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ABSTRACT
Methodologies for functional principal component analysis are well established in the one-dimensional
setting. However, for two-dimensional surfaces, for example, images, conducting functional principal com-
ponent analysis is complicated and challenging, because the conventional eigendecomposition approach
would require the estimation of a four-dimensional covariance function, which may incur high cost in
terms of time and machine memory. To circumvent such computational difficulties, we propose a novel
two-dimensional functional principal component analysis for extracting functional principal components
and achieving dimensionality reduction for images. Different from the conventional eigendecomposition
approach, our proposed method is based on the direct estimation of the optimal two-dimensional func-
tional principal components via tensor product B-spline, which opens up a new avenue for estimating
functional principal components. We present theoretical results that prove the consistency of the proposed
approach. Our method is illustrated by analyzing brain images of subjects with the Alzheimer’s Disease and
the handwritten digits images. The finite sample performance of our method is further assessed with some
simulation studies. Supplementary materials for this article are available online.
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1. Introduction

In functional data analysis, functional principal component
analysis (FPCA) is widely used for dimensionality reduction.
The goal of FPCA is to identify, decompose, and rank the major
sources of variation in a sample of realizations from a stochastic
process. FPCA seeks to decompose the underlying process into a
linear combination of functional principal components (FPCs).
The FPCs serve as a basis for the best approximation of the
infinite-dimensional function (curve) of interest. Dimension-
ality reduction is achieved by selecting the top few FPCs that
cumulatively explain the majority of variation.

The majority of existing works on FPCA focus on curves in
the one-dimensional setting. For regularly and densely observed
curve, several smoothing approaches for FPCA are proposed.
Ramsay and Dalzell (1991) performed smoothing on the func-
tional data in the first step, which is then followed by the regular
FPCA procedure on the smoothed data. Rice and Silverman
(1991) developed smoothed nonparametric estimates of the
eigenfunctions and suggested a suitable way for determining
the degree of smoothing. Pezzulli and Silverman (1993) intro-
duced a roughness penalty term in the optimization criterion
of FPCA. Silverman (1996) studied the theoretical properties
of the smoothed FPCA. Lin et al. (2016) and Nie and Cao
(2020) enhanced the interpretability of FPCA by estimating
FPCs which are only nonzero in subregions. Sang et al. (2017)
presented a parametric approach to estimate top FPCs to help
users to interpret FPCs. Nie et al. (2018) proposed a supervised
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version of FPCA by considering the correlation of the functional
predictor and response variable. Dong et al. (2018) analyzed
GFR curves after kidney transplant by using FPCA.

In the case where the designs points are sparsely and irregu-
larly spaced, several extensions of FPCA under one-dimensional
setting have been proposed. James et al. (2000) considered
FPCA for sparse and irregular functional data using a reduced
rank mixed effects framework. Yao et al. (2005) developed
an effective way to conduct FPCA where the FPC scores are
computed based on conditional expectation. Hall et al. (2006)
derived consistency results for the eigenfunction estimators
under a sparse sampling scheme with measurement errors.
Zipunnikov et al. (2011) developed a fast and scalable multi-
level FPCA method for high-dimensional data. Di et al. (2014)
proposed an FPCA method for sparse and multilevel functional
data based on the multilevel structure in the covariance func-
tion. Goldsmith et al. (2015) adopted the multilevel FPCA in
the generalized function-on-scalar regression model. Shi et al.
(2021) suggested the informatively missing FPCA to analyze the
longitudinal trajectories that are subject to informative miss-
ingness. Nie et al. (2022) proposed a method for conducting
functional principal component analysis under a new regression
framework. Other extensions include FPCA for structured data,
FPCA on a variable domain, and for high-dimensional data
(Shou et al. 2015; Xiao et al. 2016; Johns et al. 2019).

More recently, several methods under the Bayesian paradigm
have been introduced to functional data analysis. Thompson
and Rosen (2008) proposed a Bayesian nonparametric approach
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for modeling sparse functional data. Suarez and Ghosal (2017)
developed a Bayesian FPCA where the covariance function is
modeled using an approximate spectral decomposition. Jiang et
al. (2021) extended the Bayesian sparse FPCA to the multivari-
ate setting, which allows simultaneous estimation for multiple
groups of trajectories.

FPCA in the one-dimensional setting is well studied in the
literature. In the case of the two-dimensional surface, for exam-
ple, images, conducting FPCA is a difficult and computationally
challenging task. The usual approach that extends the one-
dimensional FPCA would require the estimation of a four-
dimensional covariance function, which may incur high cost
in terms of time and machine memory. On the other hand, it
is worth noting that concatenating columns/rows in the two-
dimensional observed data matrix into a one-dimensional vec-
tor, based on which the FPCA is conducted, would lead to incor-
rect estimation as it ignores the crucial locational information
on the two-dimensional surface. To circumvent these issues,
we propose a two-dimensional functional principal component
method for extracting the FPCs, extending the work of Nie et
al. (2022). The method directly estimates the optimal empirical
principal component functions and their related basis coeffi-
cients via tensor product B-spline. Theoretical studies reveal
that the estimated empirical functional principal component
converges to the true FPCs. The proposed method provides an
alternative to the conventional approach of conducting eigen-
decomposition on the sample covariance function to estimate
the FPCs. It is also worth noting that while there have been
abundant works that focus on the multivariate FPCA, for exam-
ple, Happ and Greven (2018), our article attempts to tackle a
different problem: rather than the observation having multi-
ple dimensions, the domain of the stochastic process is multi-
dimensional, which is a problem rarely explored in the existing
literature.

