is taken to be 1 over [0, 1]. To evaluate the real coverage probabilities of the 1 -α confidence intervals for
dynamical correlation generated fromboth the bootstrapmethod and theweighted empirical likelihood,K = 100 simulation
trials are run. Here we focus on α = 0.05, namely 95% confidence intervals for dynamical correlation.

Irregular design: In the first scenario, the ith copy of random functions are observed on ni of these 100 time points,
where ni is uniformly sampled from {25, 26, . . . , 100}. Table 1 summarizes the coverage probabilities of these two types
of confidence intervals for α = 0.05 across the 15 bandwidth choices under the irregular design. It can be observed that
there is a remarkable gap between these two methods in terms of coverage probability. The weighted empirical likelihood
method is robust to the choice of bandwidths and the coverage probabilities of the confidence intervals obtained frommost
bandwidth choices are close to the nominal level. In contrast, the performance of the bootstrap method is not satisfactory
at all, no matter from the perspective of robustness or from coverage probability.
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Table 2
Summary of coverage probabilities of two confidence intervals under the regular design. ‘‘B’’ and ‘‘E’’ stand for the bootstrap and the weighted empirical
likelihood based confidences, respectively. The bandwidth used in the local linear smoother is denoted by h and the coverage probabilities are calculated
from the 100 Monte Carlo simulations.

Data n Method h

.01 .035 .06 .085 .11 .135 .16 .185 .21 .235 .26 .285 .31 .335 .36

Regular
50 B .92 .98 .94 .98 .99 .95 .96 .98 .94 .94 .98 .94 .95 .96 .94

E .79 .95 .96 .88 .95 .91 .98 .96 .97 .99 .95 .94 .94 .92 .91

100 B .83 .94 .97 .96 .97 .96 .94 .96 .95 .95 .94 .94 .94 .94 .94
E .63 .94 .97 .95 .94 .90 .97 .93 .97 .96 .94 .99 .93 .89 .93

Table 3
Summary of average computation time of two confidence intervals: ‘‘B’’ and
‘‘E’’ stand for the bootstrap and the weighted empirical likelihood based con-
fidences, respectively. The average computation times are calculated from
the 100 Monte Carlo simulations and all bandwidths considered in Tables 1
and 2.

Data n Method Time (s)

Irregular
50 B 205

E 0.44

100 B 387
E 0.85

Regular
50 B 214

E 0.55

100 B 450
E 1

Regular design: In the second scenario, the observational time points for both random functions are chosen to bem = 100
equidistant points on [0, 1]. Under the regular design, Table 2 indicates that both the bootstrap confidence interval and
the empirical likelihood-based confidence interval are robust to the choice of the bandwidth in the local linear smoother.
Furthermore, the coverage probabilities of both of these two confidence intervals are quite close to the nominal level, even
though the bootstrap method is slightly better in some exceptional choices of bandwidth.

A further comparison between these two methods is made in terms of computational time. According to Table 3,
the weighted empirical likelihood method is considerably more efficient than the bootstrap method in computation. The
bootstrapmethod spends substantial time on estimating the variability of the average estimator of dynamical correlation by
resampling both the smoothed random functions and residuals when a local linear smoother is involved. Nevertheless, this
step can be circumvented in the weighted empirical likelihood method. As pointed out by one referee, it should be noted
that the bootstrap method is able to account for the uncertainty in the pre-smoothing step, while the weighted empirical
likelihood method ignores this source of uncertainty in constructing confidence intervals for dynamical correlation.

To demonstrate that χ2
1 provides a reasonable calibration when constructing confidence intervals for dynamical correla-

tion based on theweighted empirical likelihoodmethod, Fig. 1 compares the empirical distribution of theweighted empirical
likelihood ratio test statistics with χ2

1 in the four different cases. For all four panels in Fig. 1, h = 0.21 is used in the local
linear smoothing. Due to the robustness of the weighted empirical likelihood method, this specific choice should not play
a critical role in determining shapes of these four panels. It turns out that χ2

1 can provide a satisfactory approximation to
the distribution of the empirical likelihood ratio test statistic even for a moderate number of subjects for both irregular and
regular designs. In the top right panel, five points with a theoretical quantile greater than 4 deviate slightly from the straight
line. This might seem to be a serious issue when compared with the top left panel, in which only 50 independent copies of
random functions are generated. However, quantiles greater than 4 for the χ2

1 distribution correspond to quantiles greater
than 2 for the N(0, 1) distribution; thus they are greater than 95% quantile of N(0, 1). Usually an extreme quantile cannot be
estimated accurately due to data sparsity near the extreme quantile.

