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Abstract.—We describe an “embarrassingly parallel” method for Bayesian phylogenetic inference, annealed Sequential Monte
Carlo (SMC), based on recent advances in the SMC literature such as adaptive determination of annealing parameters. The
algorithm provides an approximate posterior distribution over trees and evolutionary parameters as well as an unbiased
estimator for the marginal likelihood. This unbiasedness property can be used for the purpose of testing the correctness of
posterior simulation software. We evaluate the performance of phylogenetic annealed SMC by reviewing and comparing
with other computational Bayesian phylogenetic methods, in particular, different marginal likelihood estimation methods.
Unlike previous SMC methods in phylogenetics, our annealed method can utilize standard Markov chain Monte Carlo
(MCMC) tree moves and hence benefit from the large inventory of such moves available in the literature. Consequently,
the annealed SMC method should be relatively easy to incorporate into existing phylogenetic software packages based
on MCMC algorithms. We illustrate our method using simulation studies and real data analysis. [Marginal likelihood;
phylogenetics; Sequential Monte Carlo.]

INTRODUCTION

The Bayesian paradigm is widely used in systematic
biology, principally for the purpose of phylogenetic
reconstruction as well as for evaluating the empirical
support of evolutionary models (Chen et al. 2014). Both
of these tasks, Bayesian phylogenetic reconstruction
and model selection, involve an intractable sum over
topologies as well as a high-dimensional integral
over branch lengths and evolutionary parameters.
Consequently, Markov chain Monte Carlo (MCMC)
methods have been widely used in the past 20 years
to approximate posterior distributions defined over the
space of phylogenetic trees (Rannala and Yang 1996).

Despite their success, MCMC phylogenetic methods
are still afflicted by two key limitations, hence motivating
the need for alternative approximations method for
posterior distributions over phylogenetic trees.

Firstly, MCMC methods do not readily take advantage
of highly parallel computer architectures. This is
problematic in the current context as progress in
computational power mostly comes in the form
of parallelism gains. Although there are techniques
available to parallelize phylogenetic MCMC methods,
they are generally not “embarrassingly parallel”: for
example, parallel Metropolis coupled MCMC (Altekar
et al. 2004) may reach a point where the addition of
cores actually reduces sampling efficiency (Atchadé et al.
2011).

A second challenge with MCMC-based phylogenetic
approximations arises in the context of model selection.
By comparing the marginal likelihood Z=p(y), where
y denotes observed data, under different models,
one can approach scientific questions under the
Bayesian framework while naturally taking into account
differences in model complexity. More specifically, the
ratio r=p1(y)/p2(y) of two marginal likelihoods based

on two evolutionary models, p1(·),p2(·), can be used to
assess the strength of evidence y provides for p1 (when
r>1) or p2 (when r<1). The ratio r is called the Bayes
factor (Jeffreys 1935; Lartillot et al. 2006; Oaks et al. 2018).
In the context of phylogenetics, the Bayes factor assesses
how much support a set of sequencing data provides for
one evolutionary model against another one.

Several methods have been proposed to estimate
marginal likelihoods based on MCMC methods (Newton
and Raftery 1994; Gelman and Meng 1998; Friel and
Pettitt 2008, inter alia), including work tailored to the
phylogenetic context (Huelsenbeck et al. 2004; Lartillot
et al. 2006; Fan et al. 2010; Xie et al. 2010). However these
methods all have different drawbacks, see for example
the aptly named review, “Nineteen dubious ways to
compute the marginal likelihood of a phylogenetic
tree topology” (Fourment et al. 2018b). Moreover,
one limitation shared by all MCMC-based marginal
likelihood estimators is that they are generally biased (in
the technical sense of the term as used in computational
statistics, reviewed in the theory section of the paper)—
unless one is able to initialize the MCMC chains to
the exact stationary distribution, which in practice is
not possible. We argue that in certain scenarios, it can
be useful to have unbiased methods. One example we
elaborate on is for the purpose of a new test to ascertain
correctness of posterior simulation software. Another
class of examples comes from the burgeoning field of
pseudo-marginal methods (Andrieu and Roberts 2009).

Sequential Monte Carlo (SMC) methods (see Doucet
and Johansen 2011 for an accessible introduction to
SMC) provide a flexible framework to construct unbiased
estimators and past work has shown they can be
very efficient in a phylogenetic context (Teh et al.
2008; Görür and Teh 2009; Bouchard-Côté et al. 2012;
Görür et al. 2012; Wang et al. 2015; Everitt et al. 2016;
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Dinh et al. 2017; Smith et al. 2017; Fourment et al. 2018a).
One drawback caused by the high degree of flexibility
that comes with SMC is that the phylogenetic SMC
algorithms developed so far are non-trivial to adapt to
existing MCMC-based phylogenetic frameworks. Here,
we propose a different construction based on the seminal
work of Del Moral et al. (2006), in turn based on annealed
importance sampling (AIS) (Neal 2001), which yields
an SMC method which is in a sense much closer to
standard MCMC, while providing unbiased estimators
of the marginal likelihood. The proposed method, which
we call phylogenetic annealed SMC, can directly make
use of any existing phylogenetic MCMC proposals, a
rich literature covering many kinds of phylogenetic trees
(Rannala and Yang 1996; Yang and Rannala 1997; Larget
and Simon 1999; Mau et al. 1999; Li et al. 2000; Holder
and Lewis 2003; Rannala and Yang 2003; Höhna et al.
2008; Lakner et al. 2008; Höhna and Drummond 2012). It
is easy to incorporate the proposed annealed SMC into
existing phylogenetic software packages that implement
MCMC algorithms, such as RevBayes (Höhna et al. 2016)
or BEAST (Drummond and Rambaut 2007). At the same
time, our method can leverage state-of-the-art advances
in the field of adaption of SMC algorithms, making the
algorithm fully automated in most cases.

Our implementation of the proposed method is
available at https://github.com/liangliangwangsfu/
annealedSMC. All our experimental setups and
results are available at https://github.com/shijiaw/
AnnealingSimulation. The algorithms described
here are also available in the Blang probabilistic
programming language https://github.com/
UBC-Stat-ML/blangSDK, which supports a small
but growing set of phylogenetic models.

LITERATURE REVIEW

There is a growing body of work on SMC-based
Bayesian phylogenetic inference. Indeed, a powerful
feature of the general SMC framework (Del Moral et al.
2006) is that the space on which the distributions �r are
defined is allowed to vary from one iteration to the next.
All previous work on SMC methods for phylogenetics
has exploited this feature for various purposes reviewed
here.

In one direction, several “bottom up” approaches (Teh
et al. 2008; Görür and Teh 2009; Bouchard-Côté et al. 2012;
Görür et al. 2012; Wang et al. 2015) have been proposed
to allow more efficient reuse of intermediate stages of
the Felsenstein pruning recursions. For these methods,
the intermediate distributions are defined over forests
over the observed taxa, and hence their dimensionality
increases with r. These methods are most effective in
clock or nearly clock trees. For general trees, it is typically
necessary to perform additional MCMC steps, which
makes it harder to use in the context of estimation of
marginal likelihoods.

In a related direction, Dinh et al. (2017) and Fourment
et al. (2018a) use a sequence of targets where �r is a tree

over the first r tips. This construction is especially useful
in scenarios where taxonomic data come in an online
fashion.

Another use case of SMC methods in phylogenetics
arises from Bayesian analysis of intractable evolutionary
models. For example, SMC has been used for Bayesian
phylogenetic analysis based on infinite state-space
evolutionary models (Hajiaghayi et al. 2014) or for joint
inference of transmission networks (Smith et al. 2017).

Finally, a concurrent line of work (Everitt et al. 2016)
has explored a combination of reversible jump methods
with phylogenetic models.

One drawback of letting the dimensionality of �r
vary with r as all the above methods do, is that
it makes it significantly harder to incorporate SMC
into existing Bayesian phylogenetic inference packages
such as MrBayes (Huelsenbeck and Ronquist 2001),
RevBayes, or BEAST. In contrast, in our method the
target distributions �r are all defined over the same
space. The annealed SMC framework in this context
utilizes Metropolis-Hastings kernels in the inner loop
but combines them in a different fashion compared with
standard MCMC algorithms, or even compared with
parallel tempering MCMC algorithms.

SETUP AND NOTATION

We let t denote a phylogenetic tree with tips labeled by
a fixed set of operational taxonomic units X. The variable
t encapsulates the tree topology and a set of positive
branch lengths. Our methodology is directly applicable
to any class of phylogenetic trees where MCMC proposal
distributions are available. This includes for example
clock trees (Höhna et al. 2008) as well as nonclock trees
(Lakner et al. 2008).

We let � denote evolutionary parameters, for example
the parameters of a family of rate matrices such as the
general time reversible (GTR) model (Tavaré 1986), or
diffusion parameters in the case of continuous traits
(Lemey et al. 2010). Again our method is applicable to
any situation where MCMC proposals are available for
exploring the space of �. We use x= (t,�) to denote these
two latent variables.

We let y denote observed data indexed by the tips X
of t. We assume a likelihood function p(y|x) is specified
such that for any hypothesized tree and parameters, the
value p(y|x) can be computed efficiently. This assumption
is sometimes called pointwise computation. This is a
typical assumption in Bayesian phylogenetics, where this
computation is done with some version of Felsenstein
pruning (Felsenstein 1973, 1981) (an instance of the
Forward-Backward algorithm; Forney 1973).

Finally, let p(x) denote a prior on the parameters and
trees, which we assume can also be computed pointwise
efficiently. This defines a joint distribution, denoted
�(x)=p(x)p(y|x). We ignore the argument y from now on
since the data are viewed as fixed in a Bayesian analysis
context.

D
ow

nloaded from
 https://academ

ic.oup.com
/sysbio/article/69/1/155/5484767 by Sim

on Fraser U
niversity user on 28 M

arch 2021

https://github.com/liangliangwangsfu/annealedSMC
https://github.com/liangliangwangsfu/annealedSMC
https://github.com/shijiaw/AnnealingSimulation
https://github.com/shijiaw/AnnealingSimulation
https://github.com/UBC-Stat-ML/blangSDK
https://github.com/UBC-Stat-ML/blangSDK


Copyedited by: YS MANUSCRIPT CATEGORY: Systematic Biology

[11:31 20/11/2019 Sysbio-OP-SYSB190028.tex] Page: 157 155–183

2020 WANG ET AL.—AN ANNEALED SMC FOR BAYESIAN PHYLOGENETICS 157

We are interested in approximating a posterior
distribution on x given data y, denoted:

�(x)= �(x)∫
�(x′)dx′ . (1)

Here the integral and dx′ are viewed in an abstract
sense and include both summation over discrete latent
variables such as topologies and standard integration
over continuous spaces.

The denominator can be interpreted as the marginal
likelihood under the model specified by the prior and
likelihood functions, which we denote by Z:

Z=p(y)=
∫
�(x)dx. (2)

Computation of this quantity, also called the
normalization constant or evidence, is the main
challenge involved when doing Bayesian model
selection.

Other quantities of interest include expectations with
respect to the posterior distribution, characterized by
a real-valued function of interest f based on which we
would like to compute∫

�(x)f (x)dx. (3)

For example if we seek a posterior clade support for a
subset X′ ⊂X of the leaves X,

f (x)= f (t,�)=1[t admits X′ as a clade],
where 1[s] denotes the indicator function which is equal
to one if the Boolean expression s is true and zero
otherwise.

ANNEALED SMC FOR PHYLOGENETICS

Sequences of Distributions
In standard MCMC methods, we are interested

in a single probability distribution, the posterior
distribution. However, there are several reasons why we
may use a sequence of distributions rather than only one.

A first possibility is that we may have an online
problem, where the data are revealed sequentially and
we want to perform inference sequentially in time based
on the data available so far. The distribution at step r
is then the posterior distribution conditioning on the
first r batches of data. This approach is explored in the
context of phylogenetics in Dinh et al. (2017), where a
batch of data consists in genomic information for one
additional operational taxonomic unit. We do not pursue
this direction here but discuss some possibilities for
combinations in the discussion.

A second reason for having multiple distributions, and
the focus of this work, is to facilitate the exploration of
the state space. This is achieved for example by raising
the likelihood term to a power �r between zero and one,

which we multiply with the prior

�r(x)=p(y|x)�r p(x). (4)

MCMC may get stuck in a region of the space of
phylogenetic trees around the initial value. This may
happen for example around a local maximum (mode)
in the posterior density. Such a region is sometimes
called a “basin of attraction,” and no single basin of
attraction may be enough to well represent the full
posterior distribution. Introducing a series of powered
posterior distributions can alleviate this issue. A small
value of �r flattens the posterior and makes MCMC
samplers move easily between the different basins of
attractions. The samples are initially overly dispersed but
are then coerced into the posterior distribution �(x) by
slowly increasing the annealing parameter �r.

