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Abstract

This article is motivated by the need for discovering patterns of patients’ health based on their daily settings of care to

aid the health policy-makers to improve the effectiveness of distributing funding for health services. The hidden process

of one’s health status is assumed to be a continuous smooth function, called the health curve, ranging from perfectly

healthy to dead. The health curves are linked to the categorical setting of care using an ordered probit model and are

inferred through Bayesian smoothing. The challenges include the nontrivial constraints on the lower bound of the health

status (death) and on the model parameters to ensure model identifiability. We use the Markov chain Monte Carlo

method to estimate the parameters and health curves. The functional principal component analysis is applied to the

patients’ estimated health curves to discover common health patterns. The proposed method is demonstrated through

an application to patients hospitalized from strokes in Ontario. Whilst this paper focuses on the method’s application to

a health care problem, the proposed model and its implementation have the potential to be applied to many application

domains in which the response variable is ordinal and there is a hidden process. Our implementation is available at

https://github.com/liangliangwangsfu/healthCurveCode.
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1 Introduction

A stroke is a debilitating event that may cause temporary or permanent impairment of cognitive or physical

function. Risk factors for stroke include high blood pressure, smoking, obesity, and diabetes. People experiencing

strokes are often hospitalized for their injuries, occasionally for lengthy periods, where they receive sophisticated

diagnostics, imaging, intensive medical management, and specialized treatments or therapies that initiate the

rehabilitative phase of treatment.
Survival from stroke is common, and patients discharged alive immediately begin treatment for the event’s

sequelae. Patients receive health services that vary in intensity, frequency, setting, and provider type matched to

their health needs. For instance, some portion of patients are admitted into inpatient rehabilitation, hospital-

based programs where they receive medical care and several hours of intense rehabilitative therapies each day to
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regain cognitive or physical function. Patients with mild symptoms may be discharged to their place of residence,

where they may receive occupational or speech therapies several times a week. Underlying variability in post-

stroke care is the assumption that where patients receive health care is a function of their health, an unobserved

construct that integrates patients’ physical and cognitive function, daily activities, pain, depression, or anxiety.
The focus of this research is to use the relationship between (observable) health care settings and intensity of

care to estimate patients’ health trajectories and then to identify common trajectories in the population. The

motivation for our research is a lack of understanding patients’ unobserved health condition. While patients’

health is unobservable, treatment settings are observable. The second stage of this research, after identifying

common trajectories, provides novel insight into health outcomes following hospital treatment for stroke. The

contribution of the second stage is to identify potential opportunities for intervening in order to avoid adverse

patient outcomes. Moreover, identifying the most common trajectories of health provides the cornerstone for

future research on the distribution of funding for health services to ultimately improve the effectiveness of

spending on post-stroke care.
This study is based on a retrospective analysis of an existing population-based longitudinal cohort of ischemic

and hemorrhagic stroke patients in the province of Ontario, Canada. For the individuals in the cohort, the setting

of care is observable on each day following discharge from hospital for 90 days. Based on linking administrative

datasets using anonymous identifiers, patients are observed in six settings where health services are provided:

Acute Care (Hospital), Emergency Department, Hospital-based chronic care, Long-term Care, Hospital-based

rehabilitation, and Home. Patients’ gender and age at discharge from hospital are also recorded. This cohort is

ideal to study longitudinal health since most of Ontario’s health services are publicly funded and centrally

reported, facilitating linkage between settings of care. There are minor gaps in the coverage of health services,

as some hospitals do not collect or report outpatient rehabilitation services.1 The analysis of anonymized data for

this study is approved by the Behavioral Research Ethics Board of the University of British Columbia.
In this paper, we estimate health status, represented by a curve from the date of discharge to 90 days afterward.

Although patients’ health status is unobservable, we assume that it is a continuously valued scale that ranges from

0 (death) to 1 (perfect health) after normalization (see Section 5). The rationale for constructing a continuously

valued and bounded scale of health is borrowed from the approach of health preference weights or ordinal values

that represent individuals’ preferences for health-related outcomes. These values are derived from patients’ health

states or their responses to patient-reported outcome measures (PROMs), such as the EQ-5D.2,3

The strategy used in this study is to first estimate patients’ health status based on where they received their

health care each day following their stroke hospitalization. An ordered probit model4–7 is used to model the

settings of health care over the study’s 90-day follow-up period. We treat the health care setting as an ordinal

variable to reflect the intensity of care provided. For example, patients in acute care are assumed to be in worse

health than patients in long-term care. The following ordering of health settings is assumed: death is the worst

health; patients in acute care have worse health than patients seen and discharged from an emergency department;

patients in the emergency department have worse health than patients in hospital-based chronic care; patients in

hospital-based chronic care have worse health than patients in long-term care; patients in long-term care have

worse health than patients in hospital-based rehabilitation; and patients in hospital-based rehabilitation have

worse health than patients at home-receiving home care services. These relationships are summarized as:

Death<Acute Care (Hospital)<Emergency Department<Hospital-based chronic care<Long-term Care<
Hospital-based rehabilitation<Home.

