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Abstract

Motivation: The combinatorial sequential Monte Carlo (CSMC) has been demonstrated to be an efficient comple-
mentary method to the standard Markov chain Monte Carlo (MCMC) for Bayesian phylogenetic tree inference using
biological sequences. It is appealing to combine the CSMC and MCMC in the framework of the particle Gibbs (PG)
sampler to jointly estimate the phylogenetic trees and evolutionary parameters. However, the Markov chain of the
PG may mix poorly for high dimensional problems (e.g. phylogenetic trees). Some remedies, including the PG with
ancestor sampling and the interacting particle MCMC, have been proposed to improve the PG. But they either can-
not be applied to or remain inefficient for the combinatorial tree space.

Results: We introduce a novel CSMC method by proposing a more efficient proposal distribution. It also can be com-
bined into the PG sampler framework to infer parameters in the evolutionary model. The new algorithm can be eas-
ily parallelized by allocating samples over different computing cores. We validate that the developed CSMC can
sample trees more efficiently in various PG samplers via numerical experiments.

Availability and implementation: The implementation of our method and the data underlying this article are avail-
able at https://github.com/liangliangwangsfu/phyloPMCMC.

Contact: lwa68@sfu.ca

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

The objective of phylogeny reconstruction methods is to recover
the evolutionary history of biological species or other entries. A
phylogenetic tree is latent, and typically estimated using the bio-
logical sequences (e.g. DNA sequences) observed at tips of the
tree. There is a rich literature on phylogenetic tree reconstruction.
Bayesian approaches are extremely popular for phylogenetic infer-
ence. In Bayesian phylogenetics (Drummond and Suchard, 2010;
Huelsenbeck and Ronquist, 2001; Lemey et al., 2009; Ronquist
et al., 2012; Ronquist and Huelsenbeck, 2003; Suchard and
Redelings, 2006), the goal of these methods is to compute a pos-
terior over a phylogenetic tree space. It is generally impossible to
obtain an explicit expression for this posterior as the exact calcu-
lation involves integrating over all possible trees. The standard in-
ference algorithm for Bayesian phylogenetics is Markov chain
Monte Carlo (MCMC). Many user-friendly software packages
have been developed for implementing MCMC for phylogenetic
inference, such as MrBayes (Ronquist et al., 2012), BEAST
(Bouckaert et al., 2019; Suchard et al., 2018) and BAli-Phy
(Suchard and Redelings, 2006).

Sequential Monte Carlo (SMC) algorithms are popular for infer-
ence in state-space models (Doucet et al., 2001; Liu, 2001), and can
be applied to more general settings (Del Moral et al., 2006). There is
a growing body of literature on phylogenetic tree reconstruction
based on SMC methods. Several SMC approaches (Bouchard-Côté
et al., 2012; Görür et al., 2012; Görür and Teh, 2009; Teh et al.,
2008) have been proposed to estimate clock trees and have been
demonstrated to be good alternatives to MCMC methods. These
SMC approaches define the intermediate target distributions over
forests over the observed taxa, and allow more efficient reuse of
intermediate stages of the Felsenstein pruning recursions. A com-
binatorial sequential Monte Carlo (CSMC) proposed in Wang et al.
(2015) extends the previous work to construct both the clock and
non-clock trees by correcting the bias in the particle weight update
in non-clock tree inference. Wang et al. (2015) also explored jointly
estimating phylogenetic trees and parameters in evolutionary model
in particle Metropolis Hastings framework. SMC algorithms have
also been applied to online phylogenetic inference scenarios, in
which the taxonomic data arrive sequentially in an online pattern
(Dinh et al., 2018; Fourment et al., 2017). Dinh et al. (2018)
explored the theoretical property of their online SMC for
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phylogenetic inference. Fourment et al. (2017) investigated the im-
portance of proposal distributions for SMC in online scenarios. In
addition, Everitt et al. (2020) explored a combination of reversible
jump methods with phylogenetic trees targeting the spaces of vary-
ing dimensions. Several SMC algorithms for inference in intractable
evolutionary models have been proposed (Hajiaghayi et al., 2014;
Smith et al., 2017). Hajiaghayi et al. (2014) developed SMC meth-
ods for Bayesian phylogenetic analysis based on infinite state-space
evolutionary models. Smith et al. (2017) developed an SMC algo-
rithm to jointly estimate phylogenetic tree and transmission net-
work. An annealed SMC proposed in Wang et al. (2020) can
adaptively determine the sequence of intermediate target distribu-
tions in the general SMC framework (Del Moral et al., 2006).

In the CSMC (Wang et al., 2015), the proposal distribution can
be more flexible than the one in Bouchard-Côté et al. (2012) to pro-
pose non-clock trees. However, the standard particle weight update
cannot be applied to non-clock tree reconstruction because it will fa-
vour trees that can be constructed in multiple ways, which is called
an overcounting issue, and therefore lead to biased estimates. We
provide an example to illustrate the overcounting issue in Figure 1a.
This overcounting issue in non-clock tree inference is corrected by
introducing a backward kernel in CSMC. This CSMC has been
shown to be a good alternative or a complementary method to
MCMC for general Bayesian phylogenetics.