We do not anneal the prior to ensure that �r(x) has a
finite normalization constant,∫

�r(x)dx=Ep(x)[(p(y|X))�r ]

≤
(
Ep(x)[p(y|X)]

)�r=(p(y)
)�r <∞,

where the first inequality follows from the concavity of
(·)�r and Jensen’s inequality.

A third scenario is that we may encounter a “tall
data” problem, for example biological sequences with a
large number of sites. When the number of sites is large,
evaluation of the unnormalized posterior �r(x) defined
in Equation (4) is computationally expensive. The idea of
data subsampling (Quiroz et al. 2018a, 2018b; Bardenet
et al. 2017; Gunawan et al. 2018) could be used to define
the sequence of distributions. The construction of the
sequence of distributions is described in Appendix 1.

The probability distributions

�r(x)= �r(x)∫
�r(x′)dx′ (5)

are therefore well defined and we denote their respective
normalization constants by

Zr=
∫
�r(x)dx. (6)

If the exponent �r is zero, then the distribution �r
becomes the prior which is often easy to explore and
in fact independent samples can be extracted in many
situations. At the other extreme, the distribution at
power �r=1 is the distribution of interest.

The intermediate distributions {�r}r=1,...,R are defined
on a common measurable space (X ,E). The annealed
SMC is a generalization of the standard SMC method
(Doucet et al. 2001). In standard SMC, the intermediate
distributions are defined on a space of strictly increasing
dimension.
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Basic Annealed SMC Algorithm
We now turn to the description of annealed SMC

in the context of Bayesian phylogenetic inference. The
algorithm fits into the generic framework of SMC
samplers (Del Moral et al. 2006): at each iteration, indexed
by r=1,2,...,R, we maintain a collection indexed by
k∈{1,2,...,K} of imputed latent states xr,k , each paired
with a non-negative number called a weight wr,k ;
such a pair is called a particle. A latent state in our
context consists in a hypothesized tree tr,k and a set
of evolutionary parameters �r,k , i.e. xr,k= (tr,k,�r,k). In
contrast to previous SMC methods, xr,k is always of the
same data type: no partial states such as forest or trees
over subsets of leaves are considered here.

A particle population consists in a list of particles
(xr,·,wr,·)={(xr,k,wr,k) :k∈{1,...,K}}. A particle
population can be used to estimate posterior
probabilities as follows: first, normalize the weights,
denoted after normalization using capital letter,
Wr,k=wr,k/

∑
k′wr,k′ . Second, use the approximation:∫
�r(x)f (x)dx≈

K∑
k=1

Wr,kf (xr,k). (7)

For example, if we seek a posterior clade support for a
subset X′ ⊂X of the leaves X, this becomes

K∑
k=1

Wr,k1[sampled tree tr,k admits X′ as a clade].

The above formula is most useful at the last SMC
iteration, r=R, because �R coincides with the posterior
distribution by construction.

At the first iteration, each of the particles’ tree and
evolutionary parameters are sampled independently
and identically from their prior distributions. We
assume for simplicity that this prior sampling
step is tractable, a reasonable assumption in many
phylogenetic models. After initialization, we therefore
have a particle-based approximation of the prior
distribution. Intuitively, the goal behind the annealed
SMC algorithm is to progressively transform this prior
distribution approximation into a posterior distribution
approximation.

To formalize this intuition, we use the sequence of
distributions introduced in the previous section. The
last ingredient required to construct an SMC algorithm
is an SMC proposal distribution Kr(xr−1,k,xr,k), used to
sample a particle for the next iteration given a particle
from the previous iteration. Because xr−1,k and xr,k have
the same dimensionality in our setup, it is tempting to
use MCMC proposals qr(xr−1,k,xr,k) in order to build
SMC proposals, for example, subtree prune and regraft
moves, and Gaussian proposals for the continuous
parameters and branch lengths. Indeed, there are several
advantages of using MCMC proposals as the basis of
SMC proposals. First, this means, we can leverage a rich
literature on the topic (Rannala and Yang 1996; Yang
and Rannala 1997; Larget and Simon 1999; Mau et al.

1999; Li et al. 2000; Holder and Lewis 2003; Rannala
and Yang 2003; Höhna et al. 2008; Lakner et al. 2008;
Höhna and Drummond 2012). Second, it makes it easier
to add SMC support to existing MCMC-based software
libraries. Third, it makes certain benchmark comparison
between SMC and MCMC more direct, as we can then
choose the set of moves to be the same for both. On the
flip side, constructing MCMC proposals is somewhat
more constrained, so some of the flexibility provided by
the general SMC framework is lost.

Naively, we could pick the SMC proposal directly from
an MCMC proposal, Kr(xr−1,k,xr,k)=qr(xr−1,k,xr,k).
However, doing so would have the undesirable property
that the magnitude of the fluctuation of the weights of
the particles from one iteration to the next, ‖Wr−1,·−
Wr,·‖, does not converge to zero when the annealing
parameter change �r−�r−1 goes to zero. This lack
of convergence to zero can potentially cause severe
particle degeneracy problems, forcing the use of a
number of particles larger than what can be realistically
accommodated in memory (although workarounds
exist, e.g. Jun and Bouchard-Côté 2014). To avoid this
issue, we follow Del Moral et al. (2006) and use as
SMC proposal the accept–reject Metropolis-Hastings
transition probability based on qr (called a Metropolized
proposal), reviewed in Algorithm 1.

Algorithm 1 Accept–reject Metropolis-Hastings
algorithm

1. Propose a new tree and/or new evolutionary
parameters, x∗r ∼qr(xr−1,·). �
For example, using a nearest neighbor interchange,
and/or a symmetric normal proposal on branch
lengths and/or evolutionary parameters.

2. Compute the Metropolis-Hastings ratio based on �r:

�r(xr−1,x∗r )=min
{

1,
�r(x∗r )q(x∗r ,xr−1)
�r(xr−1)q(xr−1,x∗r )

}
.

3. Simulate u∼U(0,1).
4. if u<�r(xr−1,x∗r ) then
5. xr=x∗r . � Output the proposal x∗r .
6. else
7. xr=xr−1. � Output the previous state xr−1.

The key point is that a theoretical argument (reviewed
in the Appendix 2) shows that provided that (1)
Kr has stationary distribution �r (which is true by
construction, a consequence of using the Metropolis-
Hastings algorithm) and (2) we use the weight formula:

wr,k= �r

�r−1
(xr−1,k), (8)

then we obtain a valid SMC algorithm, meaning that
the key theoretical properties expected from SMC hold
under regularity conditions, see Theoretical Properties
section.

In the important special case where �r(xr) is equal to
the prior times an annealed likelihood, we obtain

wr,k=[p(y|xr−1,k)]�r−�r−1 . (9)
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As hoped, the update shown in Equation (9) has
the property that weight fluctuations vanish as the
annealing parameter difference �r−�r−1 goes to zero.
This will form the basis of the annealing parameter
sequence adaptation strategies described in the next
section. But for now, assume for simplicity that the
number of iterations R and the annealing schedule �r,
r∈{1,...,R} is prespecified. For example, a simple choice
for the annealing parameter sequence (Friel and Pettitt
2008) is �r= (r/R)3, where R is the total number of SMC
iterations. In this case, the difference between successive
annealing parameters is (3r2−3r+1)/R3. An annealed
SMC with a larger value of R is computationally more
expensive but has a better performance.

In contrast to other SMC algorithms, the annealed
SMC algorithm does not require pointwise evaluation
of the proposal Kr(xr−1,k,xr,k), that is, given xr−1,k
and a sampled xr,k , we do not need to compute the
numerical value of Kr(xr−1,k,xr,k) as it does not appear
in the weight update formula, Equation (8). This point
is important, because for Metropolis-Hastings kernels,
pointwise evaluation would require computation of
a typically intractable integral under the proposal in
order to compute the total probability of rejection.
The theoretical justification as to why we do not need
pointwise evaluation of Kr is detailed in Appendix 2.

In practice, many proposals are needed to modify
different latent variables and to improve mixing. We give
in Appendix 3 the list of MCMC proposals we consider.
Let qi

r, i=1,...,M, denote the various proposals, and Ki
r

the corresponding Metropolized transition probabilities.
We need to combine them into one proposal Kr. To ensure
that condition (1) above is satisfied, namely that Kr obeys
global balance with respect to �r, use the following
property (Tierney 1994; Andrieu et al. 2003): if each of
the transition kernels {Ki},i=1,...,M, respects global
balance with respect to �, then the cycle hybrid kernel∏M

i=1Ki and the mixture hybrid kernel
∑M

i=1piKi,
∑M

i=1pi=
1, also satisfy global balance with respect to�. The global
balance condition,

∫
�r(x)Kr(x,x′)dx=�r(x′), ensures

that the Markov chain encoded by Kr admits �r as a
stationary distribution. In practice, the mixture kernel is
implemented by randomly selecting Ki with probability
pi at each iteration (Andrieu et al. 2003).

We can now introduce in Algorithm 2 the simplest
version of the annealed SMC, which alternates between
reweighting, propagating, and resampling. Figure 1
presents an overview of the annealed SMC algorithmic
framework. In the proposal step, we propose new
particles through MCMC moves (typically Metropolis-
Hastings moves). Finally, we use resampling to prune
particles with small weights. A list of unweighted
particles is obtained after the resampling step.

In the annealed SMC algorithm, note that the
weighting and proposal steps can be interchanged.
This is different from standard SMC algorithms, where
in general the proposal has to be computed before
weighting. This interchange is possible because in
the annealed SMC algorithm, the weighting function,

Equation (8), only depends on particles from the
previous iteration and not from those just proposed as
in standard SMC algorithms. This flexibility will come
handy when designing adaptive schemes.

Algorithm 2 The simplest version of annealed SMC
algorithm (for pedagogy)

1. Inputs:
2. (a) Prior over evolutionary parameters and trees,

p(x), where x= (�,t);
3. (b) Likelihood function p(y|x);
4. (c) Sequence of annealing parameters 0=�0<�1<···<�R=1.
5. Outputs: Approximation of the posterior

distribution,
∑

k W̃R,k�x̃R,k (·)≈�(·).
6. Initialize SMC iteration index: r←0.
7. Initialize annealing parameter: �r←0.
8. for k∈{1,2,...,K} do
9. Initialize particles x0,k← (�0,k,t0,k)∼p(·).

10. Initialize weights to unity: w0,k←1.
11. for r∈{1,2,...R} do
12. for k∈{1,2,...,K} do
13. Sample particles x̃r,k∼Kr(xr−1,k,·); Kr is a �r-

invariant Metropolis-Hastings kernel.
14. Compute unnormalized weights:

wr,k=[p(y|xr−1,k)]�r−�r−1 .
15. if r<R then
16. for k∈{1,2,...,K} do
17. Resample the particles: xr,k∼∑

k′ W̃r,k′�x̃r,k′ (·).
18. else
19. No resampling needed at the last iteration.
20. Return the particle population x̃r,·,W̃r,·.

Before moving on to more advanced versions of the
algorithm, we provide first some intuition to motivate
the need for resampling. Theoretically, the algorithm
produces samples from an artificial distribution with
state spaceX×X×···×X =X R (this is described in more
detail in Appendix 2). However, since we only make
use of one copy of X (corresponding to the particles
at the final SMC iteration), we would like to decrease
the variance of the state at iteration R (more precisely,
of Monte Carlo estimators of functions of the state at
iteration R). This is what resampling for iteration r<
R achieves, at the cost of increasing the variance for
the auxiliary part of the state space r<R. From this
argument, it follows that resampling at the last iteration
should be avoided.

When resampling is performed at every iteration but
the last, an estimate of the marginal likelihood, p(y),
is given by the product of the average unnormalized
weights, namely:

ẐK :=
R∏

r=1

1
K

K∑
k=1

wr,k. (10)
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FIGURE 1. An overview of the annealed SMC algorithmic framework for phylogenetic trees. The algorithm iterates the following three steps:
(1) compute the weights using samples from the previous iteration, (2) perform MCMC moves to propose new samples, and (3) resample from
the weighted samples to obtain an unweighted set of samples.

ADAPTIVE MECHANISMS FOR ANNEALED SMC
We discuss how two adaptive schemes from the SMC

literature can be applied in our Bayesian phylogenetic
inference setup to improve the scalability and usability
of the algorithm described in the previous section. The
first scheme relaxes the assumption that resampling is
performed at every step, and the second is a method
for automatic construction of the annealing parameter
sequence. The two mechanisms go hand in hand
and we recommend using both simultaneously. The
combination yields Algorithm 3 which we explain in
detail in the next two subsections.

The two adaptive mechanisms make theoretical
analysis considerably more difficult. This is a common
situation in the SMC literature. A common work-around
used in the SMC literature is to run the algorithm twice,
a first time to adaptively determine the resampling and
annealing schedules, and then a second independent
time using the schedule fixed in the first pass. We call
it debiased adaptive annealed SMC.