Using Bayesian smoothing,8,9 each patient’s health curve is represented by a linear combination of a set of basis

functions, for example, the B-spline basis functions.10 The coefficients of basis functions are assigned a prior

distribution. We then develop a Markov chain Monte Carlo (MCMC) algorithm to estimate the posterior dis-

tributions of the covariate coefficients, basis function coefficients, and hyperparameters of the model. The

Bayesian approach is used because it can fit our complicated model with nontrivial constraints on the lower

bound of the health status (death) and on the model parameters to ensure model identifiability. In addition, it can

take into account the uncertainty arising from the smoothing parameter selection. Our implementation of the

Metropolis–Hastings (MH) within Gibbs is related to the MCMC methods for ordered probit models applied in

the literature.4,6,11

The second stage is to apply functional principal component analysis (FPCA) to the estimated individual health

curves to uncover common patterns of health among post-hospital stroke patients. FPCA plays a significant role

as a tool for dimensionality reduction in functional data analysis, where the individual datum is a random curve

defined on a common bounded interval.12,13 FPCA projects the patients’ health curves into simple functional
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principal component (FPC) scores. In this application of FPCA, the scores are analyzed using clustering methods

to identify clusters of health curves that share similar patterns.
The rest of the paper is organized as follows: Section 2 describes the ordered probit model with Bayesian

smoothing. Section 3 presents the MCMC algorithm for the model. Section 4 focuses on the FPCA. Then, Section

5 illustrates the application of the method to the stroke data. In Section 6, we evaluate the proposed method

through simulation studies. We finish with the concluding remarks and directions for future research work in

Section 7.

2 Ordered probit model with Bayesian smoothing

We first introduce some notation for the observed data. Assume that we have observations for n-independent

individuals at m time points, t1; t2; . . . ; tm, in the time interval T ¼ ½0; tm�. We use Yij to denote the health care

setting for the ith individual at time tij, where i ¼ 1; . . . ; n, and j ¼ 1; . . . ;m. Each Yij assumes values from Jþ 1

ordered categorical values: f0; . . . ; Jg. In the application of the stroke data, Yij¼ 0 is denoted for Death; we

assume that there are J¼ 6 hierarchical levels of health care settings: Yij¼ 1 for Acute Care (Hospital), Yij¼ 2 for

Emergency Department, Yij¼ 3 for Hospital-based chronic care, Yij¼ 4 for Long-term Care, Yij¼ 5 for Hospital-

based rehabilitation, and Yij¼ 6 for Home. Let mi denote the last observed day or the death day for the ith patient

and let T i ¼ ½0; ti;mi
�.

The health curve for the ith patient is denoted as XiðtÞ, for t 2 T i. Since Death is a special health status, it is

nonsense to use various values for deaths of different individuals. Therefore, we fix the value of XiðtÞ to a

predetermined small value xl when the ith individual is dead for i ¼ 1; . . . ; n. We put the constraint that

XiðtÞ � xl.
We will incorporate q covariates, Wi1; . . . ;Wiq, for the ith patient in the model. For example, two covariates,

gender and age, are considered in this paper. More specifically,Wi1 ¼ 0 when the ith subject is female andWi1 ¼ 1

when the ith subject is male; Wi2 denotes a continuous value for age.
Furthermore, we assume that the setting of health care, Yij; is determined by a latent continuous variable Zij.

The latent continuous variable Zij is assumed to have a normal distribution, NðgiðtijÞ; r2Þ, with mean giðtijÞ ¼
XiðtijÞ þ wT

i b and variance r2. Here, XiðtijÞ represents the health status of the ith subject at time tij, wi ¼
ð1;Wi1; . . . ;WiqÞT mainly includes the q covariates, and b ¼ ðb0; b1; . . . ; bqÞT is the vector of the intercept and

the associated coefficients for the q covariates.
We assume that Yij ¼ k when Zij 2 ðsk�1; sk�, for k ¼ 0; . . . ; J, where fskg is a series of ordered thresholds that

satisfy s�1 < s0 < s1 < � � � < sJ�1 < sJ with the ending thresholds s�1 ¼ �1 and sJ ¼ 1. Then, we have

PðYij ¼ kjXiðtijÞ;wi; b; r2Þ ¼ U
sk � XiðtijÞ � wT

i b

r

� �
� U

sk�1 � XiðtijÞ � wT
i b

r

� �
;

k ¼ 1; . . . ; J; i ¼ 1; . . . ; n; j ¼ 1; . . . ;m
(1)

where Uð�Þ is the cumulative distribution function (cdf) of the standard normal distribution. In other words, the

cdf of NðXiðtijÞ þ wT
i b; r

2Þ is divided into a sequence of partitions that correspond to the ordinal categories. From

equation (1), the setting where one patient receives health care depends on one’s health status, XiðtijÞ, covariates
wi, coefficients b, variance r2, and the thresholds s0; . . . ; sJ�1.