Our approach has several highlights. The most important
advantage of our approach is that it circumvents the difficul-
ties related to the need of estimating the high-dimensional
smoothed covariance function while still achieving the goal of
effective dimensionality reduction. Moreover, our approach is
based on a simple regression framework and is thus, robust
to the irregularities in the distribution of the design points
and can also naturally accommodate sparsely sampled data sur-
faces. The two-dimensional functional principal components
obtained from our method have nice interpretability and may
serve as a foundation for clustering and data recovery. The com-
puting codes used in our simulation studies and the application
are available at https://github.com/haoluns/2DFPCA.

The rest of the article is organized as follows. In Section 2,
we present the proposed methodology of the two-dimensional
functional principal component analysis method. In Section 3,
we derive the theoretical properties of our approach, and in
Section 4, we apply the proposed method on two datasets con-
sisting of images of brain MRI scans and handwritten digits and
provides interpretation to the results. In Section 5, simulation
studies are conducted to assess the empirical accuracy in the
estimation of the FPCs. Finally, Section 6 concludes the article
with a discussion.

2. Methodology

We consider n independent realizations of a random two-
dimensional stochastic process X(s, t), where (s, t) ∈ T .
Each realization corresponds to a surface and each set of two-
dimensional functional data is regarded as noisy samples from
the surface. Let yij denote the jth observation of the random
function Xi(s, t), the ith realization of the stochastic process
X(s, t). For i = 1, . . . , n and j = 1, . . . , ni, where ni is the num-
ber of sample points for the ith random function, the observed
data point yij is modeled as

yij = Xi(sij, tij) + εij,

where εij is a random measurement error term with mean zero
and variance σ 2. For simplicity, we assume that all the ni are the
same.

The two-dimensional random function Xi(s, t) can be
expressed in terms of the Mercer expansion of a series of
orthonormal basis functions, that is,

Xi(s, t) = μ(s, t) +
∞∑

m=1
αimψm(s, t),

where the basis functions should satisfy ||ψm||2 = 1 and
〈ψm, ψl〉 = 1 if m = l, and 0 otherwise.

We propose a two-dimensional principal component analy-
sis for estimating the first M functional principal components
ψm(s, t). The estimation procedure seeks to locate the mini-
mizer of the objective function

1
n

n∑
i=1

1
ni

ni∑
j=1

{
yij − μ(sij, tij) −

M∑
m=1

αimψm(sij, tij)

}2

.

The M functional principal components are obtained in a
sequential manner, that is, the mth FPC is approximated con-
ditional on the estimated values of the first m − 1 FPCs.

2.1. Estimating the First Functional Principal Component

The first FPC ψ1(s, t) is obtained by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

{
yij − μ̂(sij, tij) − αi1ψ1(sij, tij)

}2
. (1)

subject to ||ψ1||2 = 1, where μ̂(sij, tij) is the estimated mean
function by pooling all the data together and computing the
sample mean at point (sij, tij). For notational simplicity, we
denote y∗

ij = yij − μ̂(sij, tij).
We express the two-dimensional surface ψ1(s, t) in terms of

a basis expansion via the tensor product B-spline

ψ1(s, t) =
s1∑

i=1

s2∑
j=1

β1,ijb(1)
i (s)b(2)

j (t)

= b1(s)�B1b2(t), (2)

where b1 = (b(1)
1 , . . . , b(1)

s1 )� and b2 = (b(2)
1 , . . . , b(2)

s2 )� denote
the spline basis functions for the first and second dimensions,
respectively, s1 and s2 are the numbers of spline basis along each
dimension, and B1 = (β1,ij) is the matrix of spline coefficients.

https://github.com/haoluns/2DFPCA
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For notational simplicity, we rearrange the s1 ×s2 matrix B1 into
a s1s2 × 1 vector, and reorganize (2) as

ψ1(s, t) = β�
1 b(s, t),

where β1 = vec(B1), and b(s, t) = vec(b1(s) ⊗ b2(t)). The
vec(·) is the vectorization operator, which performs stacking of
all the columns of a matrix.

Our goal is to estimate α1 = (α11, . . . , αn1)
� and the coeffi-

cient vector β1 for the tensor product B-spline. The estimation is
conducted iteratively, that is, conditional on the current estimate
of α1, the estimate of β1 is updated by minimizing the loss
function in (1), and vice versa. The detailed algorithm is as
follows.

1. Specify the spline basis functions b1 and b2, as well as their
respective number of spline bases s1 and s2. Initialize β

(0)
1 and

hence, ψ(0)
1 subject to ||ψ(0)

1 ||2 = 1.
2. Let � denote the current index of iteration. Conditional on

the current estimate β
(�)
1 , the estimated functional principal

component is

ψ
(�)
1 (s, t) = β

(�)
1

�
b(s, t).

The least-square estimate of each element of α1 can be
obtained as

α
(�)
i1 = (ψ�

i1ψ i1)
−1ψ�

i1yi, i = 1, . . . , n,

where ψ i1 = (ψ
(�)
1 (si1, ti1), . . . , ψ(�)

1 (sini , tini))
� and yi =

(y∗
i1, . . . , y∗

ini
)�.