5. Applications

In this section, we apply the proposed empirical likelihood-based method to analyze the dynamical correlation between
random functions in three applications.

5.1. Dynamical correlation of air pollutants

Dynamical correlation between air pollutants is treated in the first example. The dataset is obtained from the NMMAPS-
data package (Peng andWelty, 2004), which contains dailymortality, air pollution, andweather data for the study of national
morbidity, mortality, and air pollution. Six air pollutants, including PM10, PM2.5, SO2, O3, NO2, and CO, are measured in 108
cities of America from 1987 to 2000. There has been extensive research on the adverse effect of PM2.5 and NO2 on health
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Fig. 1. Q–Q plots of the weighted empirical likelihood ratio statistics. The upper and bottom panels are for the irregular and regular designs, respectively.
The left and right panels correspond to n = 50 and n = 100, respectively.

of human beings (see Atkinson et al. (2014), Hyder et al. (2014) and Crouse et al. (2015)). Ritchine and Roser (2018) argued
that PM2.5 is one of the most concerning air pollutants which have an adverse impact on human health. Actually limited
recordings of PM2.5 were available before the 2000s in many regions (Peng and Welty, 2004; Kumar and Joseph, 2006;
San Martini et al., 2015). Thus it is crucial to understand the relationships between PM2.5 and other regularly monitored air
pollutants like PM10 and NO2 (Kumar and Joseph, 2006). According to Connell et al. (2005), there is a statistically significant
association between the concentrations of PM2.5 and NO2 after removing autocorrelation. Furthermore, they also claim
that this association varies from season to season. Kumar and Joseph (2006) showed that, for both ambient and kerbsite
locations in Mumbai, there is a strong positive correlation between PM2.5 and NO2. It indicates that NO2 and PM2.5 share a
common origin. A two-step method was proposed in Connell et al. (2005): a time series filter was employed to account for
the temporal correlation within both NO2 and PM2.5 measurements, and then the Pearson correlation analysis was carried
out on the residuals to estimate their associations. Kumar and Joseph (2006), however, conducted a regression analysis
directly to estimate the correlations between these air pollutants. Neither methods treated repeated measurements of NO2
and/or PM2.5 as a sample of a smooth random function and considered the correlation between two random functions, even
though the former one can allow for the temporal correlations. In this study,we are interested in investigating the association
between these two air pollutants from a novel perspective: dynamical correlation, which is directly based on the repeated
measurements of them while accounting the temporal correlation within each of them.

Since from 1999 daily measurements for PM2.5 are available in most cities (Peng and Welty, 2004), we choose measure-
ments in 2000 for analysis for the consideration of fewer missing data. Cities without any measurement of PM2.5 or NO2
are excluded; then in total, we have measurements from 66 cities in the year of 2000. The left panel in Fig. 2 displays the
standardized profiles of PM2.5 or NO2 from one randomly selected city. These two air pollutants show a strong positive
correlation in fall and winter and somewhat weak correlation in spring and summer according to this single city. Statistical
inference based on the weighted empirical likelihood suggests that there is a moderate positive dynamical correlation
between these two air pollutants if we aggregate the association in each season. In particular, the 95% confidence interval
for the dynamical correlation is (0.38, 0.44). This conclusion does not contradict the mechanism how PM2.5 is generated. On
the one hand, gases like NO2 and PM2.5 may be emitted from the same source (Kumar and Joseph, 2006) and the former
may serve as precursors to secondary PM2.5 formation (Connell et al., 2005). On the other hand, correlations among these
air pollutants exhibit strong seasonality. These may explain why there exists a moderate positive dynamical correlation
between PM2.5 and NO2.
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Fig. 2. Left: Standardized profiles of PM2.5 or NO2 in 2000 from one randomly selected city. Right: Standardized profiles of three electrodes from one
randomly selected subject.