Note that the model in equation (1) is unidentifiable. To ensure identifiability, we need to fix two values out of

the three parameters, s0, sJ�1, and r2. We choose to let r2 be a free parameter and predetermine s0 and sJ�1.
14

We use s ¼ ðs1; . . . ; sJ�2ÞT to denote the vector of unknown thresholds between health state categories.
We assume that the health curve for the ith patient has the form XiðtÞ ¼ bi þ liðtÞ; where bi is the random

intercept and lið�Þ denotes the nonparametric effect of time. We assume bi � Nð0; r2bÞ and liðtÞ ¼XKi

k¼1
cikwikðtÞ ¼ wiðtÞ

Tci, where wiðtÞ ¼ ðwi1ðtÞ; . . . ;wiKi
ðtÞÞT denotes the vector of B-spline basis functions for

the ith subject, ci ¼ ðci1; . . . ; ciKi
ÞT is the corresponding vector of basis function coefficients, and Ki is the number

of basis functions for the ith subject. We let liðtijÞ ¼ liðti;mi
Þ for j ¼ mi þ 1; . . . ;m to reflect the fact that the health

status does not change after death. To ensure identifiability, we require

Z
T i

liðtÞdt ¼ 0, where T i ¼ ½0; ti;mi
�. In this

paper, we use cubic B-splines10 as basis functions.
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We use y to denote the vector of all the observations fYijg and use z to denote the vector of all the latent

variables fZijg, where i ¼ 1; . . . ; n; j ¼ 1; . . . ;m. Let c ¼ ðcT1 ; . . . ; cTn Þ
T be a long vector of all basis function

coefficients and let b ¼ ðb1; . . . ; bnÞT. The complete likelihood is expressed as

Lðc; s; r2; b; r2b; bjy; zÞ ¼
Yn
i¼1

Ym
j¼1

/ðZij;XiðtijÞ þ wT
i b; r

2ÞIðZij 2 BijÞ

where Ið�Þ is the indicator function and Bij ¼ ðsk�1; sk� if Yij ¼ k. In the next section, we propose to use the

MCMC method to estimate the unknown parameters in the model.

3 Bayesian inference using MCMC

In the Bayesian framework, we need to assign appropriate priors for the model’s parameters. The unknown

parameters in our ordered probit model include the vector of basis function coefficients c, the covariate coef-

ficients b, the random effects b, the threshold vector s, the variance r2 of Zij, and the variance r2b of the random
intercept. In this section, we propose priors for these parameters and the hyperparameters, followed by the details

of the MCMC algorithm.
The ith patient’s health curve, XiðtÞ ¼ bi þ liðtÞ; can be estimated with the smoothing spline method by min-

imizing the penalized sum of squares

Xm
j¼1

fZij � XiðtijÞ � wT
i bg

2 þ k�
Z
T i

flð2Þi ðtÞg
2
dt (2)

where T i ¼ ½0; ti;mi
�, k� is a positive smoothing parameter, and lð2Þi ðtÞ is the second derivatives of liðtÞ with respect

to t. The integral term of equation (2) represents a roughness penalty on liðtÞ, and the smoothing parameter k�

controls the roughness of the fitted curve liðtÞ. Note that we consider the roughness penalty up to the last day of

observation or the day of death to ensure the health curve for a living person is a smooth function.
The Bayesian counterpart of the above smoothing spline method is to assume a prior density for liðtÞ

proportional to the “partially improper” Gaussian process

k�

2r2

� �Mi=2

exp � k�

2r2

Z
T i

flð2Þi ðtÞg
2
dt

( )

where Mi ¼ Ki � 2 and r2 is the variance of Zij. Since liðtÞ ¼ wiðtÞ
Tci for t 2 T i, we have lð2Þi ðtÞ ¼ w

ð2Þ
i ðtÞTci,

where w
ð2Þ
i ðtÞ is the second derivative of wiðtÞ with respect to t. Therefore

Z
T i

flð2Þi ðtÞg
2
dt ¼ cTi

Z
T i

w
ð2Þ
i ðtÞwð2Þ

i ðtÞTdt
� �

ci

To ease the notation, let Pi ¼
R
T i
w
ð2Þ
i ðtÞwð2Þ

i ðtÞTdt, which is a known, symmetric and positive semi-definite Ki �
Ki matrix with the rank Mi after we determine the basis functions.15 Now the prior distribution for ci can be

rewritten as

pðcijk�Þ /
k�

2r2

� �Mi=2

exp � k�

2r2
cTi Pici

� �

where the hyperparameter k� is the smoothing parameter. Let k ¼ k�=r2 and set the prior for k, denoted pðkÞ, to
Gammaðak; bkÞ; where ak and bk are the shape parameter and scale parameter, respectively, in the Gamma distri-

bution. The prior for r2 is set to IGða�; b�Þ, with the density fðr2ja�; b�Þ ¼ 1=ðCða�Þb�a�ðr2Þa�þ1Þ
exp �1=ðb�r2Þ
� 	

; r2 � 0:
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For simplicity, let zi ¼ ðZi1; . . . ;ZimÞT and define Wi ¼ ðwiðti1Þ; . . . ;wiðtimi
ÞÞT, which is an mi � Ki matrix. Let

li ¼ ðliðti1Þ; . . . ; liðtimÞÞT. Then, we have the vector for the ith subject’s health xi ¼ bi þ li. Let Wi be a matrix
with m rows with each row being wT

i . Hence, we have zi ¼ xi þWibþ ei; i ¼ 1; � � � ; n, where ei �Nð0; r2ImÞ and
Im is an identity matrix of dimension m.