3. Conditional on the current estimate α
(�)
1 , update the estimate

of β1 by minimizing (1) subject to ||ψ1||2 = 1. The solution
to such a constrained least-square problem is

β
(�+1)
1 = β̃

(�+1)

1

||ψ̃(�+1)
1 ||

,

where β̃
(�+1)

1 is the unconstrained least-square estimate of
β1 and ||ψ̃(�+1)

1 || is the norm of the resulting functional
principal component function.

4. Repeat Steps 2 and 3 until convergence.

2.2. Estimating Subsequent Functional Principal
Components

The subsequent functional principal components are obtained
in a sequential manner. Let J denote the current index of func-
tional principal component. From the first J − 1 estimation
steps, we obtain the estimates β̂m and the resulting ψ̂m, where
m = 1, . . . , J − 1. Given these estimated functional princi-
pal components, the Jth functional principal component ψJ is
obtained by minimizing

1
n

n∑
i=1

1
ni

ni∑
j=1

{
y∗

ij −
J−1∑
m=1

αimψ̂m(sij, tij) − αiJψJ(sij, tij)

}2
, (3)

subject to ||ψJ ||2 = 1 and 〈ψ̂m, ψJ〉 = 1 if m = J, and 0
otherwise.

The detailed algorithm is as follows.

1. Initialize β
(0)
J and hence, ψ(0)

J subject to ||ψ(0)
J ||2 = 1.

2. Let � denote the current index of iteration, and let αi =
(αi1, . . . , αiJ)� denote the FPC scores for all the FPCs in
the ith subject. Conditional on the current estimate β

(�)
J and

all the estimated β̂m from the previous steps, the estimated
functional principal component functions are

ψ(�)
m (s, t) = β̂

�
mb(s, t), m = 1, . . . , J − 1,

ψ
(�)
J (s, t) = β

(�)
J

�
b(s, t).

The least-square estimate of αi can be obtained as

α
(�)
i = (ψ�

i ψ i)
−1ψ�

i yi, i = 1, . . . , n,

where ψ i = (ψ i1, . . . , ψ iJ), ψ im = (ψ
(�)
m (si1, ti1), . . . ,

ψ
(�)
m (sini , tini))

� and yi = (y∗
i1, . . . , y∗

ini
)�.

3. Conditional on all the current estimates α
(�)
i , update the

estimate of βJ by minimizing (3) subject to ||ψJ ||2 = 1,
and 〈ψ̂m, ψJ〉 = 1 if m = J, and 0 otherwise. Essentially,
the estimate of βJ is the solution to a least-square problem
with equality constraints (Lawson and Hanson 1974). To be
specific,

β
(�+1)
J = arg minβJ

n∑
i=1

1
ni

ni∑
j=1

{
y∗

ij −
J−1∑
m=1

α
(�)
im β̂

�
mb(sij, tij)

− α
(�)
iJ β�

J b(sij, tij)

}2
,

subject to∫ ∫
T

{
β̂

�
mb(s, t)

}{
β�

J b(s, t)
}

dsdt = 0, m = 1, . . . , J − 1,

and ∫ ∫
T

{
β�

J b(s, t)
}2

dsdt = 1.

4. Repeat Steps 2 and 3 until convergence.

For each given value of M, the number of total FPCs, we
select the optimal number of basis functions using the cross-
validation procedure. To achieve the optimal smoothness con-
trol, we may loop through all the candidate values of the number
of basis functions and select the optimal one with the smallest
cross-validation criterion. To be specific, we divide the observed
images into F folds, and perform the procedure on the F−1 folds
while holding the remaining one out for testing. For simplicity,
we assume the numbers of basis functions in the first and second
dimensions are the same, that is, L1 = L2 = L. Under a
candidate value of L, given the estimated mean function μ̂(s, t),
FPCs ψ̂m(s, t), we may compute the FPC scores α̂im on the
test dataset by regressing the observed yij − μ̂(sij, tij) against
ψ̂m(sij, tij). The cross-validation score for such a fold can be
calculated as

CV(L) =
n∑

i=1

1
ni

ni∑
j=1

{
yij − μ̂(sij, tij) −

M∑
m=1

α̂imψ̂m(sij, tij)

}
,
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Subsequently, we repeat the above procedure, leaving 1-fold for
testing, and sum up the cross-validation score across all the folds
as the final criterion.

Regarding the choice of the number of FPCs, we select the M
by defining the relative proportion of variance explained by the
top FPCs:

M−1∑
m=1

v̂ar(αim)

/ M∑
m=1

v̂ar(αim) = 1 − v̂ar(αiM)

/ M∑
m=1

v̂ar(αim),

where v̂ar(αim) is the sample variance of the obtained estimates
of αim for m = 1, . . . , M. Here, the sample variance of the FPC
scores is computed based on an optimally chosen value of L for
each given M. The cutoff value for this relative proportion of
variance is chosen in a way similar to the one in the regular
PCA procedure. It is either prespecified, for example, 90% or
95%, or determined adaptively based on the data, that is, at the
elbow point where the observed v̂ar(αim) appears to decrease
and reach a plateau.

2.3. Missing Data Restoration

When a certain data point on the new sampled data surface is
missing, we may recover its value using the fitted FPCs. To be
specific, after obtaining the basis coefficients β̂m based on the
training images, the estimate for the mth FPC is

ψ̂m(s, t) = β̂
�
mb(s, t), m = 1, . . . , M.