Particle Markov chain Monte Carlo (PMCMC) (Andrieu et al.,
2010) is a general inference framework that combines SMC and
MCMC, which are two standard tools for Monte Carlo statistical infer-
ence. However, path degeneracy limits the usage of SMC in approxi-
mating high dimensional targets. This issue arises due to the fact that
the resampling step of SMC reduces the number of unique particles, as
particles with large weights will be duplicated and particles with small
weights will be pruned. This will lead to the results that SMC may use
one or very few number of unique particle trajectories to approximate
the target distribution. The path degeneracy issue can be mitigated by
using a large number of particles, but this may induce a high computa-
tional cost. One type of PMCMC is the particle Gibbs (PG) sampler.
PG iterates between sampling the static parameters and high dimen-
sional latent variables (e.g. phylogenetic trees). PG often suffers from a
serious drawback that the mixing of the Markov chain can be poor
when the path degeneracy exists in the underlying SMC. The underly-
ing SMC may degenerate to a pre-specified reference trajectory, such
that the latent variables may not be updated through Gibbs iterations.
PG with ancestor sampling (PGAs) was proposed in Lindsten et al.
(2014) to enable fast mixing of the PG kernel even with a small number
of particles in the underlying SMC to reduce the computational burden.
PGAs use a so-called ancestor sampling (AS) step to update the refer-
ence trajectory. Unfortunately, their proposed PGAs cannot be applied
to the discrete tree space, which will be explained in Supplementary
Figure S1 of Supplementary Section S5.1.

Our work is motivated by the need for an efficient CSMC that is
more robust to path degeneracy and can be utilized in the PGAs. In
Bayesian phylogenetics, the proposal distribution is important for
exploring the complex tree posterior distribution. For instance,
Fourment et al. (2017) has investigated different tree proposals in
SMC and found that a good proposal is essential to exploring the
posterior of trees. In this work, we focus on developing more

efficient proposal distributions in SMC for the combinatorial space
based on the CSMC in Wang et al. (2015).

We propose a novel CSMC algorithm with a novel proposal
called CSMC-RDouP, which will be explained in Section 3.2. The
proposed method provides an easy framework of constructing a more
flexible and efficient proposal based on a base proposal. A backward
kernel is proposed to correct the overcounting issue in CSMC-
RDouP. The consistency properties of the estimators are guaranteed
under weak conditions. The CSMC-RDouP is easy to parallelize by
allocating samples into different computing cores. Further, this new
CSMC can be combined with MCMC using various PG samplers to
jointly estimate the phylogenetic tree and the associated evolutionary
parameters. Our proposed method allows us to conduct ancestor
sampling, which will be discussed later in the manuscript, to improve
the mixing of PGs. We conduct a series of simulation studies to evalu-
ate the quality of tree reconstruction using a variety of CSMCs and
PGs. PG with CSMC-RDouP can estimate trees more accurately than
the one with a CSMC based on a base proposal. We also find that
interacting PMCMC (Rainforth et al., 2016) is more efficient than
PG sampler with a fixed computational budget.

2 Background and notation

We denote our observed biological sequence data by y. Let X be a
set of observed taxa. A phylogenetic X-tree t represents the relation-
ship among observed taxa via a tree topology and a set of branch
lengths. We only focus on the binary tree reconstruction. Let h de-
note the parameter in a nucleotide substitution model. The prior dis-
tribution of h and t are denoted by pðhÞ and pðtjhÞ respectively. The
likelihood of data y given t and h is denoted by pðyjt; hÞ. The joint
posterior of t and h is denoted by pðt; hÞ. We introduce the notation
cð�Þ to denote the unnormalized posterior density.

In Bayesian phylogenetics, our objective is to estimate the poster-
ior distribution of t and h,

pðh; tÞ ¼ pðyjh; tÞpðtjhÞpðhÞ
pðyÞ : (1)

Here, pðyÞ ¼
Ð Ð

pðyjh; tÞpðtjhÞpðhÞ dh dt is the marginal likeli-
hood of biological sequence data.

With a site independence assumption, the likelihood function
pðyjh; tÞ can be evaluated by Felsenstein pruning (Felsenstein, 1973,
1981), which involves the calculation of the probability of nucleo-
tide mutation given a fixed amount of evolution (i.e. the branch
length). We use a continuous-time Markov chain (CTMC) to model
the evolution of each site along each branch of t. There is rich litera-
ture about phylogenetic nucleotide substitution models, such as the
Jukes-Cantor (JC) model (Jukes et al., 1969), the Kimura 2-param-
eter (K2P) model (Kimura, 1980) and the general time reversible
(GTR) model (Rodriguez et al., 1990). The evolutionary model con-
sidered in this article is the K2P model. The rate matrix of the
CTMC for K2P model only has one unknown parameter, j, that
represents the ratio of transition to transversion. In this case, the
evolutionary model h ¼ j. See Supplementary Section S1 for details.

A common assumption in Bayesian phylogenetics is that the pri-
ors for h and t are independent, i.e. pðtjhÞ ¼ pðtÞ. A common prior
over non-clock trees consists of a uniform distribution on topologies
and a product of independent exponential distributions with rate k
on branch lengths. A commonly used prior for j in K2P model is an
exponential distribution with rate l0. We will use a coalescent tree
prior for clock trees.

The exact evaluation of the normalized posterior pðh; tÞ requires
computing the marginal likelihood p(y), which is generally intract-
able in phylogenetics. We review classical MCMC methods for
Bayesian phylogenetic inference in Supplementary Section S2 and
list all notations in Supplementary Table S2.

3 Phylogenetic tree inference

In this section, we assume that the parameter h in the nucleotide sub-
stitution model is known. We are interested in the posterior infer-
ence over phylogenetic trees pðtÞ.