Letting pðsÞ be the prior distribution for s, the posterior is proportional to the product of the likelihood
function and priors, which can be written as

pðc; s; k; r2; b; r2b; bjy; zÞ / pðsÞ
Yn
i¼1

(
1

ðr2Þ1=2
� exp � 1

2r2
ðzi � xi �WibÞTðzi � xi �WibÞ

� �

� ðkÞMi=2expð� k
2
cTi PiciÞ �

1

ðr2bÞ
1=2

exp � b2i
2r2b

 !)
� ðkÞak�1exp � k

bk

� �

� 1

ðr2bÞ
abþ1

exp � 1

bbr2b

 !
� 1

ðr2Þa�þ1
exp � 1

b�r2

� �
� jRb0j�1=2exp �

ðb� lb0ÞTR�1
b0 ðb� lb0Þ
2

 !

We also require the nontrivial constraint that the value of health remains xl when death happens and after-
ward. That is, wiðti;mi

ÞTci þ bi ¼ xl, if mi 	 m, which is simply equivalent to setting ciKi
¼ xl � bi.

The MCMC algorithm, which is a Gibbs sampler with a MH step, is derived by identifying the full conditional
distributions for k, r2; r2b, ci, bi, b, Zij, and incorporating one MH step for the threshold parameters s. The details
are shown below.

The full conditional distribution for k is

kjc�Gamma
Xn
i¼1

Mi=2þ ak;
1

1=bk þ
Xn

i¼1
cTi Pici=2


 �
0
@

1
A (3)

The full conditional distribution for r2 is

r2jz; c; b; b� IGð~a�; ~b�Þ (4)

where ~a� ¼ a� þ n=2; and ~b� ¼ 1=b� þ ð1=2Þ
Xn

i¼1
ðzi � giÞ

Tðzi � giÞ
h i�1

, denoting gi ¼ xi þWib:

The full conditional distribution for r2b is

r2bjb� IG n=2þ ab;
1Xn

i¼1
b2i =2þ 1=bb

 !
(5)

The full conditional distribution for ci is

cijzi; k; r2; b; b�Nð~lci ;RciÞ (6)

where Rci ¼ ðWT
i Wir�2 þ kPiÞ�1, and ~lci ¼ RciW

T
i ðZi;1:mi

� bi � wT
i bÞr�2. Here Zi;1:mi

denotes the vector
ðZi;1; . . . ;Zi;mi

ÞT.
The full conditional distribution for bi is

bijzi; r2; ci; b�Nð~lb; ~r
2
bÞ (7)

where

~lb ¼ ~r2
br

�2 �
Xm
j¼1

ðZij � liðtijÞ � wT
i bÞ

T

~r2
b ¼ mr�2 þ 1=r2b

� 	�1
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The full conditional distribution for b is

bjz; r2; b; c�Nðlb;RbÞ (8)

where

Rb ¼
Xn
i¼1

WiW
T
i r

�2 þ R�1
b0

 !�1

and

lb ¼ Rb

Xn
i¼1

ðzi � xiÞWT
i r

�2 þ lTb0R
�1
b0

" #

We group z and s as a block in the Gibbs sampler. The full conditional distribution of ½z; s� is

pðz; sjy; c; k; r2; bi; r2b; bÞ ¼ pðzjs; y; c; k; r2; bi; r2b; bÞpðsjy; c; k; r2; bi; r2b; bÞ

The full conditional distribution for Zij is a truncated normal distribution, i.e.

Zijjs;Yij; ci; k; r
2; bi; r

2
b; b�NðgiðtijÞ; r2ÞIðZit 2 BitÞ (9)

where giðtijÞ ¼ XiðtijÞ þ wT
i b and Bij ¼ ðsk�1; sk�; if Yij ¼ k. Here, XiðtijÞ ¼ bi þ wiðtijÞ

Tci for j 	 mi; otherwise,

XiðtijÞ ¼ xl.
The full conditional density for s is

pðsjy; c; k; r2; b; r2b; bÞ / pðsÞ
Yn
i¼1

Ym
j¼1

U
sYij

� giðtijÞ
r

� �
� U

sYij�1 � giðtijÞ
r

� �� �
(10)

Note that there exist order restrictions on the threshold parameter s. To preserve the order, we reparameterize

the threshold parameters by cj ¼ ln ðsj � sj�1Þ=ð1� sjÞ
� 


; for 1 	 j 	 J� 2.16 Thus, sj ¼ ðsj�1 þ ecjÞ=ð1þ ecjÞ,
for 1 	 j 	 J� 2: Let pðcjy; c; k; r2; b; r2b; bÞ be the full conditional density for c obtained by reparametrizing

(equation (10)). The prior on c ¼ ðc1; . . . ; cJ�2Þ is set to Nðlc;RcÞ, where we assume lc ¼ ð0; . . . ; 0ÞT and Rc is

a diagonal matrix with r2c on the diagonal.
As the full conditional distribution of c does not have a closed form, an MH step in the Gibbs sampler is

required.6 We choose the proposal distribution qðc�jcÞ ¼ Nðc;VcÞ, a normal distribution with mean c and variance

Vc. The chain accepts the proposed value c� with probability

aðc; c�Þ ¼ min 1;
pðc�jy; c; k; r2; b; r2b; bÞqðcjc�Þ
pðcjy; c; k; r2; b; r2b; bÞqðc�jcÞ

( )
(11)

Algorithm 1 summarizes the MCMC algorithm of N iterations for the ordered probit model with Bayesian

smoothing.