Given a new set of possibly incomplete samples {(sj, tj, yj); j =
1, . . . , n0} for a damaged image surface X(s, t), we may obtain
the FPC scores α̂m, m = 1, . . . , M, as the minimizer of the
following loss function

n0∑
j=1

{
yj − μ̂(sj, tj) −

M∑
m=1

αmψ̂m(sj, tj)

}2
,

which can be solved easily as a least-square fitting problem.
The recovered image surface is thus,

X̂(s, t) = μ̂(s, t) +
M∑

m=1
α̂mψ̂m(s, t),

which can be used for recovering data on the damaged region.

3. Theoretical Properties

It can be shown that the minimizer ψ̂1 of the loss functions in (1)
converges to the first FPC, and the minimizer ψ̂J of (3) converges
to the Jth FPC.

Denote t = (s, t) and let X∗(t) = X(t) − μ(t) be the
underlying centered stochastic process. Let {ξm, ψ0

m : m =
1, 2, . . . , ∞} denote the Mercer expansion with kernel K(t, t′) =
E{X∗(t)X∗(t′)}. To be specific, there are random variables ξm
and square integrable functions ψ0

m on T such that

X∗(t) =
∞∑

m=1
ξmψ0

m(t).

Theorem 1. Under assumptions (A1)–(A3) in Appendix, sup-
plementary materials, the minimizer ψ̂1 of (1) converges to ψ0

1
in L2(T ) in probability as n → ∞.

Theorem 2. Under assumptions (A1)–(A3) in Appendix, sup-
plementary materials, the minimizer ψ̂J of (3), where M =
2, . . . , ∞, converges to ψ0

J in L2(T ) in probability as n → ∞.

The two theorems point to a novel regression-based frame-
work for conducting FPCA and estimating the FPCs, as opposed
to the conventional methods that are based on decomposing the
covariance functions. The proofs of the theorems primarily rely
upon the asymptotics of the empirical processes (Pollard 1989),
which are given in the Appendix, supplementary materials.

4. Applications

4.1. ADNI Brain MRI Scans

To demonstrate the scientific usefulness of the proposed two-
dimensional FPCA in the field of medical imaging, we apply it
to the T1-weighted structural brain MRI data obtained from the
publicly available Alzheimer’s Disease Neuroimaging Initiative
(ADNI) dataset (Jack et al. 2008). The dataset consists of subjects
at different stages of clinically diagnosed Alzheimer’s Disease,
ranging from cognitive normal, to mild cognitive impairment,
and ultimately Dementia of Alzheimer’s Type (DAT). The MRI
images are collected longitudinally from up to 13 time points
across 120 months for participant with age ranging from 55 to
95 with mean ages at 75. To ensure the best representation of
the diagnosis groups, we collected baseline data (i.e., the first
time point acquired at the first time of visit) from the group of
subjects (n = 43) who stay as cognitive normal across all the
time points, as well as the group of patients (n = 28) who has
been diagnosed as DAT across all the time points. We term the
first group as stable normal control (sNC) and the second group
stable Dementia of Alzheimer’s Type (sDAT).

Before applying the two-dimensional FPCA on the brain
MRI images, all volumetric images of the baseline scans from
the subjects in the sDAT and sNC groups are transformed into
the same sterotaxis space by affinely registering them to the
same template using the image processing pipelines based on
FreeSurfer version 5.3.0 (Ma et al. 2018). The middle axial
slice of each volume are then extracted, upon which the two-
dimensional FPCA is applied. The mean values of all the affinely
co-registered images are first subtracted from the grayscale
matrix of each matrix, and the FPCs are computed based on the
residual.

We refer to the product of the FPC score and the FPC,
that, αimψm(s, t), as “additional factor” (AF), and an image can
thus, be viewed as the summation of the mean function and M
additional factors plus the random noise. Figure 1 shows the plot
of the averaged top five additional factors of the sDAT and sNC
groups. The first AF component demonstrates an overall pattern
of negative AF for the sDAT group (shown in red color), and
positive AF for the sNC group (shown in blue color). The second
AF component shows the contrast in the ventricle region (close
to the posterior part of the brain, as indicated by the blue arrow),
which again is negative for the sDAT group and positive for the
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Figure 1. The averaged plots of the top five additional factors (AF), defined as
functional principal component functions times the corresponding FPC scores, that
is, αimψm(s, t), in the sDAT and sNC groups.

sNC group. The third AF component highlights the additional
groupwise difference around the hippocampus region (around
central part in the axial view of brain, as indicated by the red
arrow), as well as a few cortical regions (at the surrounding part
of the brain). The fourth and fifth AF components do not appear
to have significant association with any particular anatomical
regions in the brain.

Figure 2 further shows six examples of the original brain
scans and their top functional principal components (3 from
the sDAT group and 3 from the sNC group). The figures shows
consistent patterns of the significant AF region across different
subject within both the sDAT (3 columns in the left) and the
sNC (3 columns in the right), which align well with the signif-
icant regions shown in the averaged images (Figure 1). Some
additional variation appears among different subjects, which
is more evident in the sDAT group (e.g., sharper AF shown
in the third FPC of Image 3, and the fifth FPC of Image 1,
which may reflect the nature of diversity in the diseased group
(sDAT) in which different subjects at the different stage of the
disease may present different level of pathologies in their local
structures.