Fig. 1. Illustration of the overcounting issues in (a) original CSMC. The partial state

ðA;BÞ; ðC;DÞ can be constructed in two different ways: by first merging A and B,

then merging C and D, or by first merging C and D, then merging A and B; (b) pro-

posed CSMC. The augmented partial state sr can be constructed in three different

ways. The two grey circles of each augmented partial state indicate the two subtrees

that are just merged
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3.1 Combinatorial sequential Monte Carlo
CSMC (Wang et al., 2015) is an SMC algorithm for general tree infer-
ence based on a graded partially ordered set (poset) on an extended com-
binatorial space. The essential idea of the CSMC algorithm is to
introduce a sequence of R intermediate states to construct the target
phylogenetic tree t incrementally. These R intermediate states are typical-
ly graded from ‘simple’ to ‘complex’. The CSMC algorithm sequentially
approximates these intermediate distributions efficiently. The last inter-
mediate distribution is the posterior of tree pðtÞ.

We use x1;x2; . . . ;xR to denote the sequence of intermediate
states. We call state xr a partial state of rank r. For example, a par-
tial state of rank r can be a phylogenetic forest over the observed
taxa, defined as a set of R� rþ 1 phylogenetic trees. We use the no-
tation Xr to denote the set of partial states of rank r, and define
X ¼ [Xr. We use the notation jxj to denote the number of trees in a
forest x. Recall that our interest is in inferring pðtÞ with cðtÞ. Here,
cðtÞ denotes an unnormalized pðtÞ. A natural extension from unnor-
malized posteriors on trees to the unnormalized posterior c on a for-
est is to take a product over the trees in the forest x as follows:

cðxÞ ¼
Y

ðti ;XiÞ2x
cyðXiÞðtiÞ; (2)

where ti denotes one tree i in forest x, Xi denotes the taxa of ti and
yðXiÞ denotes the data associated with Xi.

CSMC algorithms iterate between resampling, propagation and
re-weighting to propose samples of rank r from samples of rank r –
1. We let xr�1;k denote the kth particle of rank r – 1. First, we resam-

ple K times from the empirical posterior pr�1ðxÞ ¼PK
k¼1

Wr�1;kdxr�1;k
ðxÞ, where d is the delta function, and denote the

particles after resampling by ~xr�1;k; k ¼ 1; 2; . . . ;K. Second, we use

a proposal distribution �þ~x r�1;k
ð�Þ to propose samples xr;k from

~xr�1;k. Finally, we compute a weight update for each particle.

Figure 1a displays the overcounting issue for CSMC in non-clock
tree inference. As shown in the figure, one intermediate state (xr)
may have multiple ancestors (xr�1), which may lead to an inconsist-
ent estimator if a standard SMC weight update is used. Instead,
CSMC uses the following formula for the particle weight update:

wr;k ¼ ~wr�1;k �wð~xr�1;k;xr;kÞ; (3)

wð~xr�1;k;xr;kÞ ¼
cðxr;kÞ

cð~xr�1;kÞ
�
��xr;k
ð~xr�1;kÞ

�þ~x r�1;k
ðxr;kÞ

; (4)

where ~wr�1;k is the unnormalized particle weight from the previous
iteration, �� is a backward kernel to correct an overcounting prob-
lem in non-clock tree inference and �þ is the forward kernel that is
the proposal in the second step. It is shown in Wang et al. (2015)
that a CSMC with the weight update in (3) can provide a consistent
estimate of the posterior distribution.

The efficiency of the CSMC depends on several factors, including
the choice of proposal distributions and resampling schemes. This
paper will only focus on the proposal distributions. If the proposal
distribution is inefficient, the path degeneracy issue of SMC can be-
come serious when it is combined with MCMC in the framework of
PG. A simple proposal is to propose new samples through randomly
choosing a pair of subtrees to merge (i.e. picking a pair of trees in

~xr�1 uniformly at random among the
j~xr�1j

2

� �
pairs) and sample

new branch lengths. Note that these subtrees can also be singletons.
We will call this proposal the merge proposal and denote mþxðx0Þ for
the density of proposing x0 from x. This proposal is easy to imple-
ment but has some constraints. Figure 2 shows an example illustrat-
ing this constraint. If a clade (A, B) exists in the partial state ~xr�1,
we cannot propagate samples of partial states xr without this clade.
Consequently, we cannot propose fA; ðB; ðC;DÞÞg from
fðA;BÞ;C;Dg. This motivates us to develop a novel proposal distri-
bution that can improve the performance of CSMC and can be used
in PG methods.

3.2 CSMC with the RDouP proposal
We will improve the CSMC by constructing a novel and sophisti-
cated proposal based on its current proposal distribution. To distin-
guish the two proposals and their corresponding CSMC algorithms,
we will call the unimproved CSMC the vanilla CSMC and its pro-
posal distribution a base propagation or base proposal. Our new
proposal distribution is based on the base proposal and will be
called the RDouP proposal, short for Revert-Double-
BasePropagation, for a reason which is explained later in this sec-
tion. Correspondingly, the CSMC with the RDouP proposal is
named CSMC-RDouP.