Algorithm 1 The MCMC algorithm for the ordered probit model with Bayesian smoothing.

1. Set j¼ 0; initialize cð0Þ; z
ð0Þ
i ; kð0Þ; r2ð0Þ, and cð0Þ.

2. for j ¼ 1; 2; . . . ;N do
3. sample kðjþ1ÞjcðjÞ using equation (3);
4. sample r2ðjþ1ÞjzðjÞ; cðjÞ; bðjÞ; bðjÞ using equation (4);

6 Statistical Methods in Medical Research 0(0)



5. sample r2b
ðjþ1ÞjbðjÞ using equation (5);

6. sample c
ðjþ1Þ
i jzðjÞi ; kðjþ1Þ; r2ðjþ1Þ; bðjÞ; bðjÞ using equation (6);

7. sample b
ðjþ1Þ
i jzðjÞi ; r2ðjþ1Þ; c

ðjþ1Þ
i ; bðjÞ using equation (7);

8. sample bðjþ1ÞjzðjÞ; r2ðjþ1Þ; bðjþ1Þ; cðjþ1Þ using equation (8);

9. sample Z
ðjþ1Þ
ij jsðjÞ;Yij; c

ðjþ1Þ
i ; r2ðjþ1Þ; b

ðjþ1Þ
i ; bðjþ1Þ using Equation (9);

10. sample c� �NðcðjÞ;VcÞ. Accept the proposed value c� with probability aðcðjÞ; c�Þ using equation (11). If c� is
accepted, cðjþ1Þ ¼ c�; otherwise, cðjþ1Þ ¼ cðjÞ.

4. Pattern discovery via FPCA

After running the MCMC algorithm, we can obtain smooth curves representing patients’ health by

X̂iðtÞ ¼ b̂i þ wiðtÞ
Tĉi, where b̂i and ĉi are the posterior samples of the parameters. These estimated health

curves can be further used to discover patterns of patients’ health using FPCA.
FPCA is widely used to explain major variations in curves. Suppose we have a square integrable stochastic

process X(t), t 2 T , with the mean EðXðtÞÞ ¼ lðtÞ and the covariance function CovðXðsÞ;XðtÞÞ ¼ Gðs; tÞ. Mercer’s

theorem17 states that G(s, t) has an orthogonal expansion in L2ðT Þ

Gðs; tÞ ¼
X1
k¼1

kk/kðsÞ/kðtÞ

where /kðtÞ and kk are the kth eigenfunctions and eigenvalues, respectively, of the covariance function with the

order k1 � k2 � � � �. The eigenfunctions f/kðtÞg1k¼1 satisfy

Z
/2
kðtÞdt ¼ 1; and

Z
/jðtÞ/kðtÞdt ¼ 0 for any j 6¼ k

Let XiðtÞ; i ¼ 1; . . . ; n be one realization of the stochastic process X(t). Let lðtÞ be the overall mean function.

Then, the Karhunen–Lo�eve expansion of XiðtÞ is

XiðtÞ ¼ lðtÞ þ
X1
k¼1

nik/kðtÞ

where /kðtÞ is also called the kth FPC and nik is called the kth FPC score which can be expressed as

nik ¼
Z
T
½XiðtÞ � lðtÞ�/kðtÞdt (12)

Usually, XiðtÞ can be sufficiently well approximated by the top L FPCs, where L is a small number

relative to the number of time points when X(t) is observed. These top L FPCs explain the most variation

of the sample curves. All sample curves can be projected to the finite L-dimensional space expanded by the

first L FPCs.
We assume that the overall mean function and covariance surface are smooth, and consequently, the

eigenfunctions are smooth. Therefore, FPCs are usually represented as a linear combination of a set of

smooth and flexible basis functions. It would be more appealing if we accommodated smoothness when

estimating FPCs.15 There are two approaches to obtain smooth estimates for FPCs. One method is directly

smoothing FPCs via penalizing their roughness; the second method is first smoothing the functional data

and then estimating the corresponding FPCs based on the smoothed data. In this paper, we adopt the second

approach: we apply FPCA based on the estimated health curves to explore the major variations of all health

curves using the publicly available fda package on the CRAN project of R (http://cran.r-project.org/web/pack

ages/fda/fda.pdf).
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5 Real data analysis

We apply our proposed method to examine unobserved patterns of health curves in a cohort of stroke patients

discharged from acute care alive. In the description of our method, we have included two important covariates:
gender and age. Besides gender and age, the geographic regions where patients live have been shown to have a

significant impact not only on the setting where patients receive treatment but also on the intensity of the treat-
ment or frequency that patients receive treatment.1 Therefore, in our data analysis, we will apply our method to

one community in Ontario. Patients’ ages range from 1 to 102 years old with mean 72.4 years and standard

deviation 14.4 years. In total, our cohort consists of 2370 patients, of which 1202 (50.7%) are female and 1168
(49.3%) are male patients.