5.2. Dynamical correlation of EEG signals

Zhang et al. (1995) studied the object recognition process by measuring electroencephalogram (EEG) signals using
pictures of objects. In their experiment, 64 electrodes are placed on subject’s scalps to investigate EEG correlates of genetic
predisposition to alcoholism. There are 122 subjects in this study, 77 of them in the alcoholic group and the remaining
in the control group. Every subject is measured in 120 trials. In each trial, 256 observations were taken at each scalp
in one second when a stimulus was shown for a subject. Each subject was exposed to a single stimulus or two stimuli.
The two stimuli can be in a matched or non-matched condition. This dataset is available at the following link: https:
//archive.ics.uci.edu/ml/datasets/eeg+database.

In neuroimaging studies, there has been extensive research on functional connectivity, which refers to the statistical
association or interactions between different brain regions (Ombao et al., 2016). For instance, when studying a EEG dataset,
Marshall et al. (2014) found that significant functional connectivity is identified between short-range sites (neighboring
electrodes) considerably more often than between electrodes in long distances, when an individual is not performing
an explicit task. Though using different measures to quantify functional connectivity, Qiao et al. (2017) drew a similar
conclusion when applying the partial-correlation based framework to analyze the EEG data mentioned in last paragraph.
We are interested in studying functional connectivity from the perspective of dynamical correlation. To examine whether
the dynamical correlation between short-range electrodes is stronger than that between long-range electrodes, we choose
three electrodes: C5, C3, and P8. The first two electrodes are neighboring sites located in the central region, while the last
electrode is in the temporal region and situated a long distance away from the first two. According to Miller and Ivanitsky
(2003), the central region is in charge of functional integration of the tactile task while the temporal region is the integration
center for auditory attention.

To alleviate the effect of an individual’s status (alcoholic or non-alcoholic) on functional connectivity between two
electrodes, our study is focused on the alcoholic group. For each subject in the alcoholic group, we average recordings under
the single stimulus condition across 120 trials at each observational time point. Our primary interest here is to explore
dynamical correlation among the recordings of these three electrodes, which can serve as another measure of functional
connectivity. Since P8 is situated a long distance away from both C5 and C3, which are neighboring electrodes, we suspect
that the dynamical correlation between C5 and C3 are the most significant, compared with the other two counterparts. The
right panel in Fig. 2 depicts the standardized profile, defined in (3), of these three electrodes from one randomly selected
subject. It can be observed that C5 and C3maintain synchronization almost across thewhole time coursewhile disagreement
appears between P8 and C5 or C3. With the empirical likelihood method, we find that the 95% confidence intervals for ρ12,
ρ13 and ρ23 are (0.77, 0.86), (0.36, 0.51) and (0.29, 0.44), where ρ12, ρ13 and ρ23 denote the dynamical correlation of C5 and
C3, C5 and P8, C3 and P8, respectively. This conclusion is not surprising to us since electrodesmustmaintain synchronization
to govern our brain to make a response to a stimulus. The electrodes closer to each other may be more consistent compared
with electrodes far apart. Additionally, this result demonstrates the hypothesis that functional connectivity between short-
range electrodes is stronger than that between long-range electrodes from the perspective of dynamical correlation of

https://archive.ics.uci.edu/ml/datasets/eeg%2Bdatabase
https://archive.ics.uci.edu/ml/datasets/eeg%2Bdatabase
https://archive.ics.uci.edu/ml/datasets/eeg%2Bdatabase
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Fig. 3. (a) Profiles of expressions of gene 9 of 34 replicates. (b) Profiles of expressions of gene 45 of 34 replicates. Measurements of gene expressions are
marked with ×.

random functions. A similar result is obtained from using the bootstrap method to compute confidence intervals: (0.77,
0.86), (0.35, 0.51) and (0.28, 0.44) for ρ12, ρ13 and ρ23, respectively. The consistency between these methods suggests that
in the regular design, ignoring the uncertainty in the pre-smoothing step does not impose a notable impact on confidence
intervals obtained from the weighted empirical likelihood method.

