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Abstract: This article considers multinomial data subject to misclassification in the presence of covariates
which affect both the misclassification probabilities and the true classification probabilities. A subset of
the data may be subject to a secondary measurement according to an infallible classifier. Computations are
carried out in a Bayesian setting where it is seen that the prior has an important role in driving the inference.
In addition, a new and less problematic definition of nonidentifiability is introduced and is referred to as
hierarchical nonidentifiability. The Canadian Journal of Statistics 48: 655–669; 2020 © 2020 Statistical
Society of Canada
Résumé: Les auteurs considèrent des données multinomiales sujettes à une mauvaise classification en
présence de covariables affectant à la fois les probabilités de bonne et de mauvaise classification. Un
sous-ensemble des données peut faire l’objet d’une seconde mesure par un classificateur infaillible.
Les auteurs développent leurs calculs dans un cadre bayésien où la loi a priori joue un rôle important
pour l’inférence. Les auteurs présentent également une nouvelle définition moins problématique de la
non-identifiabilité, soit la non-identifiabilité hiérarchique. La revue canadienne de statistique 48: 655–669;
2020 © 2020 Société statistique du Canada

1. INTRODUCTION

The analysis of categorical data (Agresti, 2013) has a longstanding and extensive literature that
is applicable to many disciplines including the social, biomedical and marketing sciences. In
some cases, categorical data are misclassified. For example, a subject whose “true” classification
is the first category may be incorrectly classified in the second category.

Bross (1954) developed the standard framework for the analysis of binomial data subject to
misclassification. In addition, the author demonstrated that severely biased estimators can occur
when the effect of misclassification is ignored. Since the seminal paper by Bross (1954), there
has been a considerable amount of research directed towards misclassification in categorical
data. Much of the effort has been from a Bayesian point of view, perhaps due to the fact that
misclassification problems yield additional parameters where the number of parameters can
sometimes exceed the dimensionality of the data. A literature review of the Bayesian analysis of
misclassified multinomial data is given by Perez et al. (2007).
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The work presented here extends two previous papers in significant directions. Swartz et
al. (2004) investigated the Bayesian analysis of multinomial data where special attention was
given to the inherent problem of nonidentifiability. Here, we extend their model beyond a single
multinomial cohort to the case of subject-specific covariates. In addition, the possibility of gold
standard data is considered. Gerlach & Stamey (2007) developed Bayesian methods for variable
selection in logistic regression models where misclassification is present. Here, we extend their
model to the multinomial context where Dirichlet distributions are assigned to the primary
parameters.

In Section 2, we present the multinomial model subject to misclassification in the presence
of covariates. Whereas our focus is on data that are categorized subject to misclassification,
we also provide modelling for gold standard data that are classified by an infallible classifier.
A prior distribution is proposed where alternative parameterizations are provided according
to default (i.e., reference) distributions or highly informative priors. In Section 3, we explore
pragmatic issues resulting from the highly parameterized model. In particular, the problem of
nonidentifiability is investigated, and a new definition of nonidentifiability is proposed that is
particularly relevant to Bayesian settings. Computation is also discussed, and this is paramount in
high-dimensional problems. In Section 4, we address the analysis of two datasets. The simulated
dataset allows us to assess the reliability of inferences when the true parameters are known. We
also are able to investigate the importance of the priors as we alter the amount of gold standard
data. We then consider an actual dataset where the results appear to be sensible. Some concluding
remarks are provided in Section 5.

2. MODEL DEVELOPMENT

2.1. The Data Model
Consider ni independent observations belonging to the ith covariate pattern, i = 1,… , r, and
assume that each observation is classified according to one of q categories. Then the 𝑗th
observation adhering to the ith covariate pattern takes the form yi𝑗 = (yi𝑗1,… , yi𝑗q)′ where
yi𝑗l = 1 denotes that the observation is classified according to category l and yi𝑗k = 0 for k ≠ l.
Without misclassification, and assuming independence between observations, this is a standard
product multinomial model and the likelihood is given by