Each patient is observed in at least one setting of health care from Day 1 to Day 90 (m¼ 90), where the first day

is defined as the day of discharge from acute care from their stroke treatment. A detailed description of the cohort
can be found in the previous work.1 Figure 1 shows the number of patients in each setting of health care

throughout 90 days after the discharge. The majority of the patients received their health care at Home (setting
6), whereas only approximately 5% of patients died (setting 0) during the 90 days.

Without prior knowledge about the parameters, flat noninformative priors are applied. To achieve this, in the

prior pðkÞ�Gammaðka; kbÞ, we set the shape parameter ka to 0.01 and the scale parameter kb to 100 to have mean
1 and variance 100. In the prior r2� � IGða�; b�Þ; we use the shape parameter a� ¼ 1 and the scale parameter b� ¼
0:005 for the same purpose. We choose the priors for the reparameterized threshold parameters:

pðcÞ�Nð04�1; 100I4�4Þ, where I4�4 is an identity matrix.
To ensure identifiability, we predetermine the values of s0 and sJ�1 to be –5 and 1, respectively. Note that the

choice for these values is arbitrary. In Section 6.2, we conduct a sensitivity analysis for different choices of s0 and
sJ�1. Our analysis indicates that these values will only affect the parameter estimates, but will not affect the
patterns of health curves and the explanation of the estimated coefficients.

In Bayesian smoothing, it is essential to decide where to locate the knots: a large number of knots can lead to
more accurate estimates at the cost of a high computational burden, while a smaller number of knots can alleviate

the computation but may underfit the data. In this study, we put one knot on each day of observation until Day 90

or the day of death to allow flexibility in fitting curves at the cost of heavy computation. The roughness of health
curves is controlled by the smoothing parameter.

We arbitrarily choose initial values of the unknown parameters and run the MCMC chain for 6000 iterations.

All parameters converge after 1800 iterations by visualizing the trace plots. After discarding the 1800 “burn-in”
samples, we obtain 4200 sample draws. We apply thinning (discarding two out of every three samples) to the

resulting converged chain, resulting samples of size 4200 to size 1400. The analysis takes 24.2 h on an Intel Xeon

CPU E5-2683v4@2.10GHz.

Figure 1. Numbers of patients in settings of health care versus days.
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The posterior means and 95% credible intervals of b0, b1, and b2 are 2.121 (2.001, 2.229), 0.066 (0.043, 0.091),
and –0.033 (–0.035, –0.032), respectively. Note here female is coded 0 and male 1. A positive estimate of b1
indicates that males tend to receive care in less intensive settings than females, conditional on everything else is the
same. A negative estimate of b2 means that older patients tend to receive health care in more intensive settings.
More results of the parameter b and the other parameters are provided in the Supplementary material.

For an easier interpretation, the estimated health curve X̂iðtÞ is transformed so that the curve values are within
the range [0,1], in which 0 and 1 represent death and perfect health, respectively. Note that we only constrain the
minimum value of the unnormalized health, corresponding to death, to be xl, and there is no prefixed value for
the perfect health. In our application, the value of the perfect health, denoted xu, is set to the 99.5% quantile of
the fX̂iðtijÞg; i ¼ 1; . . . ; n; j ¼ 1; . . . ;mi, leading to xu ¼ 3:92; the value of xl is set to �5. Then the normalized
health curve is computed as

~XiðtÞ ¼ min
X̂iðtÞ � xl

xu � xl
; 1

( )
(13)

To illustrate the typical health curves, Figure 2 shows the raw data and the estimated normalized health curves
of four patients. The upper panel displays the raw data of health care settings throughout the 90 days of follow-up.
The majority of patients receive most of their care at home, represented by the solid black trajectory. Some
patients have a stable health condition but at a lower level such as the one represented by the dashed dotted blue
curve. Some patients experience deteriorating health and die during the observed period, represented by the dotted
green curve. In contrast, other patients, represented by the dashed read curve, generally have improving health,
though short periods of health decline might exist. The lower panel depicts the corresponding estimated health
curves after normalization using equation (13). It shows that the estimated health curves well resemble the shapes
of the raw data of health care settings.

The first plot in Figure 3 shows the estimated mean health curve (normalized) and its 95% credible bands. The
estimated mean health curve suggests that the average health status trend is improving over the observed period.
It starts from approximately 0.77 at Day 0, declines slightly for about eight days, and then increases to approx-
imately 0.85 at the end of the 90-day period.

Figure 2. Health care settings versus the follow-up period for four typical individuals (upper panel) and the corresponding nor-
malized estimated health curves (bottom panel).
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The FPCA is used to explore the major variation of the estimated health curves. Figure 3 also shows the
estimated top three FPCs for the health curves. The first FPC explains 83.3% of the total variation of all the
health curves. The first FPC is positive for the entire follow-up period and increases with time until Day 66, which
indicates that the curves have a larger variation in the second half of the observed period compared to the first
half. The second FPC explains 10.9% of the total variation of all health curves. The second FPC is positive in
[0,44] and negative in [45,90], indicating that the second source of variations of health curves comes from the
change of magnitude in health from the first 44 days to the remaining days. The third FPC explains 3.7% of the
total variation of health curves. The third FPC is negative in [21,66] and positive elsewhere. The third FPC can be
interpreted as the change of the health curves between in the middle stage [21,66] from the beginning stage [0,20]
and the end stage [67,90].