In terms of the proportion of variance explained, Figure 3
shows the values of variance, and the relative increase in the total
variance explained for each FPC from the brain scans. The first
five FPCs constitute the majority of explained variance, with the

higher degree of FPC explaining smaller proportion of variance.
As in the scree plot of regular PCA, the turning points or elbow
occurs at the second FPC.

Moreover, under the framework of functional regression,
it is feasible to regress the FPC scores against the outcomes.
Such a model is known as the functional principal component
regression (Reiss and Ogden 2007). It would be of interest to
explore the feasibility of such a model for images. We use the
first five FPC scores as the covariates to predict the status of
sDAT and sNC under a generalized linear model. The results
from this regression model are summarized in Table 1. We
observe that the first three FPC scores are significant, with p-
values being less than 0.10. In particular, the third FPC score
is the most significant covariate, having the smallest p-value of
0.0028. As the second and third FPCs encompass the contrast in
the ventricle and the hippocampus regions, the result is in line
with the scientific finding that ventricle and hippocampus are
the regions primarily affected by DAT. It is also worth noting
that even though the elbow turning occurs at the second FPC
in Figure 3, the truly useful predictors for DAT are the first
three FPCs. The FPC that explains the largest proportion of
variance might not necessarily be the one that has the highest
predictive value. Moreover, the predictive performance of such
a model based on the FPC scores is evaluated using a cross-
validated approach, resulting in an AUC of 0.72 and the predic-
tive accuracy of 0.78, respectively. While there are other models
that directly targets the outcome and may potentially lead to
even better predictive performance, for example, the scalar-on-
image regression (Wang and Zhu 2017; Kang et al. 2018) and
deep learning models (Gao et al. 2020), our results demonstrate
the feasibility of functional principal component regression for
images.

Moreover, we consider a more practical model setting with
confounders and information from brain imaging studies. In
addition to two confounder variables (age and gender), the
model uses hippocampus structural volume derived from the
analysis of brain MRI scan as the primary predictor in the
model, which is constructed as follows. The original T1-
weighted brain MRI images are first segmented into three tissue
types: the gray matter, white matter, and cerebrospinal fluid
using the FreeSurfer package version 5.3. The gray matter and
cerebrospinal fluid were parcellated into 91 different anatomi-
cal regions of interest using FreeSurfer’s parcellation pipelines.
Among these regions, the hippocampus is chosen and its volume
is extracted using a multi-atlas segmentation framework (Ma
et al. 2018).

We sequentially add the FPC scores derived from the two-
dimensional FPCA into the baseline model using a forward
selection rule. The second and third FPC scores are selected into
the model. The results from this regression model are summa-
rized in Table 2. We observe that the hippocampus structural
volume is highly significant, as it is derived directly from the
brain image segmentation. The second and third FPC scores
are also significant, indicating that the information from the
FPCs may complement the primary predictor. In terms of the
predictive accuracy, after incorporating the information of the
FPCs, the 5-fold cross-validated AUC increases from 0.894 to
0.904, and the accuracy increases from 0.1127 to 0.1268, that is,
an improvement in the predictive performance.
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Figure 2. Six examples of brain MRI scans in the ADNI dataset (top row) and the plots of the top additional factors, defined as functional principal component functions
times the corresponding FPC scores, that is, αimψm(s, t). The percentages in parenthesis are the proportion of variation explained.

4.2. MNIST Handwritten Digits

The MNIST dataset is a well-known database consisting of
grayscale handwritten digits and is commonly used as a bench-
mark for empirical evaluation of image processing and machine
learning (Yann et al. 2013). We apply the two-dimensional func-
tional principal analysis on the MNIST dataset, which contains
70,000 images (of size 28×28 or ni = 784 pixels) of handwritten
digits. Each grayscale image is represented by a 28 × 28 matrix
whose values represent the brightness of the pixels. We select
images of digits “0” and “1” for our analysis.

Using our method, a two-dimensional FPCA is conducted
on images of digit “0” only. For each image, we subtract the
mean values of all the images and search for the FPCs on the
residual. Figure 4 shows examples of the original images and
their top functional principal components. It is worth noting
that the functional principal components, as a representation of
the deviation from the mean surface function, may take negative
value, while a pixel in a grayscale image can only take integer
values between 0 and 255. Therefore, for presentation purposes,
the absolute value of the minimum negative value is added to
the functional components. As a result, the brighter the pixel in
the image of the FPC, the larger/positive the FPC score; whereas
the darker pixel correlates with negative values of the FPC.

Interestingly, the obtained FPCs correspond to various hand-
writing style or calligraphic pattern of the digit “0”. In general,
the digit “0” can be written in a manner that is slightly skewed
to the left (e.g., image 1, 3 and 5), or in a manner that is rounded
and full (e.g., image 2 and 4). Correspondingly, the pixels in the
FPCs that relate to the styles of handwriting are highlighted.
For example, comparing the first FPC of image 1 against that
of image 2, it is evident that the inner ring (skewed to the left)
is very bright for image 1 and entirely dark for image 2, whereas
the outer ring (rounded) is dark for image 1 and bright for
image 2. Figure 5 shows similar results of the two-dimensional
functional principal component analysis conducted on images
of the digit “1” only. It is evident that the first FPC corresponds
to the direction of skewness, for example, images 1 and 2 are left-
skewed, whereas images 3 and 4 right-skewed. Moreover, image
5 has a different handwriting pattern from the rest of the images,
and therefore, it has a highlighted component function at the
seventh FPC.