5.3. Dynamical correlation of gene expressions

According to Wu et al. (2014), the activation of T lymphocytes (T-cells) plays a key role in generation of an immune
response. Two experiments regarding the response of a human T-cell line to phorbol myristyl acetate and ionomicin
treatment were conducted by Rangel et al. (2004) to model the gene regulation network during T-cell activation. They
collected the expression of 88 genes across 10 times points (0, 2, 4, 6, 8, 18, 24, 32, 48, 72 hr) and 34 replicates were obtained
for each gene. The expression profiles of gene 9 and gene 45 are presented in Fig. 3. Obviously this is a considerably less
dense design compared with the EEG example.

Wu et al. (2014) applied sparse additive ordinary differential equation models to identify a dynamic network among
these genes. Both Rangel et al. (2004) and Wu et al. (2014) found that FYB (gene 45) was one of the genes which regulated
expressions of many other genes. Furthermore, Wu et al. (2014) found that the gene FYB always had a positive regulation
on gene 9 regardless of the expression level of gene 9. Dynamical correlation provides another perspective to look at the
association of gene expressions during T-cell activation. We apply both the empirical likelihood method and the bootstrap
method to compute the 95% confidence interval for the dynamical correlation of gene 9 and gene 45. The confidence interval
given by the empirical likelihood method is (0.16, 0.52), while its counterpart is (0.10, 0.51). This finding is consistent with
that inWuet al. (2014). In this example, the random functions are considerably less densely observed, the confidence interval
obtained from the bootstrap method is slightly wider than that from the empirical likelihood method. The primary reason
might be that the bootstrapmethod accounts for the uncertainty in smoothing each curve from only a few observations; this
uncertainty has a non-negligible impact on the interval estimate of the dynamical correlation.

6. Conclusions and discussion

This article proposes a new method based on the weighted empirical likelihood to infer the dynamical correlation
between random functions. Compared with the bootstrap method by Dubin and Müller (2005), the proposed method is
considerably more efficient in computation due to the self-normalized property of the weighted empirical likelihood ratio
statistic. Another reason is that the bootstrap method spends substantial time on sampling both fitted values and residuals
to account for uncertainty in the pre-smoothing step. Even though this source of uncertainty is ignored in the weighted
empirical likelihood method, simulation studies demonstrate that the weighted empirical likelihood method is possible to
yield a confidence intervalwith amore accurate coverage probability than the bootstrapmethodwhen the random functions
of interest are irregularly spaced. But whether it is crucial to incorporate this source in the weighted empirical likelihood
method in real datasets needs to be carefully investigated in future, especially when functional data are irregularly observed.
Furthermore, the proposedmethod accounts for the differing effect of each pair of random functions on the final estimator of
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dynamical correlation, rather than simply averaging these effects. Hence it compares favorably with the bootstrap method
in statistical inference of dynamical correlation when there is a remarkable variation in the number of observations of
functional data across subjects. In light of these advantages, it is worthwhile to explore applications of this methodology
in other similar scenarios. But it should be noted that the proposed method cannot be directly applied to sparse functional
data, in which only a few observations are available for every subject. For sparse functional data, we suggest to first recover
the trajectory of each functional data from sparse observations. We will investigate this problem in our future work.

At first glance, dynamical correlation is not a powerful tool to reveal the dynamical feature of associations between
random functions, since it summarizes correlations of two random functions over the domain of these functions with a
single quantity. However, as pointed out by one referee, the dynamical feature can be discovered by adaptively choosing the
weight functionw(t). In addition, in order to better reveal dynamical features of random functions and accommodate lagged
relationships, the definition of dynamical correlation was extended to incorporate lag terms in Dubin and Müller (2005).
Dynamical functional connectivity has attracted attention from numerous researchers in neuroimaging studies. It would
be interesting work to compare dynamical correlation with varying weight functions with the framework of dynamical
functional connectivity.
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Appendix A. Technical assumptions

In this section, we lay out regularity conditions which can guarantee that the difference between the smoothed random
function f Si,j and the true underlying random function fi,j is negligible. Suppose the observations satisfy Yi,j(tk) = fi,j(tk) +

ei,j(tk), i = 1, . . . , n, j = 1, . . . , p and k = 1, . . . ,m. We assume that the random errors ei,j(tk) are identically and
independently distributed with E(ei,j(tk)) = 0 and E(e2i,j(tk)) = σ 2. Let h denote the bandwidth used in the local linear
smoother in the pre-smoothing step. All limits below are taken given the number of subjects, n diverges.