Measuring Particle Degeneracy Using Relative
(Conditional) Effective Sample Size

Both adaptive methods rely on being able to assess the
quality of a particle approximation. For completeness,

we provide more background in Appendix 5 on the
notions of effective sample size (ESS) and conditional
ESS (CESS), a recent generalization which we use here
(Zhou et al. 2016). The notion of ESS in the context of IS
or SMC is distinct from the notion of ESS in the context
of MCMC. The two are related in the sense of expressing
a variance inflation compared with an idealized Monte
Carlo scheme but they differ in the details. We will
assume from now on that ESS refers to the SMC context.

We will use a slight variation of the definition of ESS
and CESS where the measures obtained are normalized
to be between zero and one. Some tuning parameters
of the adaptive algorithms are easier to express in this
fashion. We use the terminology relative (conditional)
ESS to avoid confusion. Motivated by the analysis of
the error of Monte Carlo estimators, the key measure
of particle degeneracy needed in the following is the
relative CESS:

rCESS(W,u)=
⎛⎝ K∑

k=1

Wkuk

⎞⎠2/ K∑
k=1

Wku2
k, (11)

where W= (W1,W2,...,WK) is a vector of weights of a
set of reference weighted particles being updated using
a vector of non-negative values u= (u1,u2,...,uK). What
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Algorithm 3 An adaptive annealed SMC algorithm
1. Inputs: (a) Prior over evolutionary parameters and

trees p(x), where x= (�,t); (b) Likelihood function
p(y|x).

2. Outputs: (a) Approximation Z of the marginal
data likelihood, Z≈p(y)=∫ p(dx)p(y|x); (b)
Approximation of the posterior distribution,∑

k W̃R,k�x̃R,k (·)≈�(·).
3. Initialize SMC iteration index: r←0.
4. Initialize annealing parameter: �r←0.
5. Initialize marginal likelihood estimate: Z←1.
6. for k∈{1,2,...,K} do
7. Initialize particles with independent samples:

x0,k← (�0,k,t0,k)∼p(·).
8. Initialize weights to unity: w0,k←1.
9. for r∈{1,2,...} do

10. Determine next annealing parameter:
�r=NextAnnealingParameter(xr−1,·,wr−1,·,
�r−1).

11. for k∈{1,...,K} do
12. Compute pre-resampling unnormalized

weights: w̃r,k=wr−1,k[p(y|xr−1,k)]�r−�r−1 .
13. Sample particles x̃r,k∼Kr(xr−1,k,·); Kr is a �r-

invariant Metropolis-Hastings kernel.
14. if �r=1 then
15. update Z← (Z/K)·∑k w̃r,k , then return

updated Z and particle population x̃r,·,W̃r,·.
16. else
17. if particle degeneracy is too severe, i.e.

rESS(W̃r,·)<� then
18. Update marginal likelihood estimate, Z←

(Z/K)·∑k w̃r,k .
19. Resample the particles.
20. for k∈{1,...,K} do
21. Reset particle weights: wr,k=1.
22. else
23. for k∈{1,...,K} do
24. wr,k= w̃r,k ; xr,k= x̃r,k . � No

resampling is needed.

W and u specifically represent will be explained in the
next subsection.

Having a high rCESS value is a necessary but not
sufficient condition for a good SMC approximation.
If it is low during some of the intermediate SMC
iterations, then the ESS at the final iteration may not
be representative of the true posterior approximation
quality.

Dynamic Resampling
As explained in Basic Annealed SMC Algorithm

section , the construction of the proposal guarantees
that as the difference �r−�r−1 goes to zero, the
fluctuation of the weights vanishes. In this context
(of having small weight updates), resampling at every

iteration is wasteful. Fortunately, SMC algorithms can
be modified to forgo a subset of the resampling
steps. From a theoretical stand-point, this is achieved
by “grouping” the SMC proposals when they are
not separated by a resampling round (and grouping
similarly the intermediate distributions �r). For example,
to resample every other round, use a transformed
SMC algorithm with proposal K′r/2(xr,(xr+1,xr+2))=
Kr+1(xr,xr+1)Kr+2(xr+1,xr+2), for each even r. For
convenience, this can be implemented as an algorithm
over R iterations instead of R/2, with two modifications:
first, when resampling is skipped, we multiply the
weights; otherwise, we reset the weights to one after
resampling. This is implemented in Lines 12 and 21
of Algorithm 3. Second, we only use the weights
corresponding to resampling rounds in the estimate
of the marginal likelihood (Equation (10)). This is
implemented in Lines 15 and 18 of Algorithm 3.

Instead of specifying in advance the subset of
iterations in which resampling should be performed, it
is customary in the SMC literature to determine whether
to resample in an adaptive fashion (Doucet and Johansen
2011). To do so, the standard approach is to compute a
measure of particle degeneracy at every iteration, and to
perform resampling only when the particle degeneracy
exceeds a predetermined threshold. In Appendix 4,
we empirically compare the performance of adaptive
annealed SMC algorithm with different resampling
thresholds. All our numerical experiments use the
multinomial resampling method, but we recommend
more advanced schemes such as stratified resampling
(Douc and Cappé 2005).

The standard measure of particle degeneracy used for
this purpose is called the relative ESS, defined as:

rESS(W̃r,·)=
⎛⎝K

K∑
k=1

W̃2
r,k

⎞⎠−1

. (12)

The above formula can be shown to be a special
case of rCESS, Equation (11), as follows. Let r∗ denote
the iteration of the latest resampling round preceding
the current iteration r. This implies Wr∗,k=1/K for
all k. Plugging in the weight update uk= w̃r,k into
Equation (11), we obtain

rCESS(Wr∗,·,w̃r,·)=
⎛⎝ K∑

k=1

1
K

w̃r,k

⎞⎠2/ K∑
k=1

1
K

w̃2
r,k

= 1
K

(∑K
k=1w̃r,k

)2

∑K
k=1w̃2

r,k

=
⎛⎝K

K∑
k=1

W̃2
r,k

⎞⎠−1

.
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Adaptive Determination of Annealing Parameters
Our sequence of intermediate artificial distributions

�r as defined in Equation (4) is determined by the
choice of the annealing schedule, {�r}, or equivalently,
by choosing the successive differences �r−�r−1. Ideally,
the sequence of intermediate distributions changes
gradually from the prior distribution (�0=0) to the
posterior distribution (�R=1) so that the propagated
particles from the current iteration can well approximate
the next intermediate distribution.

In practice constructing such a sequence {�r}r=1,...,R
is difficult and inconvenient. Not only the number of
distributions R to get a certain accuracy may depend
on the number of taxa, the number of sites, and
the complexity of the evolutionary model, but also
the optimal spacing between consecutive annealing
parameters is in general non-regular. To alleviate this,
in the following we borrow an adaptive strategy
from the Approximate Bayesian Computation literature
(Del Moral et al. 2012), also generalized to Bayesian
model selection in Zhou et al. (2016).

The adaptive annealing scheme is based on two
observations. First, our discrete set of intermediate
distributions �1,�2,...,�R are actually continuously
embedded into a continuum of distributions indexed
by �∈[0,1]. Second, in the SMC algorithm presented
in Algorithm 2, the weight update, Line 14, depends
only on xr−1 (whereas in general SMC algorithms, the
weight update could depend on both xr−1 and xr;
here it does not because of cancellation explained in
Appendix 2). The consequence of the lack of dependence
on xr is that we can swap the order of proposal
(Line 13) and particle weighting (Line 14) in Algorithm
2. So instead of computing the weights only for one
predetermined annealing parameter �r, we can search
over several tentative values. For each tentative value,
we can score the choice using a measure of weight
degeneracy applied to the putative weights. Crucially,
each choice can be quickly scored without having to
propose particles, which is key since proposals are
typically the computational bottleneck: in a phylogenetic
context, the cost of one proposal step scales linearly in
the number of sites whereas the search over �r proposed
in this section has a running time constant in the number
of sites and taxa. This is because the search involves fixed
values of p(y|xr−1,k) cached from the last proposal step,
which are exponentiated to different values.

Based on these observations, we select an annealing
parameter � such that we achieve a controlled increase
in particle degeneracy, namely such that

g(�)=�g(�r−1), (13)

where the function g : [�r−1,∞)→[0,1] is defined as

g(�)=rCESS
(

Wr−1,·,p(y|xr−1,·)�−�r−1
)
,

and �∈ (0,1) is a tuning parameter, which in practice is
close to 1. By construction, g(�r−1)=1, so Equation (13)
is equivalent to g(�)=�.

More precisely, since we want �∈[0,1], the
annealing parameter adaptation procedure,
NextAnnealingParameterm (Algorithm 4), is designed
to return �r=1 if g(1)≥�. Otherwise, because there is
no closed-form solution for � in Equation (13), we use
bisection to solve this one-dimensional search problem
in the interval �∈ (�r−1,1) (Line 7 of Algorithm 4).

We now argue that the search problem in Line 7
of Algorithm 4 always has a solution. Indeed, g is
a continuous function with, on the left end of the
search interval, g(�r−1)=1, and on the right end, g(1)<�
(otherwise the algorithm sets �r=1 in Line 5). It follows
that there must indeed be an intermediate point �∗ with
g(�∗)=�. Note that continuity and the identification of
the left end point of the interval is possible thanks to
the form of our weight update in Equation (9), hence
justifying the earlier informal argument about the need
to have the fluctuation of the weights disappearing as
�r−�r−1 goes to zero.

As in the previous section on dynamic resampling,
NextAnnealingParameter is again based on relative
CESS, but this time, we are interested in the degeneracy
of a single iteration, i.e. we do not trace back until
the previous resampling step (because the optimization
over the annealing schedule can only impact the
current iteration). As a corollary, the previous iteration’s
particles are not always equally weighted, hence the
simplification in Equation (12) is not possible here and
we use the full formula for relative CESS.

Algorithm 4 Procedure NextAnnealingParameter

1. Inputs: (a) Particle population from previous SMC
iteration (xr−1,·,wr−1,·); (b) Annealing parameter
�r−1 of previous SMC iteration; (c) A degeneracy
decay target �∈ (0,1).

2. Outputs: automatic choice of annealing parameter
�r.

3. Initialize the function g assessing the particle
population quality associated to a putative annealing
parameter �:

g(�) = rCESS
(

Wr−1,·,p(y|xr−1,·)�−�r−1
)

=
(∑K

k=1Wr−1,kp(y|xr−1,k)�−�r−1
)2

∑K
k=1Wr−1,kp(y|xr−1,k)2(�−�r−1)

.

4. if g(1)≥� then
5. return �r=1.
6. else
7. return �r=�∗ ∈ (�r−1,1) such that g(�∗)=� via

bisection.

The parameter � used in Algorithm 4 encodes the
decay in particle population quality that we are aiming
for. Based on our experiments we recommend values
very close to one. For this reason, we reparameterize the
parameter � into �=1−10−	 and recommend a default
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value of 	=5 as a reasonable starting point. Increasing 	
improves the approximation accuracy.

Computational Complexity
The computational complexity of annealed SMC is

linear in both the number of intermediate distributions
R and the number of particles K. Naively, the resampling
step scales like O(K2), but a linear time multinomial
resampling algorithm is obtained by generating order
statistics via normalization of a Poisson process (Devroye
1986, Section 2.1, p. 214). This technique is well known
in the SMC literature (Doucet and Johansen 2011).
Alternatively, one can use stratified or systematic
resampling (Doucet and Johansen 2011), which provides
a simple to implement linear time resampling algorithm.

The memory consumption of annealed SMC is linear
in K and constant in R.

REVIEW OF OTHER MARGINAL LIKELIHOOD ESTIMATION

METHODS

For completeness, we review here some alternatives to
Equation (10) for estimating marginal likelihoods, which
we will compare to SMC from both a theoretical and
empirical stand-point.

Stepping Stone
The Stepping Stone (SS) algorithm (Xie et al. 2010) is a

method for marginal likelihood estimation. It is widely
used via its MrBayes implementation (Huelsenbeck and
Ronquist 2001). As with SMC, the SS method introduces
a list of annealed posterior distributions connecting the
posterior distribution and the prior distribution. We
use a notation analogous to SMC, with {�d}d=0,1,...,D
denoting the intermediate distributions, �d(x)∝�d(x)=
p(y|x)�d�(x), 0=�0<�1<�2< ···<�D=1. The marginal
likelihood Z can be written as

Z≡ZD=Z0

D∏
d=1

Zd
Zd−1

.

We can rewrite the ratio of Zd and Zd−1 as

Zd
Zd−1

=
∫

�d(x)
�d−1(x)

�d−1(x)dx. (14)

The SS method prescribes running several MCMC
chains targeting �d−1(x) to obtain N posterior samples
xd−1,1,xd−1,2,...,xd−1,N , then

Ẑd
Zd−1

= 1
N

N∑
i=1

{p(y|xd−1,i)}�d−�d−1 . (15)

The estimator of the marginal likelihood admits the form

ẐD=
D∏

d=1

1
N

N∑
i=1

{p(y|xd−1,i)}�d−�d−1 .