Furthermore, a two-dimensional functional principal com-
ponent analysis is performed on images of digits “0” and
“1” combined. Compared with conducting separate functional
principal component analysis on digit “0” or digit “1” only,
where the focus is on the variation within the handwriting
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Figure 3. Variance and cumulative proportion of variance for each components in
the analysis of brain MRI scans.

Table 1. The regression results from generalized linear model using FPC scores to
predict the sDAT/sNC group in the ADNI brain scan dataset.

Estimate Std. Error p-value

Intercept −0.5116 0.2866 0.0743
FPC1 −0.0007 0.0004 0.0766
FPC2 0.0039 0.0016 0.0140
FPC3 0.0050 0.0017 0.0028
FPC4 0.0003 0.0017 0.8854
FPC5 −0.0015 0.0018 0.4018

patterns of the same digit, such a combined analysis naturally
has the major variation resulting from the difference between
“0” and “1”. The mean of all the images is first subtracted from
the pixel matrix in each image. The original images and the top
functional components are shown in Figure 6. The first FPC
shows a very evident pattern for distinguishing between digits

Table 2. The regression results from generalized linear model using hippocampus
structural volume, gender, age and the second and third FPC scores to predict the
sDAT/sNC group in the ADNI brain scan dataset.

Estimate Std. Error p-value

Intercept 38.8381 12.8981 0.0026
FPC2 0.0060 0.0027 0.0309
FPC3 0.0043 0.0025 0.0835
Gender 1.5586 1.0069 0.1216
Age −0.2791 0.1194 0.0194
Hippocampus −26.6305 7.1847 0.0002

“0” and “1”. For digit “0”, the outer ring is brightened in the
first FPC, whereas for digit “1”, the inner skewed portion is
highlighted.

In terms of the proportion of variance explained, Figure 7
shows the values of variance, and the relative increase in the total
variance explained for each component in the FPCA conducted
on digit “0” only, on digit “1” only, and on digits “0” and “1” com-
bined. The first three FPCs constitute the majority of explained
variance, and the usual pattern of diminishing increment as
in the scree plot of regular PCA is observed. Moreover, as the
digits “0” and “1” are distinctively different, the first FPC in the
analysis of digits “0” and “1” combined explains a larger portion
of the variances than that in the analysis of digit “0” only.

We experiment with the functionality of image completion
or data restoration, that is, cropping a portion of the pixels
from the image and then attempting to recover the full image
using prediction based on the estimated FPCs. To be specific, we
estimate the two-dimensional FPCs ψm(s, t) from the training
image data. Then we estimate the FPC scores for the damaged
image, as outlined in Section 2.3. Based on the fitted FPC
scores, we predict the value of a pixel in the cropped portion
of the image. Figure 8 shows an example of image completion
using FPCA. As a baseline for assessing how well the figure is
reconstructed, the first panel in the plot shows the reconstructed
figure under complete data. From the shape of the reconstructed
plots, we observe that when the missing portion is not overly
large, the reconstructed plots under missing data is similar to
the one under complete data, indicating the effectiveness of
reconstruction. While the proposed method performs relatively
well in terms of image recovery, it may fail to render the correct
completion when the cropped portion is overly large. It is also
worth noting that the fitted images are slightly darker than the
original ones. This might be attributed to the fact that the tensor
product B-spline tends to fit a smoothed and continuous surface
to the sample data points, whereas the images often have very
extreme pixel values, that is, the empirical surface is not smooth.

Moreover, as the dimensions of the image are substantially
reduced after extracting the top few FPCs, we compare the
accuracy and speed of the classification of digits “0” and “1”
using the FPC scores as predictors, versus the one using all the
28 × 28 = 784 grayscale pixels values as predictors. These FPCs
and FPC scores are obtained by implementing FPCA on the
combined set of digits “0” and “1”. A boosting classifier is trained
on the predictors using R package “ada”. Both methods result in
a prediction misclassification rate of around 0.1%. We have also
experimented with extracting FPC scores separately from the
set of digits “0” only and from the set of digits “1” only and use
them for prediction, which results in a higher misclassification
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Figure 4. Five examples of digit “0” in the MNIST dataset (top row) and the plots of the top additional factors (AF), defined as functional principal component functions
times the corresponding FPC scores, that is, αimψm(s, t). The percentages in parenthesis are the proportion of variation explained.

rate (0.4%). This indicates that conducting FPCA on a combined
dataset is more suited for classification.

In terms of the computing time, the proposed method is
substantially faster as it requires much fewer predictors. For
a fair comparison, all the tuning parameters in the boosting
classifiers are the same. On the task of producing classifications
for 10,000 images, the method based on FPC scores has a total
computing time (the sum of the time of computing the FPC
score and the time of producing prediction from the boosting
model) of 9.1 sec on a machine with Intel i5-5200 CPU and 12
Gigabytes of RAM, whereas the one based on all the 784 pixel

values as predictors takes 38.3 sec; a running time reduction of
more than 75% is achieved.