Condition 1. Observational time points {tk}mk=1 follow a density g , which is equi-continuous and bounded away from 0.
Furthermore, the support of g is I, which is compact.

Condition 2. The random errors satisfy E(|ei,j(tk)|s) < ∞ for some s > 2.

Condition 3. The bandwidth h and the number of observations satisfy limmh2 > 0 and lim
(

mh
logm

) 1
2
m−

2
s−η > 0 for any η

with 0 < η < 2.
Condition 4. The random functions fi,j are twice differentiable. Furthermore, the second derivatives are equi-continuous

satisfying sup|f ′′

i,j(t)| = Op(1), where the supremum is taken over i = 1, . . . , n, j = 1, . . . , p and t ∈ I.
Condition 5. The number of observations for each random function satisfies

m → ∞, n
(
logm
m

) 4
5

→ 0.

Condition 6. The bandwidth h satisfies

√
nh2

→ 0, n
(
logm
mh

) 1
2

→ 0.

Appendix B. Proof of theorem 1

When µj1 (t) and µj2 (t) are known or unknown but a constant, let f̃ ⋆
i,j1

and f̃ ⋆
i,j2

be the standardized curves for fj1 (t) and
fj2 (t), respectively, for subject i. Then define

ρi,j1j2 =

∫
f̃ ∗

i,j1 (t)f̃
∗

i,j2 (t)w(t)dt.

Thus ρ1,j1j2 , . . . , ρn,j1j2 , are identically and independently distributed with E(ρi,j1j2 ) = ρj1j2 . Var(ρi,j1j2 ) = δ2 < ∞.
Furthermore, Dubin and Müller (2005) showed 0 < Var(ρi,j1j2 ) < 1 given 0 < |ρj1j2 | < 1. In Owen (2001), the profile
empirical likelihood function of θ based on ρi,j1j2 ’s is defined as

L̃(θ ) = sup{

n∏
i=1

(npi) : pi ≥ 0, i = 1, . . . , n;
n∑

i=1

pi = 1;
n∑

i=1

piρi,j1j2 = θ} (9)
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As shown in Theorem 2.2 in Owen (2001), −2 log L̃(ρj1j2 ) converges in distribution to χ2(1) as n diverges, if 0 < |ρj1j2 | < 1.
We list some important steps to verify this result; for details, see Owen (2001).

The weights which maximize L̃(ρj1j2 ) can be written as

w̃i =
1
n

1

1 + λ̃(ρi,j1j2 − ρj1j2 )
,

where λ̃ satisfies the equation

1
n

n∑
i=1

ρi,j1j2 − ρj1j2

1 + λ(ρi,j1j2 − ρj1j2 )
= 0

Hence,

|λ̃| = Op(n−1/2); max
1≤i≤n

|ρi,j1j2 − ρj1j2 | = op(n1/2); |ρ̄j1j2 − ρj1j2 | = Op(n−1/2), (10)

where ρ̄j1j2 =
1
n

∑n
i=1ρi,j1j2 .

With (2), for the smoothed random functions via a local linear smoother we can obtain the corresponding standardized
curves, denoted by f̃ Si,j1 (t) and f̃ Si,j2 (t). Our main result concerns the asymptotic distribution of log-empirical likelihood
function constructed based on the smoothed version of ρi,j1j2 , denoted by ρS

i,j1j2
, which is defined as

ρS
i,j1j2 =

∫
f̃ Si,j1 (t)f̃

S
i,j2 (t)w(t)dt, i = 1, . . . , n.