After obtaining the top FPCs, we can calculate the FPC scores using equation (12). Figure 4 shows the biplot of
the first two FPC scores, which represents a projection of the 2370 health curves to the two-dimensional space. We
then use the k-means clustering method18 to partition the two FPC scores into four clusters. The four clusters are
distinguished by four different symbols in Figure 4.

Figure 5 shows the mean curve, its 95% credible bands, and a sample of typical health curves for each cluster.
About 25.4% of the total patients, illustrated in the top left panel, have improving health. Then, about 4.9% of
the total patients, shown in the top right panel, have poor health—some have declining health and die. Around
19.7% of the patients, plotted in the bottom left panel, have stable moderate health. About 50.0% of the total
patients, shown on the bottom right panel, have been in stable good health condition during the 90 days with some
fluctuations.

The estimated health curves and the discovered patterns can be further used for health care practitioners and
policy-makers to more effectively distribute the funding for health services. Suppose we have a function of medical
expense CðhÞ for the health status h 2 ½0; 1�. We can compute the posterior mean and its 95% CI for the ith
patient’s expense at time t using CðX̂iðtÞÞðCðX̂i;0:025ðtÞÞ; CðX̂i;0:975ðtÞÞÞ. Health care practitioners can use this to
access if they are overtreating patients by comparing the observed expenses to the estimated expenses. Similarly,
we can estimate the average medical expenses for all individuals and for each cluster using the mean health curve

Figure 3. The estimated mean health curve and its 95% credible bands and the estimated top three FPCs for the health curves.
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Figure 4. Biplot of the first two FPC scores for 2370 health curves. Four symbols and colors represent four clusters based on the
two FPC scores.

Figure 5. A sample of the estimated health curves (normalized) in four clusters based on the k-means clustering using the first two
functional principal component scores. The mean curve and its 95% credible bands of each cluster are displayed by dash and dot lines,
respectively.
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in Figure 3 and the curves for each cluster in Figure 4, respectively. By carefully studying the relationship between
the medical expenses and patients’ health, it will save billions of dollars for unnecessary treatments and save more
lives for who are in need. However, these studies will require collecting and analyzing data about medical
expenses, which is out of the scope of this paper.

6 Simulation studies and sensitivity analysis

6.1 Simulation studies

In this section, we examine the performance of the proposed method via simulation studies.
We simulate 100 replicates of data sets under the same simulation setting to estimate bias, standard deviation,

and mean square error for each parameter estimate using our proposed method. In each simulated data set, we
simulate data of n¼ 200 subjects and m¼ 15 repeated measurements for each subject by mimicking the real stroke
data. The normalized health curves are generated as ~XiðtÞ ¼ lðtÞ þ

X3

k¼1
nik/kðtÞ, where the true mean function

lðtÞ and the FPCs /kðtÞ are set to the estimates from the real data, as shown in Figure 3. The FPC scores are
generated as nik �Nð0; kkÞ, where k1 ¼ 3; k2 ¼ 0:5, and k3 ¼ 0:3. We obtain the unnormalized health curves by
XiðtÞ ¼ xl þ ~XiðtÞðxu � xlÞ, where xl and xu are chosen to be the values used in the real data analysis. The latent
continuous variable Zij is generated using a normal distribution with mean, giðtijÞ ¼ XiðtijÞ þ b0þ
b1 � gender þ b2 � age, and variance r2 for i ¼ 1; . . . ; n, and j ¼ 1; . . . ;m. The covariate gender is generated from
a Bernoulli distribution with parameter 0.5, and the covariate age is generated from a uniform distribution from
35 to 100. The random effects bi are generated independently from a normal distribution with mean 0 and
variance 16. Then, we simulate the health care setting Yij for the ith individual at time tij as Yij ¼ k if
Zij 2 ðsk�1; sk�, for k ¼ 0; . . . ; J. Here, the threshold sj ¼ ðsj�1 þ ecjÞ=ð1þ ecjÞ, for 1 	 j 	 J� 2: The true param-
eter values are set to J¼ 6, c1 ¼ �1; c2 ¼ �1; c3 ¼ �0:5; c4 ¼ �0:5; r2 ¼ 1:1; b0 ¼ 0; b1 ¼ 1:5, and b2 ¼ �0:05,
where b1 and b2 are coefficients of gender and age, respectively.

For each data set, we set the priors as described in Section 5 and use the MCMC method introduced in Section
3 to estimate the model parameters. Table 1 provides a summary of the bias, standard deviation (SD), and mean
square error (MSE) for each parameter estimate. As shown in the table, almost all of the parameters are reason-
ably well estimated. The relatively large bias of c2 is attributable to the fact that only a very small number of data
points are generated for the first and second health care settings. We expect that the accuracy of estimation will
increase with the increase of the sample size.