The number of intermediate distributions is a trade-off
between computing cost and accuracy. A larger number
of MCMC chains can provide a better approximation for
the marginal likelihood, but the computational cost will
be higher. To make fair comparison between the marginal
likelihood estimators provided by the annealed SMC
and SS, we set KSMCRSMC=NSSDSS. Another factor that
will impact the SS estimator is the choice of annealing
parameter sequence {�d}d=1,2,...,D. In this paper, we use
the annealing scheme �d= (d/D)1/a recommended by
Xie et al. (2010), where a is between 0.2 and 0.4.

Linked Importance Sampling
Stepping stone uses IS to approximate the ratio of

marginal likelihoods for two intermediate distributions.
However, the IS approximation would be poor if the two
successive distributions do not have enough overlaps.
Linked IS (Neal 2005) improves the performance of
IS by introducing bridge distributions, for example
“geometric” bridge: �d−1∗d(x)=√�d−1(x)�d(x). More
importantly, Linked Importance Sampling (LIS)
provides an unbiased marginal likelihood estimator.
The ratio of two marginal likelihoods can be written as

Zd
Zd−1

= Zd−1∗d
Zd−1

/
Zd−1∗d

Zd
=
{∫

�d−1∗d(x)
�d−1(x)

�d−1(x)dx
}/

{∫
�d−1∗d(x)
�d(x)

�d(x)dx
}
.

For d=1,...,D, to estimate the ratio Zd/Zd−1, we first run
MCMC targeting �d−1(x) to obtain N posterior samples
xd−1,1,xd−1,2,...,xd−1,N (when d=1, we sample from the
prior distribution). Then we sample the initial state of
�d. Two successive MCMC chains �d−1(x) and �d(x) are
linked by a state xd−1,
d−1 where index 
d−1 is sampled
from {1,2,...,N} according to the following probabilities:

p(
d−1|xd−1,1:N) = �d−2∗d−1(xd−1,
d−1 )

�d−1(xd−1,
d−1 )

/
N∑

i=1

�d−2∗d−1(xd−1,i)
�d−1(xd−1,i)

.

In case d=1, the linked state 
0 is uniformly sampled
from the N samples of �0(x). Finally, we run MCMC
chain �d(x) starting from initial state xd−1,
d−1 to obtain
N posterior samples xd,1,xd,2,...,xd,N . The ratio of two
marginal likelihoods can be approximated by

Ẑd
Zd−1

= Ẑd−1∗d
Zd−1

/
Ẑd−1∗d

Zd
=
{

1
N

N∑
i=1

�d−1∗d(xd−1,i)
�d−1(xd−1,i)

}/
{

1
N

N∑
i=1

�d−1∗d(xd,i)
�d(xd,i)

}
.
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In this article, we use the “geometric” bridge. Hence, the
estimator of ratio can be simplified to

Ẑd
Zd−1

=
{ N∑

i=1

{p(y|xd−1,i)}
�d−�d−1

2

}/{ N∑
i=1

{p(y|xd,i)}
�d−1−�d

2

}
.

We refer to Appendix 6 for more background on the LIS
algorithm.

THEORETICAL PROPERTIES

In this section, we review three theoretical properties
of interest, consistency, marginal likelihood estimate
unbiasedness, and asymptotic normality, with an emphasis
on their respective practical importance.

Properties of Annealed SMC
In the context of SMC algorithms, the first property,

consistency means that as the number of particles is
increased, the approximation of posterior expectations
can become arbitrarily close to the true posterior
expectation. This makes the approximation in
Equation (7) more precise:

K∑
k=1

Wr,kf (xr,k)→
∫
�r(x)f (x)dx as K→∞, (16)

provided f satisfies regularity conditions, for example
f is bounded, and where convergence of the random
variables holds for a set of random seeds having
probability one. See for example Wang et al. (2015).

Consistency can be viewed as the “bare minimum”
expected from modern SMC algorithms. A more
informative class of results consists in central limit
theorem equivalents of Equation (16). These results can
be used to assess the total variance of Monte Carlo
estimators (whereas measures such as ESS described
previously are local in nature), see Chan and Lai (2013).
However, since numerically stable versions of these
methods are still at their infancy (Olsson and Douc
2017), we will focus the remaining on the third property,
unbiasedness.

We say an estimator Ẑ for a constant Z is unbiased if
E[Ẑ]=Z. Here the expectation is defined with respect
to the randomness of the approximation algorithm.
This contrasts with the classical statistical definition of
unbiasedness in which the randomness comes from the
data generation process.

For SMC algorithms, unbiasedness holds in a more
restrictive sense compared with consistency. In general:

E

⎡⎣ K∑
k=1

Wr,kf (xr,k)

⎤⎦ �=∫ �r(x)f (x)dx, (17)

in other words, repeatedly running SMC with a fixed
number of particles but different random seeds and

averaging the results does not provide arbitrarily
precise approximations (the same negative result holds
with MCMC). However, if we restrict our attention
to marginal likelihood estimates, remarkably the
unbiasedness property does hold (Del Moral et al. 2006),
that is for any finite K, ẐK as defined in Equation (10) is
such that:

E

[
ẐK

]
=Z=

∫
�r(x)dx. (18)

More details on the unbiasedness of the marginal
likelihood SMC estimator and other theoretical
properties of annealed SMC can be found in Appendix
2, Unbiasedness, Consistency and Central Limit
Theorem subsection.

Although the notion of unbiasedness has been central
to frequentist statistics because its inception, only in
the past decade has it started to emerge as a property
of central importance in the context of (computational)
Bayesian statistics. Traditionally, the main theoretical
properties analyzed for a given Monte Carlo method Ẑ
estimating Z was consistency.

With the emergence of pseudo-marginal methods,
the bias of Monte Carlo methods is now under closer
scrutiny. Pseudo-marginal methods are MCMC methods
which replace probability factors in the Metropolis-
Hastings ratio by positive unbiased estimators of these
probabilities. For example, Andrieu et al. (2010) provide
examples where global parameters of state-space models
are sampled using an MCMC algorithm where the
probability of the data given the global parameters and
marginally over the latent states is estimated using an
SMC algorithm. We refer the reader to Andrieu and
Roberts (2009) for more examples where unbiasedness
is used to compose MCMC algorithms in order to
attack inference in complex models. In the context
of phylogenetic inference, this is useful for Bayesian
analysis of intractable evolutionary models, see for
example Hajiaghayi et al. (2014).

Another area where unbiasedness can play a role is
for checking correctness of Monte Carlo procedures.
In contrast to correctness checks based on consistency
such as Geweke (2004), which are asymptotic in nature
and hence necessarily have false positive rates (i.e. cases
where the test indicates the presence of a bug when in
fact the code is correct), checks based on unbiasedness
can achieve a false positive rate of zero, using the strategy
described in the next section.

Using Unbiasedness to Test Implementation Correctness
Typically, the algorithm shown in Algorithm 2 is

implemented in a model-agnostic fashion. Hence it is
reasonable to assume that we can construct test cases
on discrete state spaces. For example, one can use
phylogenetic trees with fixed branch lengths, or even
simpler models such as hidden Markov models (HMMs).
Furthermore, we conjecture that many software defects
can be detected in relatively small examples, where
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exhaustive enumeration is possible, and hence Z can
be computed exactly. We can determine sufficient
complexity of the examples to use via code coverage tools
(Miller and Maloney 1963).

We would like to test if equality of Equation (18)
holds for a given implementation. The right-hand
side can be computed easily because we assume the
example considered is small. To compute analytically
the expectation on the left-hand side, we use a method
borrowing ideas from probabilistic programming
(Wingate et al. 2011), and use an algorithm, called
ExhaustiveRandom that automatically visits all possible
execution traces �i of a given randomized algorithm.
The execution trace of a randomized algorithm refers
to a realization of all random choices in the algorithm
(in the context of SMC, both the resampling steps and
the proposal steps). ExhaustiveRandom enumerates all
the execution traces while also computing the respective
probability pi of each trace. This is done by performing
a depth first traversal of the decision tree corresponding
to the randomized algorithm being tested. The number
of execution traces grows exponentially fast but this is
still a useful tool as very small examples are generally
sufficient to reach code coverage.

For each execution trace �i, we can also obtain
the normalization estimate ẑi corresponding to that
trace, and hence get the value of the left-hand side
of Equation (18) as

∑
i piẑi. We used this check via

an open source implementation of ExhaustiveRandom
(https://github.com/alexandrebouchard/bayonet/blob
/1b9772e91cf2fb14a91f2e5e282fcf4ded61ee22/src/main/
java/bayonet/distributions/ExhaustiveDebugRandom.
java) to ensure that our software satisfies the
unbiasedness property. See the numerical simulation
section for details.

Properties of the SS Method
For the stepping stone method, the expected value

of Equation (15) depends on the nature of the samples
xd−1,1,xd−1,2,...,xd−1,N . If they are independent, the
procedure is unbiased. However, if the samples are
obtained from a Markov chain, there are no guarantees
that the procedure is unbiased unless the MCMC chain
is initialized at the exact stationary distribution. In
practice, this is not possible: Xie et al. (2010) use a
burned-in MCMC chain, which implies that the chain
is asymptotically unbiased, however for any finite number
of iterations, a bias remains. Unfortunately, the two
main motivations for unbiasedness (pseudo-marginal
methods and the correctness checks described earlier)
both require unbiasedness to hold for any finite number
of Monte Carlo samples; asymptotic unbiasedness is not
sufficient.

We show in the numerical simulation section an
explicit counterexample where we compute the non-zero
bias of the stepping stone method. This motivates the
need for implementable unbiased methods, such as the
annealed SMC method described in this work.

Comparison of Unbiased Marginal Likelihood Estimators
In Bayesian phylogenetics, the marginal likelihood

estimate is generally a very small number. Instead of
computing Ẑ directly, we compute the logarithm of
the marginal likelihood estimate, log(Ẑ). For SMC and
LIS, although Ẑ is an unbiased estimator, taking the
logarithm of Ẑ introduces bias. Jensen’s inequality shows
that log(Ẑ) is a biased estimator of log(Z), and is generally
underestimated,

E[log(Ẑ)]≤ log(E(Ẑ))= logZ.

This provides a tool to compare the performance of an
unbiased normalization constant estimation method m1
to another one m2. Suppose, we run each method M times
with different seeds and a fixed computational budget.
Let Li=

∑M
j=1 logẐi,j/M denote the average estimate of

the log marginal likelihood for the i-th method, where
Ẑi,j is the estimate with the j-th random seed using the
i-th method. If m2 is also unbiased then for M large
enough, both m1 and m2 underestimate logE[Z], and
the largest Li is closest to logE[Z], which determines the
best performing method. If m2 is not unbiased, then if
L1>L2 and M is large enough, we can conclude that m1
is superior (but we cannot confidently order the methods
if L2>L1).

However, the Monte Carlo counterparts of the
orderings should be considered with a pinch of salt
because the number of replicates M needed may be
intractable in some cases.

SIMULATION STUDIES

Simulation Setup and Tree Distance
In order to simulate data sets, we first generated a

set of random unrooted trees, including topology and
branch lengths, as the reference trees. The tree topology
was sampled from a uniform distribution. Each branch
length was generated from an exponential distribution
with rate 10.0.

Then, for each reference tree, we simulated DNA
sequences using the K2P model with parameter �=2.0
(Kimura 1980). Although the main focus of this work is
on marginal likelihood estimation, we also performed
some benchmarking on the quality of the inferred
trees. To do so, we used the majority-rule consensus
tree (Felsenstein 1981) to summarize the weighted
phylogenetic tree samples obtained from annealed SMC.
We measured the distance between each estimated
consensus tree to its associated reference tree using
three types of distance metrics: the Robinson-Foulds (RF)
metric based on sums of differences in branch lengths
(Robinson and Foulds 1979), the Kuhner-Felsenstein (KF)
metric (Kuhner and Felsenstein 1994), and the partition
metric (PM), also known as symmetric difference or
topology only RF metric (Robinson and Foulds 1981).
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a) b)

FIGURE 2. Graphical representation of (a) an HMM; (b) transitions between hidden states.
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FIGURE 3. Estimates of the log marginal likelihood based on 100 independent random seeds for each configuration. The axis label “nTemps”
refers to the number of equally spaced intermediate distributions (“inverse temperatures”). The black horizontal line shows the true value
computed using the forward-backward algorithm.

Hidden Markov Models
As discussed when we introduced the unbiasedness

correctness test, it is useful to perform some preliminary
experiments on finite state models. We used a HMM with
a finite latent state (see the graphical representations
of a HMM and hidden state transitions in Fig. 2). The
variables Xt shown in the figure are unobserved and
take on discrete values with a distribution depending
on the previous variable Xt−1. For each unobserved
variable, we define an observed variable Yt, also
discrete, with a conditional distribution depending on
Xt. The latent state space in our experiment was set
to {0,1,2,3,4} and latent transitions were set uniformly
across neighbor integers. The emissions we used take
two possible values with conditional probabilities given
by (0.2,0.8),(0.1,0.9),(0.01,0.99),(0.2,0.8), and (0.3,0.7).
The proposals were based on the Gibbs sampler on a
single variable. The posterior distribution of interest is
over the latent variables X1,X2,... given the observations
Y1,Y2,.... Of course, such a model would not normally
be approached using approximate inference methods.
Moreover, notice that this is a non-standard way of using
SMC for a sequential model where we do not make use
of the sequential structure of the model.