Specifically, the corresponding profile empirical likelihood function of θ is

L(θ ) = sup{

n∏
i=1

(npi) : pi ≥ 0, i = 1, . . . , n;
n∑

i=1

pi = 1;
n∑

i=1

piρS
i,j1j2 = θ}. (11)

Let ρ̄S
j1j2

=
1
n

∑n
i=1ρ

S
i,j1j2

, V S
j1j2

=
1
n

∑n
i=1(ρ

S
i,j1j2

−ρj1j2 )
2 and Vj1j2 =

1
n

∑n
i=1(ρi,j1j2 −ρj1j2 )

2. Whenµj(t) is constant or known
for j = j1, j2, under the assumptions in Appendix A, from the proof of Theorem 2 in Dubin and Müller (2005), we have

|ρ̄S
j1j2 − ρ̄j1j2 | = op(n−

1
2 ), max

1≤i≤n
|ρS

i,j1j2 − ρi,j1j2 | = op(n−1/2) (12)

The weights maximizing L(ρj1j2 ) can be written as

wi =
1
n

1
1 + λ(ρS

i,j1j2
− ρj1j2 )

,

where λ = λ(ρj1j2 ) satisfies the equation

1
n

n∑
i=1

ρS
i,j1j2

− ρj1j2

1 + λ(ρS
i,j1j2

− ρj1j2 )
= 0.

LetMn = max1≤i≤n|ρ
S
i,j1j2

− ρj1j2 |. Based on (10) and (12), we obtain

|ρ̄S
j1j2 − ρj1j2 | = Op(n−1/2), Mn = op(n1/2). (13)

The next step is to verify that the order of λ is Op(n−1/2) as well. After some simple algebra, it can shown that

|λ| ·
1
n

n∑
i=1

(ρS
i,j1j2

− ρj1j2 )
2

1 + λ(ρS
i,j1j2

− ρj1j2 )
= sgn(λ)(ρ̄S

j1j2 − ρj1j2 ).

Note that wi > 0, i.e., 1 + λ(ρS
i,j1j2

− ρj1j2 ) > 0. Thus

|λ|V S
j1j2 ≤ |λ| ·

1
n

n∑
i=1

(ρS
i,j1j2

− ρj1j2 )
2

1 + λ(ρS
i,j1j2

− ρj1j2 )
(1 + |λ|Mn)

= sgn(λ)(ρ̄S
j1j2 − ρj1j2 )(1 + |λ|Mn).

Since Vj1j2 = δ2 + op(1), V S
j1j2

− Vj1j2 = op(1), and (13), it follows that

|λ|(δ2 + op(1)) = Op(n−1/2),
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and hence,

|λ| = Op(n−1/2).

It follows that

0 =
1
n

n∑
i=1

ρS
i,j1j2

− ρj1j2

1 + λ(ρS
i,j1j2

− ρj1j2 )

= ρ̄S
j1j2 − ρj1j2 − λV S

j1j2 + op(n−1/2).

Thus, λ = (V S
j1j2

)−1(ρ̄S
j1j2

− ρj1j2 ) + op(n−1/2).
Plugging in the expression of wi maximizing L(ρj1j2 ), we have

− 2 log L(ρj1j2 ) = 2
n∑

i=1

log(1 + λ(ρS
i,j1j2 − ρj1j2 ))

= 2

(
n∑

i=1

λ(ρS
i,j1j2 − ρj1j2 ) −

λ2(ρS
i,j1j2

− ρj1j2 )
2

2

)
+ op(1)

= 2n(V S
j1j2 )

−1(ρ̄S
j1j2 − ρj1j2 )

2
− n(ρ̄S

j1j2 − ρj1j2 )
2(V S)−1

j1j2
+ op(1)

= n(ρ̄S
j1j2 − ρj1j2 )

2(V S
j1j2 )

−1
+ op(1) (14)

As shown in Owen (2001),

− 2 log L̃(ρj1j2 ) =
n(ρ̄j1j2 − ρj1j2 )

2

Vj1j2
+ op(1). (15)

Based on (12), (14) and (15), it follows that

− 2 log L(ρj1j2 ) = n(ρ̄S
j1j2 − ρj1j2 )

2(V S
j1j2 )

−1
+ op(1)

= −2 log L̃(ρj1j2 ) + op(1)

→ χ2(1) in distribution. □
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