5. Simulation Studies

5.1. Simulation Setup

Simulation studies are conducted to assess the empirical per-
formance of the proposed method. The goal is to evaluate the
accuracy of extracting and recovering the FPCs based on our
method. In particular, we are interested in how the estimation
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Figure 5. Five examples of digit“1” in the MNIST dataset (top row) and the plots the top additional factors (AF), defined as functional principal component functions times
the corresponding FPC scores. The percentages in parenthesis are the proportion of variation explained.

error changes as sample size increases as it is expected that the
estimation precision would improve under a larger sample size.
Moreover, it is of interest to analyze the effect of the number of
B-spline bases (s1 or s2) on the estimation accuracy.

We first generate the underlying true two-dimensional sur-
faces from a series of known FPCs. As the mean function in our
method is used as a plugged-in value and the method is expected
to perform well as long as the estimator for the mean function is
consistent, our focus lies on the estimation of FPCs. We simulate
the surfaces Xi(s, t) whose mean function satisfies μ(s, t) =
0, that is, the mean function remains 0. The underlying true

two-dimensional surfaces are simulated as the sum product of
three sets of FPCs and scores.

Xi(s, t) = αi1ψ1(s, t) + αi2ψ2(s, t) + αi3ψ3(s, t), i = 1, . . . , n.

The underlying true FPCs ψ1(s, t) to ψ3(s, t) are the same as
the first three functional principal component functions from
the analysis on the images of digits “0” and “1” in the MNIST
dataset, and thus, satisfy ||ψj||2 = 1, and 〈ψj, ψk〉 = 1 if j = k,
and 0 otherwise. These true underlying FPCs are constructed
using a tensor product B-spline with s1 = s2 = 12 basis
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Figure 6. Five examples of digits “0” and “1” in the MNIST dataset (top row) and the plots of the top additional factors (AF), defined as functional principal component
functions times the corresponding FPC scores. The percentages in parenthesis are the proportion of variation explained.

functions. The scores αi1 to αi3 are independently generated
from both Gaussian and non-Gaussian distributions.

Having generated the true underlying surfaces, we simulate
the observed data points from the surfaces subject to a random
measurement error. As in the “MNIST” dataset, the observed
data are simulated from a 28 × 28 grid as yij = Xi(sij, tij) + εij,
where i = 1, . . . , 28 and j = 1, . . . , 28, and the error terms εij
are randomly drawn from a normal distribution N(0, 0.252).

We apply the two-dimensional functional principal com-
ponent analysis on the simulated dataset and compare the
extracted FPCs with the true ones. To measure how well the

proposed estimation method approximates the true underlying
FPCs, we use the mean squared error (MSE), defined as the
mean of the squared differences between the estimated func-
tional principal component functions ψ̂k and the true ones ψk
on the grid,

MSE(ψ̂k)= 1
n2

g

ng∑
i=1

ng∑
j=1

{
ψ̂k(sij, tij)− ψk(sij, tij)

}2 , k = 1, 2, 3,

where ng = 28 is the number of grid points on each dimension
of the surface.
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Figure 7. Variance and cumulative proportion of variance for each components in the analysis of digit “0” only (top row), of digit “1” only (middle row), and of digits “0”
and “1” (bottom row) in the MNIST dataset.

Moreover, we compute the integrated mean squared error
(IMSE), which is defined as

IMSE(ψ̂k) =
∫ ∫

T

{
ψ̂k(s, t) − ψk(s, t)

}2 dsdt, k = 1, 2, 3,

where T = [1, 28]. The mean squared error and the integrated
mean squared error are computed based on 100 data replica-
tions. Within each replication, a total of 100 sample data surfaces
are generated.
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Figure 8. Examples of image completion of digit “0”in the MNIST dataset; the original images (cropped portion colored in gray) in the top row, completed images restored
from FPCs in the bottom row.

5.2. Gaussian Scenario

Under the Gaussian scenario, we assume that the FPC scores
follow a Gaussian distribution. The FPC scores αi1 to αi3 are
randomly drawn from independent normal distributions with
mean 0 and decreasing standard deviations of 100, 50, and 25,
respectively,

αi1 ∼ N(0, 1002),
αi2 ∼ N(0, 502),
αi3 ∼ N(0, 252).

The decreasing sequence of standard deviations correspond well
with the fact that the higher ranked FPC tends to explain a larger
proportion of the total variation.

We experiment various values of sample size n =
50, 100, 200, 400 and number of spline basis functions s1 =
s2 = 8, 12, 16, and compute the MSE and IMSE based on 100
simulation replications. Our goal is to understand the interplay
between the sample size and the number of spline basis func-
tions. Table 3 summarizes the results for various values of n and
s1 or s2. It is evident that a larger sample size leads to a smaller
MSE or IMSE. For example, the MSE of the first FPC when the
number of basis functions is s1 = s2 = 12 decreases from 0.014
to 0.002 as the sample size increases from 50 to 400. However,
the decrease is not as evident for the second and third FPCs,
as the FPCs of higher order are harder to identify. Moreover, in
general, the MSE and IMSE are larger for the second and third
FPCs, as the higher-order FPCs contribute to less variation. The
overall decreasing trend in the estimation error with respect to
the sample size reflects the accuracy of the method.