We first performed unbiasedness correctness tests on
a chain of length two based on three equally spaced
annealing parameters (0,1/2,1), and observations
(0,1). We first computed the true marginal likelihood,

0.345. Using the method described in the Theoretical
Properties section, we computed the exact value
of E[Ẑ] by exhaustive enumeration of all execution
traces for SMC and the SS method. For SMC with two
particles, the ExhaustiveRandom algorithm enumerated
1,992,084 traces resulting in an expectation of
0.34499999999999525. For SS with two MCMC iterations
per annealing parameter, the ExhaustiveRandom
algorithm enumerated 1,156,288 traces resulting in an
expectation of 0.33299145257312235. This supports
that SMC is unbiased and provides an explicit
counterexample of the bias of the stepping stone
method.

Second, we ran experiments on larger versions of the
same model, a chain of length 32, as well as with more
annealing steps and particles per step. In this regime,
it is no longer possible to enumerate all the execution
traces so we averaged over 100 realizations of each
algorithm instead. The true marginal likelihood can still
be computed using a forward-backward algorithm. We
show the results in Figure 3.

Comparison of Marginal Likelihood Estimates
In this section, we benchmark the marginal likelihood

estimates provided by adaptive annealed SMC
(ASMC), debiased adaptive annealed SMC (DASMC),
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FIGURE 4. Marginal likelihood (in log scale) estimates for different numbers of taxa with a fixed computational budget.

TABLE 1. Number of annealing parameters
(RSMC) for ASMC with K=1000 and 	=5

#taxa 5 10 15 20 25

RSMC 1932 3741 5142 6047 7219

deterministic annealed SMC (DSMC), LIS, and SS.
In DASMC, the annealing scheme was determined
before running annealed SMC using the same annealing
parameters obtained from the ASMC. In DSMC, we used
the annealing scheme �r= (r/R)3 with a predetermined
R.

In the first experiment, we focus on evaluating the
marginal likelihood estimates using ASMC, DASMC,
LIS, and SS with the same computing budget. We
simulated unrooted trees of varying sizes (numbers of
taxa): 5, 10, 15, 20, and 25. For each tree, we generated
one data set of DNA sequences. Sequence length was
set to 100. The execution of each algorithm and setting
was repeated 100 times with different random seeds. We
used 	=5 for adaptive annealed SMC, and the number
of particles was set to 1000. In stepping stone and linked
IS, we set the total number of heated chains D to 50, and
the annealing scheme was set to �d= (d/D)3, where d=
1,2,...,D. We enforced KSMCRSMC=NSSDSS=NLISDLIS
in order to make the comparisons fair. Information about
RSMC are shown in Table 1.

Figure 4 shows the comparison of the performance of
the four algorithms in terms of the marginal likelihood
in log scale as the number of taxa increases. As
described in the Theoretical Properties section, for the
unbiased estimators, we have asymptotically that the
log of the marginal likelihood should underestimate the
marginal likelihood by Jensen’s inequality. The results
support that ASMC and DASMC can achieve more
accurate marginalized likelihood estimates compared
with SS and LIS with the same computational cost.
The performances of the two SMC algorithms are
quite similar, whereas the marginal likelihood estimates
provided by LIS and SS are close to each other. In
Appendix 9, we describe an experiment comparing
ASMC, DASMC, LIS, and SS with a very large value
of K. The mean of log marginal likelihood for the four

methods are close (reduction of the gap is expected,
because all methods are consistent), whereas ASMC
and DASMC still exhibit smaller variance across seeds
compared with LIS and SS.

Another experiment was conducted to measure
the variability of the marginal likelihood estimates
from each algorithm, by comparing the coefficients of
variation (CV) for different numbers of taxa with the
same setting. The CV is defined as CV=sd(Ẑ)/E(Ẑ).
We simulated 70 trees, increasing the number of taxa
(from 10, 15, 20, 25, 30, 35, 40; 10 trees of each size),
and created 10 data sets for each tree. For each data
set, we repeated each algorithm 10 times with different
random seeds. The upper bound of CV equals

√
n−1,

where n represents the number of repeats with different
random seeds in experiments. We refer to Appendix 7
for the derivation of the upper bound of CV. In our
setting, this upper bound is

√
10−1=3. In ASMC, the

computational cost was fixed at K=1000 and 	=5. In
DSMC, we used the same number of particles, and the
annealing scheme was set to �r= (r/R)3, where the total
number of annealing parameters R was fixed to be the
one obtained from running ASMC with K=1000 and
	=5 for a tree with 10 taxa.

Figure 5 displays the CV for ASMC and DSMC as a
function of the number of taxa. The error bars in the
figure represent 95% confidence intervals. The CV of
DSMC increases faster than ASMC as the number of taxa
gets larger than 15. It gradually converges to the upper
bound of CV as the number of taxa reaches 35. The CV
of ASMC increases more slowly as the number of taxa
increases.

Comparison of Model Selection by Annealed SMC versus SS
In this section, we compare the performance of ASMC

and SS on a Bayesian model selection task. We simulated
20 unrooted tree of 10 taxa using a uniform distribution
for the tree topology and branch lengths generated from
an exponential distribution with rate 10. A total of 60
data sets of DNA sequences of length 500 were generated
using each of the simulated tree and the following
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FIGURE 5. CV for the marginal likelihood estimates versus the
number of taxa for ASMC and DSMC with a fixed number of particles.

TABLE 2. Comparison of model selection
by ASMC and SS based on the Bayes factor

Data generated from

Method Model JC69 K2P GTR+

ASMC JC69 20 0 1
K2P 0 20 1
GTR 0 0 18

SS JC69 20 0 4
K2P 0 20 1
GTR 0 0 15

three evolutionary models: JC69, K2P, and GTR+. The
parameter � in the K2P model was set to 2.0. In the
GTR+ model, a symmetric Dirichlet distribution with
parameters (10,10,10,10) was used to generate the base
frequencies, and a symmetric Dirichlet with parameters
(10,10,10,10,10,10) was used to generate the GTR relative
rates in the rate matrix. The discrete gamma distribution
with 4 categories was used to convey among-site rate
heterogeneity, with the gamma shape parameter drawn
from a Gamma distribution with parameters (2,3).

For each data set, marginal likelihoods were estimated
by ASMC and SS using three evolutionary models, JC69,
K2P, and GTR, respectively. In ASMC, we used K=1000
and 	=4. The total number of iterations in SS was set to
the product of the number of particles and number of
iterations in ASMC. Table 2 shows the Bayesian model
selection results. Both ASMC and SS choose the correct
model for all of the 20 data sets generated from the JC69
and K2P model, respectively. For the data generated from
GTR+, SMC chooses the closest model, GTR, 18 times
out of 20, whereas SS only chooses GTR 15 times out of
20.

Comparison of Tree Distance Metrics
In this section, we compare the quality of

reconstructed phylogenies using synthetic data. We
simulated one unrooted tree, the reference tree, with 50
taxa and then generated one data set of DNA sequences

TABLE 3. Comparison of tree distance metrics using ASMC and
MCMC
Method R K Metric Value

ASMC 54,876 100 ConsensusLogLL −72,787.99
54,876 100 BestSampledLogLL −72,826.17
54,876 100 PartitionMetric 0
54,876 100 RobinsonFouldsMetric 0.70623
54,876 100 KuhnerFelsenstein 0.00990

MCMC 1.0E+07 ConsensusLogLL −72,833.82
1.0E+07 PartitionMetric 0
1.0E+07 RobinsonFouldsMetric 0.92031
1.0E+07 KuhnerFelsenstein 0.03138

MCMC2 5.49E+06 ConsensusLogLL −72,784.86
5.49E+06 PartitionMetric 0
5.49E+06 RobinsonFouldsMetric 0.73,644
5.49E+06 KuhnerFelsenstein 0.01066

of length 2000 from this tree. The ASMC was run with
	=6 and K=100. The MCMC algorithm was initialized
with a random tree from the prior distribution. To make a
fair comparison, we set the number of MCMC iterations
to be no less than KSMCRSMC. We discarded 20% of
the MCMC chain as “burn-in.” Table 3 summarizes the
iteration numbers, the log-likelihood of the consensus
tree and tree distance metrics from running ASMC and
MCMC. Although the computational cost of MCMC is
set to about twice as high as ASMC, the log-likelihood
of the consensus tree from ASMC is much higher than
that from MCMC. In addition, ASMC achieves much
lower RF and KF distances to the reference tree. Further,
to confirm that both ASMC and MCMC can converge
to the same posterior distribution, MCMC was rerun
with a better starting value, namely the consensus tree
obtained after running ASMC. This run of MCMC is
denoted as MCMC2 in Table 3. The computational cost
of MCMC2 is set the same as the ASMC algorithm.
This time MCMC achieved similar consensus tree
log-likelihood and tree distance metrics compared with
ASMC, which supports that MCMC is indeed “trapped”
in a subspace.

Influence of Number of Threads, 	, and K
The runtime of the ASMC is dependent on the number

of threads, as well as on the tuning parameters	 and K. In
this section, we focus on investigating the effects of these
factors on ASMC. We simulated an unrooted tree with
30 taxa at the leaves, and then generated DNA sequences
of length 1500.

Next, Figure 6 displays the computing time versus
number of threads for an implementation of ASMC
where the proposal step is parallelized. The error bars
represent the 95% confidence intervals based on 100
runs. We used K=1000 and 	=2 for each number
of threads. The results indicate that by increasing the
number of cores, the speed of the ASMC algorithm can
be increased notably.

In Table 4, we compare the performance of ASMC
algorithm as a function of K, with 	 fixed at 5. We chose
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TABLE 4. Comparison of adaptive SMC algorithm with different numbers of particles and 	

K (	=5) log(Z) 	 (K=1000) log(Z)

100 −28,288.5 (−28,283.9, −28,293.7) 3 −28,524.8 (−28,466.2, −28,641.0)
300 −28,283.5 (−28,281.1, −28,287.9) 4 −28,312.2 (−28,304.5, −28,328.8)
1000 −28,280.5 (−28,278.3, −28,283.5) 5 −28,280.5 (−28,278.3, −28,283.5)
3000 −28,279.3 (−28,278.1, −28,280.4) 5.3 −28,279.5 (−28,278.7, −28,280.5 )
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FIGURE 6. Computing time of ASMC using multiple threads.

four different particle values K=100,300,1000,3000. The
marginal likelihood estimates improve as K increases.

We also compared the performance of ASMC
algorithm as a function of 	, with K=1000. We selected
four distinct 	 values, 	=3,4,5,5.3. As expected, the
marginal likelihood estimates improve when 	 increases.
The likelihood of the consensus trees and tree distance
metrics provided by these two experiments are displayed
in Appendix 8. In practice, a value of 	 close to 5 is
recommended as the default value.

Trade-Off between R and K
We conducted an experiment to investigate, for a given

amount of computation, the relative importance of R and
K in improving the quality of the posterior distribution
inferred by annealed SMC. We used DSMC with a cubic
annealing scheme. We selected values for the tuning
parameter K (100,300,1000,3000,10,000), and for each
value of K, a corresponding value for R such that the
total computation cost K ·R is fixed at 106. We simulated
one unrooted tree of 15 taxa, and generated one data
set of DNA sequences. Sequence length was set to 300.
Figure 7 displays the marginal likelihood estimates, and
KF metric provided by DSMC with different K values
when the total computational budget (K ·R) is fixed. This
results indicate that for a given amount of computation,
a relatively small K and a large R is optimal. However,
the value of K cannot be too small, as an extremely small
K necessarily leads to a large Monte Carlo variance.

Analysis of Subsampling SMC
Subsampling SMC, detailed in Appendix 1, can be

used to speed up the SMC algorithms at the cost of

decreasing the accuracy of estimation. The idea is to
divide the data, the sites of biological sequences in our
case, into batches, and only use a subset of the data in the
intermediate distributions. In this section, we evaluate
the impact of the batch size (the number of sites of
biological sequences in each batch), denoted bs, on the
speed of the algorithm and the posterior approximation.

In a first experiment, we analyzed the relative
computational cost of subsampling SMC with respect
to annealed SMC for different batch sizes. We
simulated an unrooted tree with 10 taxa, and then
generated DNA sequences of length 6000. The annealing
parameter sequence �r, r=0,1,...,R, was chosen by
running adaptive ASMC using 	=4 and K=100. The
computational cost in this subsection is measured by
the total number of sites involved in computing the
unnormalized posterior and the weight update function.
For example, in this simulation study, the total number of
annealing parameters in adaptive ASMC is 2318, and the
number of sites involved in each SMC iteration is 6000.
Using the fact that the likelihood for particles evaluated
at iteration r−1 can be used to evaluate the weight
update function at iteration r, the total cost for ASMC
is 2318·6000=1.39×107. Figure 8 displays the ratio of
computational cost (subsampling/annealing) versus the
batch size. The cost ratio increases slowly when we
increase the batch size from 1 to 100.