The CSMC-RDouP algorithm will need a different sequence of
intermediate states, denoted by s1; s2; . . . ; sR. We call sr the rth aug-
mented (partial) state because it is based on the partial state in
Section 3.1. Recall that a base partial state x is a forest of trees with
subtrees ðti;XiÞ 2 x; i ¼ 1; . . . ; jxj. We let an augmented partial
state s be composed of a base partial state bðsÞ 2 X and some extra
information related to the base proposal. With the merge base pro-
posal, the extra information includes two trees that are children of
one of the trees in bðsÞ.

In CSMC-RDouP, we introduce R intermediate target distribu-
tions on the R augmented states. For the rth augmented state, sr, we
let cðsrÞ ¼ cðbðsrÞÞ, which is the unnormalized posterior distribution
for the forest bðsrÞ. And sr is of rank r, the same rank as bðsrÞ. We
use Sr to denote the set of augmented partial state of rank r, and de-
fine S ¼ [Sr.

Figure 3 presents an overview of the CSMC-RDouP algorithmic
framework. The CSMC-RDouP algorithm sequentially approxi-
mates pðsrÞ ðr ¼ 2; 3; . . . ;RÞ. The algorithm is initialized at rank
r¼1 by initializing the list with K copies of the least partial state s1

(a list of taxa without any connections among them) and an empty
set of trees that are most recently merged with the same weight.
Given a list of weighted particles of the partial state sr�1, the CSMC-
RDouP algorithm performs the following three steps to approximate
pðsrÞ: resampling, propagation and re-weighting.

Resampling: First, we conduct a resampling step to resample K

particles from the empirical distribution pr�1ðsÞ ¼
PK
k¼1

Wr�1;kdsr�1;k
ðsÞ

and denote the resampled particles by ~sr�1;1; ~sr�1;2; . . . ; ~sr�1;K. The
resampling step prunes particles with low weights. A list of equally
weighted samples is obtained after performing the resampling step.
Instead of conducting resampling at every SMC iteration, we resam-
ple particles in an adaptive fashion (Doucet and Johansen, 2011).
We compute a measure of particle degeneracy at every iteration, and
perform resampling only when the particle degeneracy exceeds a
pre-determined threshold. Effective sample size (ESS) is the standard
criteria for measuring the particle degeneracy. To make the algo-
rithm more efficient, we only resample when the relative effective
sample size (rESS) falls below a threshold. The rESS is defined as s

rESSðW�Þ ¼ ðK
PK
k¼1

W2
k Þ
�1, where W� represents a vector of length K

for the normalized particle weights.
Propagation: Second, we propagate a new particle of rank r,

denoted by sr;k from each of the resampled particle ~sr�1;k

(~sr�1;k ¼ sr�1;k if we do not conduct resampling at rank r – 1), using
a proposal distribution �þ~sr�1;k

: S ! ½0; 1�.
We construct a sophisticated proposal based on a base proposal

using three steps. The first step is to undo the last base proposal; the
second step is to conduct one base proposal; and the third step is to

Fig. 2. An example to illustrate the limitation of the merge proposal. If a clade (A,

B) exists in the partial state ~xr�1, we cannot propagate clade (B, (C, D)) in the par-

tial state xr using this merge proposal distribution
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do another base proposal and keep relevant information for undoing
this move later. In other words, the new proposal is based on revert-
ing the augmented partial state and then double implementing the
base propagation, called Revert-Double-BasePropagation (RDouP)
proposal.

To be more concrete, we will introduce some notation and use
the merge proposal as an example of the base proposal. The reverted
state of an augmented partial state, s ¼ fx; ðti;XiÞ; ðtj;XjÞg, is
obtained by removing the tree with two children (ti, Xi) and (tj, Xj)
from x, but keeping (ti, Xi) and (tj, Xj). That is,

.ðsÞ ¼ fx ððti;XiÞ; ðtj;XjÞÞg [ fðti;XiÞ; ðtj;XjÞg; (5)

where ððti;XiÞ; ðtj;XjÞÞ is the clade with children (ti, Xi) and (tj, Xj).
In contrast, we can reduce an augmented partial state to a base par-
tial state

bðsÞ ¼ x ¼ s fðti;XiÞ; ðtj;XjÞg: (6)

The probability density of proposing a new state sr;k from the
current state ~sr�1;k is denoted by �þ~sr�1;k

ðsr;kÞ. There are three steps in
propagating sr;k:

1. Find the reverted base state of the current augmented partial

state ~sr�1;k, denoted by .ð~sr�1;kÞ.
2. We first pick a pair of trees in .ð~sr�1;kÞ uniformly at random

among the ð j.ð~sr�1;kÞj
2

Þ pairs, and then sample the length of the

new branches. This state is denoted by fð~sr�1;kÞ.
3. We pick a pair of trees in. uniformly at random among the

jfð~sr�1;kÞj
2

� �
pairs, and sample the length of the new branches.

We also keep the two trees that are merged together with the pro-

gagated partial state. This step finishes the propagation of sr;k.

To ease the description of the algorithm, we call ~sr�1;k the
parent state of sr;k, and call .ð~sr�1;kÞ the reverted state of ~sr�1;k.