The estimation performance may deteriorate when the num-
ber of basis functions s1 or s2 is too small. On the other hand,
compared with the optimal scenario where s1, s2 = 12, a
larger value of s1 or s2 results in very mild deterioration of the
estimation accuracy. For example, under a sample size of 50, the
MSE of the second FPC ψ2 increases from 0.039 to 0.050 when
the granularity of the tensor product B-spline becomes overly
high (s1 = s2 = 16). However, when the tensor product B-
spline is too blurry, that is, the number of basis functions being
insufficiently low (s1 = s2 = 8), the MSE observes a much

Table 3. The MSE and IMSE of three estimated functional principal component
functions for different values of the sample size n and the number of basis functions
s1 and s2 under Gaussian distribution of FPC scores.

MSE (×10−3) IMSE

n s1 s2 ψ̂1 ψ̂2 ψ̂3 ψ̂1 ψ̂2 ψ̂3

50 8 8 0.162 0.339 0.513 0.133 0.332 0.573
12 12 0.014 0.039 0.048 0.012 0.034 0.039
16 16 0.014 0.050 0.072 0.011 0.044 0.060

100 8 8 0.158 0.336 0.510 0.130 0.329 0.569
12 12 0.008 0.012 0.008 0.006 0.010 0.006
16 16 0.009 0.015 0.012 0.007 0.013 0.009

200 8 8 0.155 0.331 0.509 0.127 0.323 0.568
12 12 0.004 0.031 0.040 0.003 0.026 0.033
16 16 0.004 0.034 0.057 0.003 0.029 0.047

400 8 8 0.154 0.331 0.508 0.127 0.323 0.567
12 12 0.002 0.003 0.002 0.001 0.002 0.001
16 16 0.002 0.004 0.004 0.002 0.003 0.003

larger increase of nearly 10 folds, from 0.039 to 0.339. Moreover,
the increase in sample size does not seem to ameliorate the loss
in precision caused by the insufficient granularity of the tensor
product B-spline; as the sample size increases from 50 to 200,
the MSE with s1 = s2 = 16 is improved to a level similar to the
one under the optimal case, whereas the MSE with s1 = s2 = 8
is still as high as 0.331.

5.3. Non-Gaussian Scenario

Under the non-Gaussian scenario, the FPC scores αi1 to αi3 are
independently drawn from shifted gamma distributions with
mean 0 and standard deviations similar to the Gaussian case,

αi1 ∼ Gamma(1, 0.01) − 100,
αi2 ∼ Gamma(1, 0.025) − 40,
αi3 ∼ Gamma(1, 0.05) − 20,

that is, a random draw would first be generated from a Gamma
distribution and subsequently be deducted from it the mean of
the Gamma distribution, such that the generated scores have an
expected value of 0.
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Table 4. The MSE and IMSE of three estimated functional principal components for
different values of the sample size n and the number of basis functions s1 and s2
under non-Gaussian distribution of FPC scores.

MSE (×10−3) IMSE

n s1 s2 ψ̂1 ψ̂2 ψ̂3 ψ̂1 ψ̂2 ψ̂3

50 8 8 0.156 0.335 0.518 0.128 0.328 0.575
12 12 0.012 0.030 0.025 0.010 0.026 0.022
16 16 0.008 0.031 0.033 0.007 0.030 0.032

100 8 8 0.155 0.332 0.512 0.127 0.323 0.570
12 12 0.003 0.009 0.010 0.003 0.008 0.008
16 16 0.006 0.012 0.012 0.004 0.010 0.009

200 8 8 0.154 0.330 0.508 0.126 0.320 0.568
12 12 0.002 0.005 0.005 0.002 0.004 0.004
16 16 0.002 0.006 0.006 0.002 0.004 0.005

400 8 8 0.153 0.330 0.508 0.126 0.320 0.567
12 12 0.001 0.002 0.002 0.001 0.002 0.002
16 16 0.001 0.003 0.004 0.001 0.003 0.003

Similar to the Gaussian case, we consider various values of
n = 50, 100, 200, 400 and s1 = s2 = 8, 12, 16, and evaluate
the precision accuracy using MSE and IMSE averaged from
100 simulation replications. Table 4 summarizes the results for
various values of n and s1 or s2 under the non-Gaussian case. It
is evident that a similar decreasing trend of the MSE and IMSE
with respect to n can be observed. Moreover, compared with
the Gaussian case, the estimation error is in general smaller;
this is because the Gamma distribution has a heavier tail and
thus, more extreme values of the FPC scores, which facilitate the
contrast within the regression estimation.

6. Conclusions and Discussion

In this article, we have proposed a novel method for identi-
fying major sources of variability in a two-dimensional sur-
face process. The approach is distinctive from the conventional
method of two-dimensional FPCA, as it circumvents the need
for estimating the de-centered covariance function and then
conducting eigen-decomposition on it. Besides, as our approach
is regression-based, unlike the conventional two-dimensional
FPCA, our method can handle sparse and irregularly sampled
data.

Several extensions of our method can be considered as
avenues for future research. A critical extension of our work
is to develop a methodology for multi-level data surfaces, a
typical example of which would be the three-level RGB color
model for image processing. Furthermore, in the current exam-
ple for medical image analysis, we have only demonstrated the
application in 2D, that is, the middle sagittal view. This can be
potentially be further extended to 3D version of the FPCA where
volumetric analysis over the entire 3D brain images can be
performed.

Supplementary Materials

Supplementary document: The supplementary document includes the
detailed proofs for Theorems 1 and 2. (supplementarydoc.pdf)

R codes: We provide R codes for the simulation studies and the application
on the MNIST Handwritten Digits; see the README file for more
details. (Rcode_2DFPCA.zip, zip archive).
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