We investigated the performance of subsampling SMC
with different batch sizes, bs=1,10,100,1000,6000 in
terms of phylogenetic tree inference. We used K=100
and ran the subsampling SMC algorithm 10 times for
each value of bs. The schedule �r used to compute the
annealing parameter �(s,�r) in subsampling SMC was
obtained by running adaptive annealed SMC once using
	=4 and K=100. Figure 9 displays the performance
of the subsampling algorithm with different bs. As
expected, there is a trade-off between the computational
cost and accuracy of most metrics: for all metrics
except the partition metric, subsampling produces lower
quality approximations at a lower cost. However, if the
user only require a reconstruction of the tree topology,
the partition metric results provide an example where
subsampling is advantageous.

Comparison of ASMC and Combinatorial SMC (CSMC)
We compared the performance of the annealed SMC

and the combinatorial SMC (CSMC) algorithm (Wang
et al. 2015) for three different kinds of trees: clock, relaxed
clock, and nonclock. The clock trees were simulated by
assuming that the waiting time between two coalescent
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FIGURE 7. Performance of deterministic SMC algorithm on a fixed computational budget (K ·R=106). We select 5 values of K,
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0.00

0.25

0.50

0.75

1.00

1 10 100 1000 6000

batchSize

co
st

R
at

io

FIGURE 8. Ratio of cost (subsampling/annealing) versus the batch
size.

events is exponentially distributed with rate 10. The
relaxed clock trees were obtained by perturbing the
branch length of clock trees. More specifically, we
modified each branch of length l by adding to it a noise
randomly sampled from Unif(−0.3l, 0.3l). The nonclock
trees were simulated with uniformly distributed tree
topologies and exponentially distributed branch lengths
with rate 10.

For each type of phylogenetic tree, we simulated 10
trees with 10 leaves. The JC69 evolutionary model was

used to generate sequences of length 500. Three data
sets were generated for each tree. We ran the annealed
SMC, DASMC, and CSMC, respectively, for each data set
three times with different random seeds. In the annealed
SMC, 	 was set to 5, and K=100; in CSMC, the number
of particles was set to 100,000.

Figure 10 shows the boxplots of log-likelihood of
the consensus trees, three tree distance metrics from
the true trees, and computing time (in milliseconds)
obtained from running the three algorithms for clock
trees (top), relaxed clock trees (middle), and nonclock
trees (bottom). Note that we ran CSMC for a longer time
to favor this reference method. CSMC performs well for
clock trees and relaxed clock trees, whereas the annealed
SMC works for all of the three types of trees and clearly
outperforms CSMC for nonclock trees.

REAL DATA SETS

We analyzed two difficult real data sets from
TreeBASE: M336 and M1809 in Table 1 of Lakner et al.
(2008). M336 contains DNA sequences of length 1949
for 27 species. In M1809, there are 59 species and the
length of each DNA sequence is 1824. We compared
the marginal likelihood estimates, log-likelihood of the
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FIGURE 9. Comparison of subsampling SMC algorithms with different size of batch sites.
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FIGURE 10. Comparison of adaptive SMC algorithms with CSMC for three types of simulated trees: clock, relaxed clock, and nonclock (from
top to bottom).

consensus tree, and tree distance metrics provided by
ASMC and MrBayes (with the default setting) with
the same computational budget. The reference trees
used to compute tree distances are based on at least
6 independent long MrBayes parallel tempering runs
provided by Lakner et al. (2008). Convergence to the
posterior in these “reference runs” was established with
high confidence in that previous work. Note that the
comparison handicaps ASMC as the set of tree moves
in MrBayes is a superset of those used in ASMC. The
evolutionary model we consider in real data analysis is
the JC69 model.

Data set M336
We used K=500 and 	=5.3 for the ASMC algorithm.

The log marginal likelihood estimated from ASMC
is −7103.73, which is higher than the log marginal
likelihood provided by MrBayes using SS (−7114.04).
Table 5 displays the log-likelihood of the consensus
tree and tree distance metrics provided by ASMC and
MrBayes. In the table, R represents the number of
annealing parameters in ASMC and the total number
of MCMC iterations in MrBayes, respectively. The log-
likelihood of the consensus tree estimated from ASMC
is slightly lower than MrBayes. The RF and KF metrics
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TABLE 5. Comparison of running ASMC and MrBayes for
M336 from TreeBASE
Method R K Metric Value

ASMC 15,706 500 ConsensusLogLL −6892.16
15,706 500 BestSampledLogLL −6901.31
15,706 500 PartitionMetric 0
15,706 500 RobinsonFouldsMetric 0.01269
15,706 500 KuhnerFelsenstein 5.55E-06

MrBayes 8.0E+06 ConsensusLogLL −6889.52
8.0E+06 PartitionMetric 0
8.0E+06 RobinsonFouldsMetric 0.01832
8.0E+06 KuhnerFelsenstein 2.25E-5

estimated from MrBayes are slightly higher than ASMC.
The majority-rule consensus tree provided by ASMC and
MrBayes are identical, and coincide with the reference
tree. Figure 11 displays the estimated majority-rule
consensus trees and the clade posterior probabilities
provided by ASMC and MrBayes. Most clades posterior
probabilities provided by ASMC and MrBayes are close.
ASMC provides lower posterior support for some clades,
which is consistent with the hypothesized superior tree
exploration provided by ASMC on a fixed budget.

Data set M1809
We used K=1000 and 	=5 for the ASMC algorithm.

The log marginal likelihood estimated from ASMC is
−37,542.25, the one estimated by MrBayes using SS is
−37,335.73. Table 6 displays the tree metrics provided by
ASMC and MrBayes. The log-likelihood of the consensus
tree provided by ASMC is higher than the one from
MrBayes, and PM, RF, KF metrics estimated from ASMC
are lower.

CONCLUSION AND DISCUSSION

The annealed SMC algorithm discussed in this
article provides a simple but general framework for
phylogenetic tree inference. Unlike previous SMC
methods in phylogenetics, annealed SMC considers the
same state space for all the intermediate distributions.
As a consequence, many conventional Metropolis-
Hastings tree moves used in the phylogenetic MCMC
literature can be utilized as the basis of SMC proposal
distributions. Because MCMC tree moves are available
for a large class of trees, including nonclock as well
as strict and relaxed clock models, the annealed SMC
method is automatically applicable to a wide range
of phylogenetic models. It should also be relatively
easy to incorporate the proposed ASMC into existing
phylogenetic software packages that implement MCMC
algorithms, such as MrBayes, RevBayes, or BEAST.

The annealed SMC algorithm has two adaptive
mechanisms, dynamic resampling and adaptive
determination of annealing parameters, to make the
algorithm efficient while requiring less tuning. Dynamic
resampling based on ESS is a common practice in the
SMC literature. Devising the annealing parameter

sequence is a relatively newer practice (Del Moral
et al. 2012). The annealing parameter sequence can be
determined dynamically based on the CESS criterion.
Because the particle weights of the current iteration only
depend on the previous particles, there is negligible
computational cost for finding annealing parameters.

The consistency of annealed SMC discussed in
the theoretical results section holds when K goes
to infinity. However, K cannot in practice be made
arbitrarily large as the memory requirements scale
linearly in K. In contrast, increasing the number of
intermediate distributions R (in our adaptive algorithm,
by increasing 	) does not increase memory consumption.
We conjecture that consistency for large R but fixed K also
holds, in the sense of having the marginal distribution
of each particle at the last iteration converging to the
posterior distribution. We have explored the relative
importance between K and R with fixed computational
budgets using simulations. These results suggest that
increasing R and K improves the approximation at
different rates, with increasing R giving bigger bang
to the buck. Assuming that our conjecture on the
convergence in R holds true, in the regime of very
large R and fixed K, the particle population at the
last iteration can be conceptualized as K independent
Monte Carlo samples from the true posterior distribution
(in particular, we conjecture that the weights will
convergence to a uniform distribution and hence to naive
Monte Carlo based on independent exact samples). We
remind the reader that the power of independent exact
Monte Carlo is that the variance does not depend on the
dimensionality of the problem. Hence if R is sufficiently
large, a lower bound for K can therefore be obtained by
selecting K large enough so that for independent samples
Xi with distribution � the variance of the Monte Carlo
average (1/K)

∑K
k=1 f (Xi) is sufficiently small. Here is a

concrete example: suppose we have a test function f of
interest, for example an indicator function on a fixed
clade, with unknown posterior support p=∫ f (x)�(x)dx.
We should take K large enough so that the Monte Carlo
average will have a 95% Monte Carlo confidence interval
having a width of no more than say min{p,1−p}/10. For
p≤1/2, this yields K≥ (p/10)−2(z∗)2Var�f ≈384(1−p)/p,
where z∗≈1.96 is the 95% critical value. For example, if
the clade of interest is believed from a test run to be highly
uncertain, p≈1/2, then in the large R regime, at the very
minimum K=400 particles should be used. The value of
K should also be sufficiently large to accommodate the
number of parallel cores available, and also to ensure
that the adaptive annealing scheme is stable (i.e. that
a further increase in K results in a qualitatively similar
annealing schedule). See also Olsson and Douc (2017)
for more sophisticated schemes for estimating the Monte
Carlo variance of SMC algorithms.

Importantly, annealed SMC provides an efficient way
to estimate the marginal likelihood, which is still a
challenging task in Bayesian phylogenetics. We have also
reviewed other marginal likelihood estimation methods,
including SS and LIS. Our annealed SMC algorithm
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a) b)

FIGURE 11. The majority-rule consensus trees for the M336 data set estimated by (a) ASMC and (b) MrBayes. The numbers on the trees
represent the clade posterior probabilities (number 100 is omitted).

TABLE 6. Comparison of running ASMC and MrBayes for M1809
from TreeBASE
Method R K Metric Value

ASMC 17,639 1000 ConsensusLogLL −36,972.513
17,639 1000 BestSampledLogLL −36,991.443
17,639 1000 PartitionMetric 2.0
17,639 1000 RobinsonFouldsMetric 0.13741
17,639 1000 KuhnerFelsenstein 3.95E-4

MrBayes 1.76E+07 ConsensusLogLL −36,996.13
1.76E+07 PartitionMetric 16.0
1.76E+07 RobinsonFouldsMetric 0.513285
1.76E+07 KuhnerFelsenstein 0.01137

enjoys advantageous theoretical properties. The main
property that justifies the use of the annealed SMC is
the unbiasedness of its marginal likelihood estimate. In

addition, the unbiasedness of the marginal likelihood
estimate can be used to test implementation correctness
of the algorithm. Our simulation studies have shown
that ASMC can give a similar marginal likelihood
estimate as the one obtained from the ASMC with the
same but deterministic annealing parameter sequence
(debiased ASMC). With the same computing budget,
ASMC has been demonstrated to result in more accurate
estimates. Moreover, the ASMC algorithm requires less
tuning than the other methods considered. Both LIS
and SS need a predetermined annealing parameter
sequence, which is often inconvenient to choose in
practice. ASMC leads to a more stable estimate for the
marginal likelihood compared with the other methods
considered.
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MCMC moves often come with tuning parameters.
For example, proposal distributions typically have a
bandwidth parameter which needs to be tuned (Roberts
et al. 1997). To improve the performance of annealed
SMC, it would be possible to use automatic tuning
of proposal distributions within SMC algorithms, as
proposed in Zhou et al. (2016).

A second future direction would be to investigate
modifications in the specification of the sequence of
intermediate distributions. For example, Fan et al. (2010)
proposed an alternative to the prior distribution to
replace �0. The same choice could be used within our
framework. In another direction, it may be possible to
combine the construction of Dinh et al. (2017) with ours
to handle online problems via standard moves: instead
of integrating the new taxon with all of its sites un-
annealed (which requires specialized proposals), it may
be beneficial to anneal the newly introduced site.

In terms of empirical comparisons, it would be
interesting to expand the set of metrics, models and
data sets used to compare the algorithms. For example,
in addition to the tree distance metrics used in this
article, geodesic tree distance (Billera et al. 2001) is
also an important metric to compare distances between
phylogenetic trees. The GTP software (Owen and Provan
2011) allows easy calculation of the geodesic tree
distance.