The lower panel of Figure 3 displays an example of proposing
sr;k from ~sr�1;k using the RDouP proposal based on the merge
proposal. In this example, we first find the reverted state of
fðA;BÞ;C;DÞ;A;Bg, which is fA;B;C;Dg. Then we merge B
and C, and merge (B, C) and A to form the augmented partial
state, fðA; ðB;CÞÞ;D;A; ðB;CÞg. The parent state of sr;k is ~sr�1;k,
and its reverted state is fð~sr�1;kÞ. s

The forward kernel in CSMC-RDouP has the following form:

�þ~sr�1;k
ðsr;kÞ ¼ rþ~sr�1;k

ð.ð~sr�1;kÞÞ �mþ.ð~sr�1;kÞðfð~sr�1;kÞÞ �m�
fð~sr�1;kÞ þðsr;kÞ;

(7)

where rþs ðxÞ is 1 if x is the reverted state of s, otherwise 0; mþxðx0Þ is
the density of proposing a base state x0 from a base state x; m�

xþðsÞ
is the density of proposing an augmented state s from a base state x.
Note that in m�

x þðsÞ, we propose an augmented state s from a base
state x by keeping the two trees that are most recently merged;
hence, m�

xþðsÞ ¼ mþxðbðsÞÞ, where bðsÞ is a base state reduced from
the augmented state s.

Re-weighting: Finally, we compute a weight for each of these
new particles using the same weight update formula in Equation (3)
in the vanilla version of CSMC because the RDouP proposal also
generates the overcounting issue. Figure 1b illustrates the overcount-
ing issue in CSMC-RDouP, where there are multiple ways to pro-
pose the same augmented partial state. Due to the overcounting
issue, a backward kernel is required in the weight update to obtain a
consistent estimate for the posterior distribution.

We propose to use the backward kernel as follows:

��sr;k
ð~sr�1;kÞ ¼ m�bðsr;kÞðfð~sr�1;kÞÞ �m�fð~sr�1;kÞð.ð~sr�1;kÞÞ � r�.ð~sr�1;kÞð~sr�1;kÞ;

(8)

where m�xðx0Þ > 0 if there are multiple ways proposing a base state
x0 from a base state x using mþ, and r�xðsÞ > 0 if x is the reverted
state of the augmented state s. We will show that this choice of
backward kernel can lead to asymptotically consistent estimates in
Supplementary Section S3.

By plugging (7) and (8) into (4), the incremental weight function
can be rewritten as

wð~sr�1;k; sr;kÞ ¼
cðsr;kÞ

cð~sr�1;kÞ

�
m�bðsr;kÞðfð~sr�1;kÞÞ �m�fð~sr�1;kÞð.ð~sr�1;kÞÞ � r�.ð~sr�1;kÞð~sr�1;kÞ
rþ~sr�1;k

ð.ð~sr�1;kÞÞ �mþ.ð~sr�1;kÞðfð~sr�1;kÞÞ �mþfð~sr�1;kÞðbðsr;kÞÞ
:

(9)

We construct a discrete positive measure using a list of weighted

particles at rank r, pr;KðsÞ ¼
PK
k¼1

Wr;kdsr;k
ðsÞ; foralls 2 S. In the end,

we obtain a Monte Carlo approximation pR;K of pðtÞ. Algorithm 1
summaries the CSMC-RDouP algorithm.

ASSUMPTION 1. For all s, s0 2 S; mþs ðs0Þ ¼ 0 implies m�s0 ðsÞ ¼ 0.

PROPOSITION 1. For all s; s0 2 S, if mþ and m– satisfy Assumption 1,

�þs ðs0Þ ¼ 0 implies ��s0 ðsÞ ¼ 0.

Proof. We have �þs ðs0Þ ¼ rþs ð.ðsÞÞ �mþ.ðsÞðfðsÞÞ �m
þ
fðsÞðbðs0ÞÞ. Since .ðsÞ is

the reverted state of s; rþs ð.ðsÞÞ ¼ 1. Hence �þs ðs0Þ ¼ 0 implies that either

mþ.ðsÞðfðsÞÞ ¼ 0 or mþfðsÞðbðs0ÞÞ is 0.

Based on the Assumption 1 on the base proposal, mþ.ðsÞðfðsÞÞ
implies m�fðsÞð.ðsÞÞ ¼ 0, and mþfðsÞðbðs0ÞÞ implies m�bðs0ÞðfðsÞÞ¼0.
Hence, either m�fðsÞð.ðsÞÞ ¼ 0 or m�bðs0ÞðfðsÞÞ ¼ 0. Since
��s0 ðsÞ ¼ m�bðs0ÞðfðsÞÞ �m�fðsÞð.ðsÞÞ � r�.ðsÞðsÞ, we have ��s0 ðsÞ ¼ 0.

PROPOSITION 2. If for all s; s0 2 S; �þs ðs0Þ ¼ 0 implies ��s0 ðsÞ ¼ 0, the

CSMC-RDouP provides asymptotically consistent estimates. We

have

Fig. 3. An overview of the CSMC-RDouP framework. A set of partial states is kept

at each SMC iteration. A positive-valued weight is associated with each partial state.

Given a list of weighted particles of the partial state sr�1, the CSMC-RDouP algo-

rithm performs the following three steps to approximate pðsrÞ: (i) resample to prune

particles with small weights, (ii) propose a new partial state through the RDouP pro-

posal and (iii) compute the weights for new particles. The lower panel of the figure

provides an example of the proposal. The two grey circles of each particle indicate

the two subtrees that are just merged
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XK

k¼1

WR;k/ðsR;kÞ !
ð

pR;kðsÞ/ðsÞds as K!1;

where the convergence is in L2 norm, and / is a target function under

mild conditions. For example, / is a bounded function.