In another scenario, sample curves are generated for n¼ 200 subjects; for each subject, there are m¼ 50

repeated measurements. We generate the normalized health curves from ~XiðtÞ ¼ lðtÞ þ
X3

k¼1
nik/kðtÞ, where

ni1 �Nð0; 3Þ; ni2 �Nð0; 0:5Þ and ni3�Nð0; 0:3Þ. The mean curve is lðtÞ ¼ ðt� 0:3mÞ2=ð2mÞ þ 0:4, and the three

FPCs are set to /1ðtÞ ¼ 0:1� ðt� 0:5mÞ2=ð400mÞ þ 0:001t; /2ðtÞ ¼ 0:15cosð3:14t=mÞ, and /3ðtÞ ¼ 0:15cos
ð6:28t=mÞ þ 0:05. We generate the two covariates, gender and age, in the same way as in the first scenario. The
random effects bi are generated independently from a normal distribution with mean 0 and variance 4. The true

parameter values that are used to generate data are c ¼ ð�1;�2;�0:4;�0:5Þ; r2 ¼ 0:64; b1 ¼ 0:2, and b2 ¼ �0:1.
We simulated the data fYijg in the same way as in the first scenario. Figure 6 shows the estimated health curves

(black solid) for several randomly selected individuals and their 95% credible bands, where the true health curves
are indicated by the red-dashed curves, and the corresponding simulated observations of health setting. The
estimated curves are close to the true ones. More results are provided in the Supplementary material.

Table 1. The biases, SDs), and MSEs for estimated parameters in the simulation study.

Parameter True Bias SD MSE

b1 1.5 0.291 0.890 0.878

B2 –0.05 –0.00424 0.0241 0.000599

C1 –1 –0.594 0.103 0.364

C2 –1 –0.131 0.0528 0.0200

C3 –0.5 –0.0122 0.0389 0.00166

C4 –0.5 0.0344 0.0382 0.00265

r2 1.1 0.0632 0.0608 0.00770

r2b 16 0.160 1.357 1.867
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6.2 Sensitivity analysis

In this section, we perform some sensitivity analysis to show that the results are robust to the choice of s0, sJ�1,

xu, and xl. Table 2 displays three settings of s0, sJ�1, xu, and xl used in the sensitivity analysis. The estimated-
parameter values are different; some of them are shown in Table 2. But the estimated health curves are

almost identical. Figure 7 shows health care settings versus the follow-up period for four randomly selected
individuals and the corresponding normalized estimated health curves under the three settings of s0, sJ�1, xu,
and xl.

7 Conclusion and discussion

We have proposed to estimate health curves by linking the smooth curves to the categorical settings of care using

an ordered probit model with Bayesian smoothing. Although the motivating problem is patients’ post-stroke

Figure 6. Left panel: the estimated health curves (black solid) for some randomly selected individuals and their 95% credible bands;
the true health curves are indicated by the red dashed curves. Right panel: the corresponding simulated observations of health setting.

Table 2. Settings of s0, sJ�1, xu, and xl in the sensitivity analysis and some estimated parameters.

Setting s0 sJ�1 xl xu b̂0 b̂1 b̂2

1 –1 1 –2 1.49 1.41 (1.18, 1.65) 0.19 (0.14, 0.27) –0.01 (–0.01, –0.01)

2 –5 1 –5 3.89 1.13 (0.71, 1.62) 0.25 (0.13, 0.41) –0.02 (–0.03, –0.02)

3 –10 1 –10 7.55 1.99 (1.21, 2.82) 0.70 (0.44, 0.94) –0.05 (–0.06, –0.04)
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health, the proposed approach has the potential to be applied to many applications with ordinal response variable

and an underlying hidden continuous process. For example, PROMs are becoming increasingly common as a

patient-centered measure of health. PROMs are brief surveys that ask respondents to answer a number of

questions regarding their self-assessed health, potentially administered on a longitudinal basis. In this potential

application, patients’ health is unobserved. However, numeric outcome scores generated by the surveys over time

may help to identify the risk of health deterioration.
Our method is not a trivial application of the MCMC approach for a probit model due to the identifiability

issue and the constraint by the special health status, death. Although it seems more complicated than some

alternative methods, it is more statistically sound at a little more price paid for the computation. One could

choose to analyze the ordinal data with metric models, but the real ordinal data do not have equal distance

between levels, and they are often strongly skewed, heavily tailed, or multi-model, which may violate the assump-

tions of a metric model. Liddell and Kruschke19 have demonstrated that ordinal models can provide better

description of the data and suggest to prefer ordinal models over metric model for ordinal data. In addition,

the outcome variable, settings for health care, not only depends on health but also depends on several important

confounding covariates, such as gender, age, and community. Therefore, direct smoothing will wrongly treat the

settings of health care as patients’ health and lead to misleading results.
After we obtain the estimated health curves, we could use them for all kinds of further analyses. We have

explained in detail how to use FPCA, a dimension reduction technique, to identify major variations in the

estimated health curves and to conduct clustering analysis based on the FPC scores. These results can be com-

bined with other information about the medical expenses to assist the health care practitioners and policy-makers

to smartly distribute the resources to avoid overtreat or undertreat the patients. For further work, alternative

parameterizations based on covariate-adjusted FPCA20–23 might provide additional insights into the trajectories

of patients’ health. We can conduct FPCA on a window sliding across time for prediction. Another direction is to

develop a spatial model that considers all the communities and their geographic variation to assist the policy-

makers to reallocate resources to areas with poorer health outcomes.
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Figure 7. Health care settings versus the follow-up period for four randomly selected individuals (a) and the corresponding
normalized estimated health curves (b–d) from settings 1–3, respectively.
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