We have investigated the subsampling SMC algorithm
for “tall data” phylogenetic problems. The annealing
parameters �(s,�r) of the subsampling SMC is derived
from the annealing parameter sequence �r of the
adaptive ASMC without subsampling. This choice was
made for implementation convenience, and there is no
reason why the two optimal sequences of distributions
should coincide. To improve the algorithm performance,
one direction is therefore to design an adaptive scheme
tailored to the subsampling version. One challenge is
that pointwise evaluation of the adaptation function
g(�) is more expensive in the subsampling setup,
with a cost that grows with �. Bayesian optimization
might be useful in this context. Another use of the
subsampling arises in situations where the sampling
algorithm is not constructed using an accept–reject
step. For example, conjugate Gibbs sampling on an
augmented target distribution (Lartillot 2006) is used
by PhyloBayes (Lartillot et al. 2009) to efficiently sample
the evolutionary model parameters. It is not clear how
the conjugate Gibbs sampling step can be modified to
accommodate the annealed distribution in Equation (4)
for �<1. On the other hand, conjugate sampling is
directly applicable to intermediate distributions that
consist in taking subsets of sites. This sequence of
distributions could be used to handle conjugate Gibbs
sampling not only in annealed SMC but also in the
context of parallel tempering or any other sequence
of measure-based method. One last line of work is to
combine control variates to annealed SMC to reduce the
variance of the likelihood estimator, a general strategy
that has been very successful in other subsampling work
(Bardenet et al. 2017).
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APPENDIX 1

Construction of Intermediate Distributions for
Subsampling SMC

Let us decompose the unnormalized posterior
distribution as

�1(x)=p(x)
#S∏

s=1

p(ys|x),

where x refers to the phylogenetic tree and evolutionary
parameter of interest, s is an index for one batch of sites
from a biological sequence, and #S represents the total
number of batches. Each batch contains one or more sites
of the biological sequence; we denote the number of sites
in each batch by bs.

Consider the annealing parameter sequence 0=�0<
�1< ···<�R=1. We define the sequence of intermediate
distributions for subsampling as follows:

��r (x)=p(x)
#S∏

s=1

p(ys|x)�(s,�r),

where

�(s,�r)=
⎧⎨⎩

1 if �r≥s/#S,
0 if �r≤ (s−1)/#S,
#S·�r−(s−1) otherwise.

The subsampling SMC algorithm is a more general
version of the annealed SMC algorithm. If we define
#S=1 in �1(x), then the sequence of intermediate
distributions of subsampling SMC is exactly the same
as the intermediate distributions of the annealed SMC.
In this case, the computational cost of subsampling
SMC is exactly the same as the annealed SMC. Another
extreme case is that #S=n, in which case we sequentially
incorporate the sites of sequence one by one.
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APPENDIX 2

Theoretical Foundations of Annealed SMC
In this section, we review the construction of Del Moral

et al. (2006), which is the basis for our work. See also
Wang et al. (2015) for a similar construction tailored to a
phylogenetic setup.

The corresponding sequence of un-normalized
distributions are denoted by {�r}1,...,R. The annealed
SMC can be obtained by defining an auxiliary sequence
of distributions that admit the distribution of interest,
�r(xr), as the marginal of the latest iteration

�̃r(xr)=�r(xr)
r−1∏
j=1

Lj(xj+1,xj),

where Lj(xj+1,xj) is an auxiliary “backward” Markov
kernel with

∫
Lj(xj+1,xj)dxj=1. We never sample from

Lj, rather its role is to allow us to derive weight updates
that yield a valid SMC algorithm.

The idea is then to apply standard SMC (i.e. SMC
for product spaces such as state space models) to this
auxiliary sequence of distributions, �̃1,�̃2,...,�̃R. The
resulting sampler has a weight update given by

w(xr−1,xr)∝ �̃r(xr)
�̃r(xr−1)

1
Kr(xr−1,xr)

= �r(xr)Lr−1(xr,xr−1)
�r−1(xr−1)Kr(xr−1,xr)

,

which is different from the one in a standard SMC.
When Kr satisfies global balance with respect to �r, a

convenient backward Markov kernel that allows an easy
evaluation of the importance weight is

Lr−1(xr,xr−1)= �r(xr−1)Kr(xr−1,xr)
�r(xr)

.

This choice is a properly normalized backward
kernel,

∫
Lr−1(xr,xr−1)dxr−1=1: this follows from the

assumption that Kr satisfies global balance with respect
to �r. With this backward kernel, the incremental
importance weight becomes

w(xr−1,xr) = �r(xr)
�r−1(xr−1)

· Lr−1(xr,xr−1)
Kr(xr−1,xr)

= �r(xr)
�r−1(xr−1)

· �r(xr−1)Kr(xr−1,xr)
�r(xr)

· 1
Kr(xr−1,xr)

= �r(xr−1)
�r−1(xr−1)

.

General Estimates of Marginal Likelihood
In Basic Annealed SMC Algorithm section, we

describe the estimator for marginal likelihood in a
simplified setting, that is without adaptation. Here,
we describe the marginal likelihood estimator in full
generality.

Recall that we denote the marginal likelihood by Z
for simplicity. With a slight abuse of notation, we use
Kr(xr−1,·) to denote the proposal distribution for xr in
this section.

Let us start by rewriting the normalization constant of
the first intermediate distribution as

Z1=
∫
�1(x1)
K1(x1)

K1(x1)dx1=
∫

w1(x1)K1(x1)dx1,

where K1(·) is the proposal distribution for x1.
Correspondingly, an estimate of Z1 is

Z1,K= 1
K

K∑
k=1

w1,k.

Similarly, we can rewrite the ratio of the normalization
constants of two intermediate distributions as

Zr

Zr−1
=

∫
�r(xr)dxr

Zr−1
=

∫
�r(xr)dxr

�r−1(xr−1)/�r−1(xr−1)

=
∫

�r(xr)
�r−1(xr−1)

�r−1(xr−1)dxr

=
∫

�r(xr)
�r−1(xr−1)Kr(xr−1,xr)

�r−1(xr−1)Kr(xr−1,xr)dxr

=
∫

wr(xr)�r−1(xr−1)Kr(xr−1,xr)dxr.

Straightforwardly, an estimate of Zr/Zr−1 is provided by

Ẑr

Zr−1
= 1

K

K∑
k=1

wr,k.

Since the estimate of the marginal likelihood can be
rewritten as

Z≡ZR=Z1

R∏
r=2

Zr

Zr−1
,

an estimate of the marginal likelihood Z is

ẐR,K =
R∏

r=1

⎛⎝ 1
K

K∑
k=1

wr,k

⎞⎠
=

R∏
r=1

⎛⎝ 1
K

K∑
k=1

{p(y|xr−1,k)}�r−�r−1

⎞⎠, (19)

which can be obtained from an SMC algorithm readily.
If resampling is not conducted at each iteration r, an
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alternative form is provided by

ẐR,K=
tR−1+1∏

j=1⎛⎝ K∑
k=1

Wnj−1,k

nj∏
m=nj−1+1

{p(y|xm−1,k)}�m−�m−1

⎞⎠, (20)

where nj is the SMC iteration index at which we do the
jth resampling, tR−1 is the number of resampling steps
between 1 and R−1.

Unbiasedness, Consistency and Central Limit Theorem for
Annealed SMC

Here, we provide more information on the theoretical
properties discussed in Properties of Annealed
Sequential Monte Carlo section.

Theorem 1 (Unbiasedness): For fixed 0=�0<�1< ···<
�R=1, ẐR,K is an unbiased estimate of Z,

E(ẐR,K)=Z.

This result is well known in the literature, although
many statements of the result are specialized to SMC
for state-space models (Doucet and Johansen 2011). The
results in Theorem 7.4.2 of Del Moral (2004) provide
a very general set of conditions which includes the
annealed SMC algorithm presented here. However, the
theoretical framework in Del Moral (2004) being very
general and abstract, we outline below an alternative line
of argument to establish unbiasedness of phylogenetic
annealed SMC.

First, by the construction reviewed in Theoretical
Foundations of Annealed SMC section, we can transform
the sequence of distributions on a fixed state space,
�r(xr), into a sequence of augmented distributions �̃r(xr)
on a product space admitting �r(xr) as a marginal. We
now apply Theorem 2 of Andrieu et al. (2010) with the
distribution �n(x1:n) in this reference set to �̃r(xr) in our
notation. To be able to use Theorem 2, we only need
to establish the “minimum assumptions” 1 and 2 in
Andrieu et al. (2010). Assumption 1 is satisfied by the
fact that valid MCMC proposals are guaranteed to be
such that q(x,x′)>0⇐⇒q(x′,x)>0. Assumption 2 holds
because we use multinomial resampling. Next, since the
conditions of Theorem 2 of Andrieu et al. (2010) hold, we
have the following result from the proof of Theorem 2 in
Appendix B1 of Andrieu et al. (2010):

�̃N(k,x̄1,...,x̄P,a1,...,aP−1)
qN(k,x̄1,...,x̄P,a1,...,aP−1)

= ẐN(x̄1,...,x̄P)
Z

,

and hence

Z �̃N(k,x̄1,...,x̄P,a1,...,aP−1)

= ẐN(x̄1,...,x̄P)qN(k,x̄1,...,x̄P,a1,...,aP−1).

Now taking the integral on all variables
k,x̄1,...,x̄P,a1,...,aP−1 with respect to the reference
measure 
 associated to �̃N , we obtain:

Z
∫
�̃N(k,x̄1,...,x̄P,a1,...,aP−1)d
(k,x̄1,...,x̄P,

a1,...,aP−1)

=
∫

ẐN(x̄1,...,x̄P)qN(k,x̄1,...,x̄P,a1,...,aP−1)

d
(k,x̄1,...,x̄P,a1,...,aP−1).

The left-hand side is just Z because �̃N is a density with
respect to 
. For the right-hand side, note that qN is the
law of the full set of states produced by the particle filter,
hence the right-hand side is just E[ẐR,K] in our notation.
This concludes the proof.

Next, we discuss consistency results. In the SMC
literature, they are generally available both in the L2

convergence and almost sure convergence flavors. We
cover the L2 case here and refer to Del Moral et al. (2006)
for almost sure consistency results.

Theorem 2 (Consistency): Assume there is a constant C
such that |f |≤C and wr,k≤C almost surely. For a fixed
�r (r=1,...,R), the annealed SMC algorithm provides
asymptotically consistent estimates:

K∑
k=1

Wr,kf (xr,k)→
∫
�r(x)f (x)dx as K→∞,

where the convergence holds in the L2 norm sense.
The result can be deduced from Proposition 5 in Wang

et al. (2015) as follows. Assumption 3 in Wang et al. (2015)
holds because MCMC proposals satisfy q(x,x′)>0⇐⇒
q(x′,x)>0. Assumption 4 holds because the support of
the prior coincides with support of the posterior.

Note that the assumption that the weights are
bounded is not valid for general tree spaces. However, if
the branch lengths are assumed to be bounded then the
space is compact and the assumption therefore holds in
that setting.

Finally, we turn to the central limit theorem.

Theorem 3 (Central Limit Theorem): Under the
integrability conditions given in Theorem 1 of Chopin
et al. (2004), or Del Moral (2004), section 9.4, pages
300−306,

K1/2
[ K∑

k=1

Wr,kf (xr,k)−
∫
�r(x)f (x)dx

]
→N(0,�2

r (f ))

as K→∞,
where the convergence is in distribution. The form of
asymptotic variance �2

r (f ) depends on the resampling
scheme, the Markov kernel Kr and the artificial backward
kernel Lr. We refer readers to Del Moral et al. (2006) for
details of this asymptotic variance.
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APPENDIX 3

MCMC Proposals for Bayesian Phylogenetics

In this article, we used the proposals qi
r defined as

follow:

1. q1
r : the multiplicative branch proposal. This proposal

picks one edge at random and multiply its
current value by a random number distributed
uniformly in [1/a,a] for some fixed parameter a>1
(controlling how bold the move is) (Lakner et al.
2008).

2. q2
r : the global multiplicative branch proposal that

proposes all the branch lengths by applying the
above multiplicative branch proposal to each
branch.

3. q3
r : the stochastic NNI proposal. We consider the

nearest neighbor interchange (NNI) (Jow et al.
2002) to propose a new tree topology.

4. q4
r : the stochastic NNI proposal with resampling the

edge that uses the above NNI proposal in (3) and
the multiplicative branch proposal in (1) for the
edge under consideration.

5. q5
r : the Subtree Prune and Regraft (SPR) move that

selects and removes a subtree from the main tree
and reinserts it elsewhere on the main tree to create
a new tree.

Note that here, we only describe the MCMC kernels for
phylogenetic trees. To sample evolutionary parameters
�, one can use simple proposals such as symmetric
Gaussian distributions, or more complex ones, see for
example Zhao et al. (2016).