By construction, the RDouP proposal will induce a ranked poset
defined on S such that s0 covers s if and only if wðs; s0Þ > 0. In this
poset structure, an augmented partial state s is deemed to precede
another augmented partial state s0 if s0 can be reached by obtaining
the reverted state of s followed by conducting two times of the base
proposal and keeping the two trees that are merged in the second
merge proposal. Consequently, the proposed CSMC-RDouP is with-
in the framework of CSMC in Wang et al. (2015) and the consist-
ency of posterior estimates is guaranteed by Proposition 2 in it. We
refer readers to Wang et al. (2015) for the proof of consistency.

In Supplementary Section S3, we explain the weight update for
clock trees and non-clock trees in detail.

4 Joint estimation of phylogenetic tree and
evolutionary parameter

4.1 Particle Gibbs sampler
In a more realistic scenario, h is also an unknown parameter that
requires us to estimate given data. We study the PG sampler, a
Gibbs-type algorithm that iterates between sampling t and h. Given
a tree t, we use one Metropolis-Hastings step to sample h from
pðhjtÞ. Given h, a conditional CSMC-RDouP algorithm (described in
Supplementary Section S4) is used to approximate pðtjhÞ. The main

difference between the CSMC-RDouP algorithm and the conditional
version is that in the latter, one of the particle trajectories is pre-
specified, which is called the reference trajectory. This reference tra-
jectory cannot be pruned in the resampling step. The resulting
Markov chain of PGs will leave the target distribution invariant for
an arbitrary number of particles used in the conditional CSMC-
RDouP. Without loss of generality, we assume the first particle tra-
jectory s1:R;1 to be the reference trajectory, denoted by s�1:R. In PGs,
we first use one Metropolis-Hastings step to update the parameter h,
and then conditional on this h, we sample a particle trajectory from
the approximated posterior of phylogenetic forests by running the
conditional CSMC-RDouP. This sampled trajectory will be the ref-
erence trajectory of the conditional CSMC-RDouP in the next PG it-
eration. We iterate these two steps until the convergence is achieved.
We summarize the algorithm of PGs in Supplementary Section S4.

4.2 Particle Gibbs sampler with ancestor sampling
In PG, the reference trajectory is kept intact throughout the CSMC-
RDouP algorithm. This may lead to slow mixing of the PGs algorithm
when path degeneracy exists. We investigate PG with ancestor sam-
pling (PGAs) (Lindsten et al., 2014) to improve the mixing of PG sam-
plers. The basic idea of PGAs is to include an ancestor sampling step in
the conditional CSMC-RDouP algorithm to update the reference trajec-
tory. If the reference trajectory is updated through the ancestor sam-
pling step, the particle system may degenerate to a new trajectory other
than the reference trajectory. We illustrate the implementation of the
ancestor sampling step in Supplementary Section S5.1.

4.3 Interacting particle Markov chain Monte Carlo
Another type of the PG algorithm, interacting particle Markov chain
Monte Carlo (IPMCMC) (Rainforth et al., 2016), is considered to
improve the mixing of a PG sampler. In IPMCMC, a pool of stand-
ard and conditional CSMC-RDouP algorithms are interacted to de-
sign an efficient proposal for tree posterior. The interaction of
conditional and standard CSMC-RDouP algorithms is achieved by
communicating their marginalized likelihoods. The algorithmic de-
scription of IPMCMC is displayed in Supplementary Section S5.2.
The standard and conditional CSMC-RDouP can be allocated into
different computing cores to achieve parallelization.

5 Simulation studies

We assess the performance of the CSMC-RDouP method with simu-
lation studies and provide main findings in this section. Please refer
to Supplementary Section S6 for details.

We first emphasize a comparison of the vanilla CSMC and the
proposed CSMC-RDouP in terms of computational speed. We find
that the relative runtime of CSMC-RDouP compared with CSMC is
about 1.4. The computational speed of CSMC-RDouP is lower than
that of the vanilla CSMC. This is expected as the proposal in the
vanilla CSMC is simpler, while in our new proposal we have to use
one move to find the reverted state and merge twice to propose the
new partial state. The weight update function in CSMC-RDouP al-
gorithm is also more complicated.

method CSMC CSMC−RDouP

0.02
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0.08

1 3 10 30
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0.1

0.2

0.3

0.4

1 3 10 30
#taxa = 40

0.5

1.0

1.5

1 3 10 30
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Fig. 4. Comparison of CSMC and CSMC-RDouP as a function of number of (1000)

particles in three scenarios: 10 taxa (left), 40 taxa (middle), 100 taxa (right). The x-

axis represents the number of a thousand particles. The four levels of K (number of

particles) from left to right of each panel for CSMC-RDouP are 1� 103; 3�
103; 1� 104 and 3� 104 respectively. The four levels of K from left to right of each

panel for vanilla version of CSMC are 1:5� 103; 4:5� 103; 1:5� 104; 4:5� 104

respectively. The y-axis represents the Robinson Foulds metric

Algorithm 1: RDouP CSMC

htbp]

1: Inputs: (a) Prior over augmented partial states pðsÞ; (b)

Likelihood function pðyjs; hÞ; (c) Threshold of the rESS:

�.

2: Outputs: Approximation of the posterior distribution,P
k WR;kdsR;k

ð�Þ � pð�Þ.
3: Initialize SMC iteration index: r 1.

4: for k 2 f1; . . . ;Kg do

5: Initialize particles with the least partial state.

6: Initialize weights: w1;k  1; W1;k  1=K.

7: end for

for rank r 2 f2; . . . ;Rg do

8: if rESSðWr�1;�Þ < � then

9: Resample the particles.

10: for k 2 f1; . . . ;Kg do

11: Reset particle weights: ~wr�1;k ¼ 1; ~W r�1;k ¼ 1=K.

end for

12: else

13: for k 2 f1; . . . ;Kg do

14: ~wr�1;k ¼ wr�1;k; ~sr�1;k ¼ sr�1;k.

end for

end if

15: for all k 2 f1; . . . ;Kg do

16: Sample particles sr;k � �þ~sr�1;k
ð�Þ, using one revert move to

find .ð~sr�1;kÞ, and two base proposals to propose fð~sr�1;kÞ
and sr;k.

Update weights according to Equation (3).

end for

end for
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We also compare the vanilla CSMC and the proposed CSMC-
RDouP in terms of the tree reconstruction quality. The majority-rule
consensus tree is used to summarize the weighted samples of phylo-
genetic trees (Felsenstein, 1981). We use the Robinson-Foulds (RF)
metric based on sums of differences in branch lengths metric
(Robinson and Foulds, 1979) to measure the distance between the
estimated trees and true trees. From Figure 4, we conclude that the
tree reconstruction accuracy increases with incremental numbers of
particles. For larger trees, the reconstruction quality provided by the
CSMC-RDouP is higher than the vanilla CSMC with a fixed compu-
tational budget, while the vanilla CSMC is better than CSMC-
RDouP for trees with a small number of taxa.

We conducted another experiment to investigate the perform-
ance of the vanilla CSMC and CSMC-RDouP in PGs and IPMCMC,
as a function of the number of particles. We also investigated the
performance of PGAs with CSMC-RDouP. Figure 5 displays the
comparison of PGs and IPMCMC with vanilla version of CSMC
(IPGs, PGs) and CSMC-RDouP (IPGs-RDouP, PGs-RDouP) as a
function of number of particles. For both PGs and IPMCMC with
the vanilla CSMC, the log-likelihood of majority-rule consensus tree
and RF metric do not improve if we increase K. PGs, IPMCMC and
PGAs with CSMC-RDouP perform better in terms of the log-
likelihood and RF metric. If we increased K, the log-likelihoods in-
crease and RF metrics decrease. The log-likelihood and RF metric
provided by PGs, IPMCMC and PGAs with CSMC-RDouP are
close.

To understand the poor performance of the vanilla CSMC in the
PG samplers, we investigate the ESS in the conditional CSMC algo-
rithm, which is the main component of PG. Table 1 lists the mean
ESS (0.025-quantile, 0.975-quantile) from all the iterations of the
conditional CSMC algorithms using 100 runs of PGs, PGs-RDouP,
PGAs-RDouP, respectively, for 3 scenarios. Although the mean ESS

is generally larger in the vanilla conditional CSMC than that in the
conditional CSMC-RDouP, there is a large percentage of cases in
which the ESS is exactly equal to 1 (see the line with ‘ESS¼1’ in
Table 1), even when the number of taxa is as small as 7.
Consequently, the Markov chain will get stuck at the same tree top-
ology as the reference trajectory and hardly move. In contrast, all
the ESS values are larger than 1 in both PGs-RDouP and PGAs-
RDouP. The Markov chains are able to explore different tree topol-
ogies rather than the one on the reference trajectory.

We also find that, with a fixed computational cost, high values
of K are more important than the number of PGs iterations. In add-
ition, the computing speed of CSMC-RDouP can increase notably
from parallelization. See Supplementary Section S6 for details.

6 Real data analysis

We analyze two real datasets of DNA sequences. We assume the
K2P model for evolutionary process, and make the clock assumption
for trees (t). We consider the inference of t and h via PG sampler,
and evaluate the tree construction quality using the log-likelihood
function of majority-rule consensus tree.

The first real dataset we analyze is a set of DNA sequences for
nine primates (Brown et al., 1982). In each DNA sequence, there are
888 sites. As we have investigated in Section 5, with a fixed compu-
tational budget, the number of particles (K) is more important than
the number of MCMC iterations (N) in improving the mixing of al-
gorithm. We fix the number of MCMC iterations N¼5000, and
vary K to investigate the estimation by IPGs-RDouP and PGs.
Table 2 displays the log-likelihood of the consensus tree provided by
IPGs-RDouP and PGs with different number of particles. We select
four levels of K for PGs, K ¼ 1000; 2000;5000;10 000. We set the
total number of nodes for running conditional CSMC and CSMC
algorithms to be twice as the number of nodes running conditional
CSMC (M ¼ 2P), and set M¼4. We set K for PGs 4 times as large
as each worker of IPMCMC, to guarantee fixed computational
budgets for the two methods. For each algorithm, we repeat 10
times.

Table 2 displays the log-likelihood (mean and standard devi-
ation) of the consensus tree obtained from PGs and PGs-RDouP,
with different numbers of particles; each case is repeated 10 times
with different initialization of evolutionary parameters and trees.
The mixing of PG chains is poor even with K¼10 000. Multiple
chains with different initializations do not converge to the same
posterior distribution. The mixing of PGs-RDouP is improving
when we increase the value of K. The log-likelihood gets higher
and the standard deviation of log-likelihood decreases when we
increase K. The PGs-RDouP chain mixes well when K¼10 000.
Multiple chains with different initializations converge to the same
posterior distribution. The mean and standard deviation for the
posterior mean of h for 10 replications provided by PGs-RDouP
are 3.68 and 0.0094, respectively. For one run of IPGs-RDouP,
the posterior mean and 95% credible interval of h are 3.69 and
ð3:23; 4:23Þ respectively.