APPENDIX 4

Comparison of Resampling Strategies
In this section, we compare the performance of

adaptive annealed SMC with three different resampling
thresholds. The first resampling threshold is �1=0. In
this case, the particles are never resampled. The second
resampling threshold is �2=1, in which case resampling
is triggered at every iteration. The third resampling
threshold is �3=0.5. The resampling method we used
in all our experiments was the multinomial resampling
scheme. We simulated one unrooted tree of 15 taxa,
and generated one data set of DNA sequences of length
200. The tree simulation setup was the same as in
Simulation Studies section. We ran adaptive annealed
SMC algorithm 20 times with the three resampling
thresholds described above. We used rCESSr=0.99999
and K=100. Figure A.1 demonstrates the advantage of
resampling triggered by a threshold of �3=0.5 over the
other two choices by displaying the marginal likelihood
estimates, log-likelihood of the consensus tree and tree
metrics provided by adaptive annealed SMC using

three different �’s. The log marginal likelihood estimate
and log-likelihood of the consensus tree provided by
adaptive annealed SMC using �3=0.5 are higher and
admit smaller variation. The PF, RF, and KF metrics
provided by adaptive annealed SMC using �3=0.5 are
lowest. Therefore the threshold 0.5 has been used in the
rest of the article.

APPENDIX 5

Review of Particle Degeneracy Measures
The two adaptive schemes in ASMC, adaptively

conducting resampling and the automatically
construction of the annealing parameter sequence,
rely on being able to assess the quality of a particle
approximation. For completeness, we provide some
background in this section on the classical notation of
ESS and of CESS, a recent generalization which we use
here (Zhou et al. 2016). The notion of ESS in the context
of importance sampling (IS) or SMC is distinct from
the notion of ESS in the context of MCMC. The two are
related in the sense of expressing a variance inflation
compared with an idealized Monte Carlo scheme but
they differ in the details. We will assume from now on
that ESS refers to the SMC context.

We will also use a slight variation of the derivation
of ESS and CESS where the measures obtained
are normalized to be between zero and one (some
hyperparameters of the adaptive algorithms are easier to
express in this fashion). We use the terminology relative
(conditional) ESS to avoid confusion.

The fundamental motivation of (relative and/or
conditional) ESS stems from the analysis of the error of
Monte Carlo estimators. Recall that for a given function
of interest f (think for example of f being an indicator
function on a clade),

I=
∫
�r(dx)f (x)≈

K∑
k=1

Wr,kf (xr,k)=: Î.

The quantity on the right-hand side is a random variable
(with respect to the randomness of the SMC algorithm),
Î, and we can think about it as an estimator of the
deterministic quantity on the left-hand side, I. Moreover
the right-hand side is a real-valued random variable, so
we can define its mean square error, which can be further
decomposed as a variance term and a squared bias term.
For SMC algorithms, the variance term dominates as the
number of particles goes to infinity (Del Moral 2004). For
this reason, we are interested in estimates of the variance
of Î across SMC random seeds, VarSMC[Î]. However, the
variance of Î depends on the choice of function f , which
is problem dependent, and we would like to remove
this dependency. The first step is to consider a notion
of relative variance, comparing to the variance we would
obtain from a basic Monte Carlo scheme Î∗ relying on iid
exact samples x�1,...,x

�
K∼�, VarMC[Î∗]=Var[ 1

K
∑

k f (x�k)].
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FIGURE A.1. Comparison of three resampling thresholds, 0, 0.5, and 1.

To make further progress, we will make approximations
of the ratio VarMC[Î∗]/VarSMC[Î].

To understand these approximations, let us start with
a simplified version of Algorithm 3, where the function
NextAnnealingParameter returns the value 1.0. In this
setting, no resampling occurs, and the algorithm reduces
to an IS algorithm (more specifically, it reduces to a
single iteration of the AIS algorithm; Neal 2001). IS is
easier to analyze because the individual particles are
independent and identically distributed, allowing us
to summarize the behavior based on one particle, say
k=1. If we assume further that (A1) �i=�i, that is, the
normalization constant is one, then a classical argument
by Kong (1992) based on the Delta method yields

VarMC[Î∗]
VarSMC[Î]

= VarMC[Î∗]
Var�0 [Î]

≈ 1
1+Var�0 [w̃1,1] ,

= 1
E�0

[
(w̃1,1)2

] ,
where we used the fact that in this simple setting
the distribution of one proposed particle is just �0, so
VarSMC[·]=Var�0 [·] and in the last line,

E�0 [w̃1,1]=
∫
�0(x0,1)

�1(x0,1)
�0(x0,1)

dx0,1=1.

In general, assumption (A1) does not hold, that is the
normalization constant is not one, so for a general one-
step AIS algorithm we get instead the approximation:

VarMC[Î∗]
VarSMC[Î]

≈
(

E�0

[(
�1(x0,1)
�0(x0,1)

)2
])−1

=
(

E�0

[(
�1(x0,1)/Z1

�0(x0,1)/Z0

)2
])−1

=
(

Z1
Z0

)2/
E�0

[(
�1
�0

(x0,1)
)2

]
.

Generalizing the notation of this section into a general
SMC setup,�1 here plays the role of the current iteration,

and�0, of the previous iteration. However, since�0 is not
known in this case, we plug-in a particle approximation
�̂0=

∑K
k=1W0,k�x0,k to get:

VarMC[Î∗]
VarSMC[Î]

≈
(

Z1
Z0

)2/
E�̂0

[(
�1
�0

(x0,1)
)2

]

=
(

Z1
Z0

)2/ K∑
k=1

W0,k

(
�1
�0

(x0,k)
)2
.

The effect of this additional approximation is that it
makes our estimator over-optimistic, by ignoring the
error of the approximation �̂0 of �0. It is nonetheless
a useful tool to assess the degradation of performance
over a small number of SMC iterations.

Finally, since the ratio of normalization constants is
also unknown, we also need to estimate it. Based on a
particle approximation of Equation (14), we obtain:

VarMC[Î∗]
VarSMC[Î]

≈
⎛⎝ K∑

k=1

W0,k
�1
�0

(x0,k)

⎞⎠2/ K∑
k=1

W0,k

(
�1
�0

(x0,k)
)2
.

This quantity is called the relative CESS (rCESS),
Equation (11). Having a high rCESS value is a
necessary but not sufficient condition for a good SMC
approximation. If it is low during some SMC iteration,
especially an iteration close to the final iteration, then
with high probability most of the particles will have very
small or zero weights, which will lead to a collapse of the
quality of the annealed SMC algorithm.

Comparison of rESS and rCESS
In earlier work on adaptive SMC methods, the function

NextAnnealingParameter was implemented using a
different criterion based on rESS instead of rCESS.
Later, Zhou et al. (2016) argued that rCESS was more
appropriate. Here, we confirm that this is also the case
in a phylogenetic context. We provide two experiments.
In the first experiment, we simulated one unrooted tree
of 10 taxa, and generated one data set of DNA sequences
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FIGURE A.2. Comparison of rCESS (left) and rESS (right) in terms of rESS as a function of r (top) and �r−�r−1 as a function of �r (bottom).

and each sequence has length 100. The setup of tree
simulation is the same as Simulation Studies section. We
ran adaptive annealed SMC algorithm in two schemes:
(1) rCESSr=0.99; (2) rESSr=0.99. The one based on
rESSr only differs in the way NextAnnealingParameter
is implemented; shown in Algorithm 5. We used K=
1000 particles. Resampling of particles was triggered
when rESS<0.5. Figure A.2 demonstrates the advantage
of using rCESS over rESS in adaptive annealed SMC.
The annealing parameter difference (�r−�r−1) increases
smoothly in the rCESS scheme, whereas in the rESS
scheme there are big gaps in annealing parameter
increment after doing resampling, then the consecutive
annealing parameter change decreases gradually until
the next resampling time. The number of iterations R for
adaptive annealed SMC using rESS is much larger than
using rCESS.

In our second experiment, we compared the
performance of adaptive annealed SMC using rCESS and
rESS in terms of tree metrics and marginal likelihood. We
simulated one unrooted tree of 15 taxa, and generated
one data set of DNA sequences. Each sequence has
length 200. The tree simulation setup is the same as
Simulation Studies section. We ran adaptive annealed
SMC algorithm 20 times with rCESSr=0.999 and
rESSr=0.978, respectively. The number of particles was
set to K=500. Under this setting, the computational
costs of the two schemes are quite similar. The numbers
of annealing parameters (R) selected via rCESS and

Algorithm 5 Alternative NextAnnealingParameter
procedure (suboptimal)

1. Inputs: (a) Particle population from previous SMC
iteration (xr−1,·,wr−1,·); (b) Annealing parameter
�r−1 of previous SMC iteration; (c) A degeneracy
decay target �∈ (0,1).

2. Outputs: automatic choice of annealing parameter
�r.

3. Initialize the function g̃ assessing the particle
population quality associated to a putative annealing
parameter �:

g̃(�)=
⎛⎝ K∑

k=1

Wr−1,kp(y|xr−1,k)�−�r−1

⎞⎠2/
K∑

k=1

(Wr−1,kp(y|xr−1,k)�−�r−1 )2,

4. if g̃(1)≥�g̃(�r−1) then
5. return �r=1.
6. else
7. return �r=�∗ ∈ (�r−1,1) such that g̃(�∗)=
�g̃(�r−1) via bisection.

rESS are similar. Figure A.3 displays the marginal
likelihood estimates, consensus likelihood and tree
metrics provided by adaptive SMC using rCESS and
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FIGURE A.3. Comparison of adaptive annealed SMC using rCESS and rESS in terms of estimating the log marginal likelihood, the log-likelihood
of the consensus tree, tree distance metrics, and the number of SMC iterations (R).

rESS. The log marginal likelihood estimates and log
consensus likelihoods provided by adaptive SMC using
rCESS are higher and have lower variability. The PF, RF,
and KF metrics provided by the two schemes are quite
close, whereas the metrics provided by rCESS scheme
have lower variability.

APPENDIX 6

Estimates of Marginal Likelihood from LIS
We described the LIS procedure as follows:

1. Sample an index v0 randomly from {1,2,...,N}, and
sample x0,v1∼�0(·).

2. For d=0,1,...,D, sample N states from �d as
follows:

(a) If d>0: sample an index vd from {1,2,...,N},
and set xd,vd=xd−1∗d.

(b) For k=vd+1,...,N, sample xd,k from the
forward kernel xd,k∼Kd(xd,k−1,·).

(c) For k=vd−1,...,1, sample xd,k from the
backward kernel xd,k∼Ld(xd,k+1,·).

(d) If d<D, sample 
d from {1,2,...,Nd}
according to the following probabilities:

p(
d|xd)= �d−1∗d(xd,
d )
�d(xd,
d )

/ Nd∑
k=1

�d−1∗d(xd,k)
�d(xd,k)

,

and set xd∗d+1 to xd,
d .

3. Compute the likelihood estimate

ẐLIS=
D∏

d=1

[
1
N

N∑
k=1

�d−1∗d(xd−1,k)
�d−1(xd−1,k)

/
1
N

N∑
k=1

�d−1∗d(xd,k)
�d(xd,k)

]
.

Note that if the backward kernel is reversible, then
the forward kernel is the same as backward kernel. In
this article, we use the MCMC kernel as backward and
forward kernels in LIS.

APPENDIX 7

Derivation of Upper Bound of CV

CV = sd(Ẑ)

E(Ẑ)

=
√

1
n
∑n

i=1(Ẑi− 1
n
∑n

i=1 Ẑi)2

1
n
∑n

i=1 Ẑi

= √n

√√√√ n∑
i=1

(
Ẑi∑n
i=1 Ẑi

− 1
n

)2

For non-negative Zi, the CV is maximized when Ẑi∑n
i=1 Ẑi
=

1 for some i, and 0 for the rest. In this extreme case, Ẑi
is much larger than the rest. The upper bound of the CV
can be simplified to

√
n−1.

APPENDIX 8

Tuning of 	 and K
In Figure A.4, we compare the performance of

ASMC algorithm as a function of K, with 	 fixed
at 5. We used four different numbers of particles
K=100,300,1000,3000. Both the marginal likelihood
estimate and tree metrics improve as K increases. Figure
A.5 displays the performance of ASMC algorithm as
a function of 	, with K=1000. R is the total number
of SMC iterations. We used five distinct 	 values, 	=
3,4,4.3,5,5.3. The marginal likelihood estimates and
tree metrics improve as 	 increases; they tend to be
stable after 	 reaches 5. A larger value of 	 can improve
the performance of ASMC more significantly than an
increase in K.
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FIGURE A.4. Comparison of adaptive SMC algorithm with different numbers of particles, from left to right K=100,300,1000,3000.
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APPENDIX 9

Comparison of ASMC, DASMC, LIS, and SS for large K
In this experiment, we focus on evaluating the

marginal likelihood estimates using ASMC, DASMC,
LIS, and SS with a shared, large computational budget.
We simulated an unrooted tree of 4 taxa, generated one
data set of DNA sequences of length 10. Every algorithm
for each data set was repeated 50 times with different
random seeds. We set 	=2 and K=200,000. The setup
of DASMC, LIS, and SS is the same as Comparison of
Marginal Likelihood Estimates section.

Figure A.6 shows the comparison of the performance
of the four algorithms in terms of the marginal
likelihoods in the log scale. The mean log marginalized
likelihood estimates provided by ASMC, DASMC, LIS,
and SS are quite close. The variance of estimates for
ASMC and DASMC is smaller than LIS and SS.
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