In addition, we run PGs-RDouP and PGAs using K¼10 000 and
N¼5000. For comparison, we also run MrBayes for 5� 107 itera-
tions. The log-likelihood of the consensus tree provided by MrBayes
is –5601.4. The majority-rule consensus tree provided by IPGs-
RDouP, PGs-RDouP, PGAs and MrBayes are the same, as displayed
in Supplementary Figure S6 of Supplementary Section S7.

The second real data analysis is presented in Supplementary
Section S7.

Fig. 5. Comparison of PGs and IPMCMC with the vanilla CSMC (IPGs, PGs) and

CSMC-RDouP (IPGs-RDouP, PGs-RDouP), PGAs with CSMC-RDouP (PGAs) as a

function of number of particles. The x-axis represents number of particles. The three

levels from left to right are 200, 500 and 1000, respectively. The y-axis of represents

the log likelihood of the consensus tree and Robinson Foulds metric

Table 1. ESS (0.025-quantile, 0.975-quantile) in the conditional

CSMC algorithms of PGs, PGs-RDouP and PGAs-RDouP

No. of taxa 7 10 10

Sequence length 500 2000 2000

K 20 000 10 000 20 000

PGs 128 (1.000, 247) 21 (1.000, 85) 63 (1.000, 208)

ESS¼ 1 0.6% 33.3% 11.1%

PGs-RDouP 112 (1.094, 520) 18 (1.011, 110) 42 (1.014, 295)

PGAs-RDouP 112 (1.953, 517) 19 (1.014, 110) 41 (1.043, 300)

Table 2. Log-likelihood of consensus trees provided by PGs and IPGs-RDouP, with mean (standard deviation), with varying numbers of

particles

K 1000 2000 5000 10 000

PGs �8424.1 (594.5) �8247.0 (723.2) �8333.8 (789.5) �7930.9 (549.9)

IPGs-RDouP �5626.8 (1.9) �5611.4 (1.7) �5580.6 (1.3) �5553.8 (1.3)
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7 Conclusion

We have proposed a CSMC method with an RDouP proposal.
Instead of randomly choosing a pair of trees to combine, we first
use a revert step to find the reverted state of the current state,
then in each merge step we randomly choose a pair of trees to
combine. This proposal can benefit the exploration of tree pos-
terior distribution. Our experimental results indicate that the
RDouP proposal can improve the performance of CSMC, and
this improvement can be enlarged when the number of taxa
increases. The framework of CSMC-RDouP is also easy to paral-
lelize. This makes the proposed CSMC more scalable to large
DNA datasets compared with traditional Bayesian methods, such
as MCMC.

Since SMC is a non-iterative algorithm, particles that fail to survive
in the current iteration will not have a chance to come back to be part
of the future enlarged particles. Consequently, path degeneracy is inevit-
able for SMC algorithms. This issue becomes more serious in condition-
al SMC algorithms. Therefore, methods that can mitigate the path
degeneracy issue are crucial for improving the performance of SMC and
the corresponding PG samplers. Our proposed novel RDouP proposal
provides a simple but effective way to reduce the path degeneracy issue
for the combinatorial SMC algorithms. The idea is to allow one chance
to regret the particle propagation by undoing the last propagation and
then redoing the propagation twice. Note that although our method
was motivated and illustrated using the phylogenetic applications, it can
also be applied to other cases in which the CSMC is used. Also, the
RDouP proposal can be based on other proposal distributions besides
the simple merge proposal.

We have presented a PG sampler, a hybrid of CSMC-RDouP
and Gibbs sampler to estimate evolutionary parameters jointly
with the phylogenetic trees. We have demonstrated the path de-
generacy issue in the vanilla version of CSMC can be greatly
mitigated in CSMC-RDouP. Consequently, CSMC-RDouP can be
used in the PG for phylogenetics, which previously suffers from
the problem of poor mixing of the Markov chain. Moreover,
CSMC-RDouP can be used in more advanced PG samplers,
including but not limited to PG with ancestor sampling and
IPMCMC to achieve further improvements.

The consistency property of CSMC-RDouP holds when number
of particles K goes to infinity. However, K cannot be made arbi-
trarily large in practice due to the memory limit. In addition, the
computational costs of CSMC-RDouP increases linearly with num-
ber of particles K. A small value of K may induce large bias for
SMC estimates. Hence, it is important to select a proper value of
K. Doucet et al. (2015) suggest selecting K that the standard devi-
ation of the log-likelihood estimate is around one so that the
asymptotic variance of the resulting PMCMC estimates is minimized
with a fixed computational cost.

There are several possible directions to refine this method-
ology. First, we could explore more ways to allow the particles
to undo the previous particle propagation. For example, we can
use a different base proposal distribution, and we can revert the
particles by undoing two steps of the base propagation. A se-
cond direction is to incorporate MCMC moves in CSMC-
RDouP in a way that is described in Doucet and Johansen
(2011) to further mitigate the path degeneracy issue by jittering
the particles. Asymptotic variance of the SMC estimator was
studied in Chopin (2004) under different resampling schemes,
and displayed that advanced resampling schemes can reduce the
variance of estimators. Another line of future work is to propose
a computationally efficient resampling scheme, which is both
unbiased and admits lower asymptotic variance for discrete tree
spaces (Fearnhead and Clifford, 2003).
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