L0 =
r∏

i=1

ni∏
𝑗=1

q∏
k=1

p
yi𝑗k
ik ,

where pik = Prob(yi𝑗k = 1) for k = 1,… , q, 𝑗 = 1,… , ni, i = 1,… , r.
In the presence of misclassification, we let pil denote the probability that a subject belonging

to the ith covariate pattern has the true (but unobserved) classification l. In other words, whereas
yi𝑗k is the observed classification, the true classification is a latent variable. Furthermore, we let
𝜋ilk denote the probability that a subject with the ith covariate pattern is classified as k given
that its true classification is l. By the law of total probability, it follows that the probability of
classification in category k for a subject with the ith covariate pattern is

∑q
l=1 pil𝜋ilk. This leads

to the more complex likelihood

L1 =
r∏

i=1

ni∏
𝑗=1

q∏
k=1

( q∑
l=1

pil𝜋ilk

)yi𝑗k

=
r∏

i=1

q∏
k=1

( q∑
l=1

pil𝜋ilk

)∑ni
𝑗=1 yi𝑗k

. (1)
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Therefore, the parameterizations of the standard product multinomial model has increased
considerably with the addition of the rq(q − 1) misclassification parameters 𝜋ilk.

We also allow for the case where some observations are doubly classified; first as above
where the possibility of misclassification exists. Second, these observations are classified
according to an infallible classifier, where the classification is known to be correct. An infallible
classifier is typically more expensive or less readily available than a fallible classifier. With
double classification, the 𝑗th observation adhering to the ith covariate pattern takes the form
(xi𝑗 , zi𝑗) where xi𝑗 = (xi𝑗1,… , xi𝑗q)′ corresponds to the fallible classifier and zi𝑗 = (zi𝑗1,… , zi𝑗q)′
corresponds to the infallible classifier. The pair (xi𝑗 , zi𝑗) are known as gold standard data where
each vector consists of q − 1 zeros and a single one. We let mi denote the number of observations
in the ith covariate class that are doubly classified. This leads to the gold standard likelihood
contribution

L2 =
r∏

i=1

mi∏
𝑗=1

Prob(xi𝑗 , zi𝑗)

=
r∏

i=1

mi∏
𝑗=1

Prob(zi𝑗) Prob(xi𝑗 ∣ zi𝑗)

=
r∏

i=1

mi∏
𝑗=1

( q∏
k=1

p
zi𝑗k
ik

)( q∏
l=1

q∏
k=1

𝜋
zi𝑗lxi𝑗k
ilk

)

=
r∏

i=1

q∏
k=1

(
p
∑mi

𝑗=1 zi𝑗k

ik

)( q∏
l=1

𝜋

∑mi
𝑗=1 zi𝑗lxi𝑗k

ilk

)
. (2)

We note that with some covariate patterns, there may be no data that are solely classified
with a fallible classifier (i.e., ni = 0), or there may be no doubly classified data (i.e., mi = 0).
Putting together the likelihoods associated with the data that are solely classified with a fallible
classifier, i.e., Equation (1) and the gold standard data, i.e., Equation (2), the overall likelihood
for the misclassified multinomial model in the presence of covariates is given by

L = L1 ⋅ L2. (3)

Although the scenario is less realistic, it is also possible to have data that are only clas-
sified by the infallible classifier. Such data provide information about the true classification
probabilities pik. We define the data vector wi𝑗 with si cases corresponding to the ith covari-
ate pattern. Although we do not study this case, for reference, we provide its likelihood
contribution

L3 =
r∏

i=1

si∏
𝑗=1

Prob(wi𝑗)

=
r∏

i=1

si∏
𝑗=1

( q∏
k=1

p
wi𝑗k
ik

)

=
r∏

i=1

q∏
k=1

(
p
∑si

𝑗=1 wi𝑗k

ik

)
.
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2.2. The Prior Distribution
In specifying the prior distribution, we use the generic notation [A ∣ B] to denote the conditional
probability density function of A given B. In addition to the true classification probabilities p and
the misclassification probabilities 𝜋 developed above, we introduce additional parameters a, b,
𝜎a and 𝜎b. Via conditional probability, the prior distribution is given by

[p, 𝜋, a, b, 𝜎a, 𝜎b] = [p, 𝜋 ∣ a, b, 𝜎a, 𝜎b] [a, b ∣ 𝜎a, 𝜎b] [𝜎a, 𝜎b], (4)

where the parameter hierarchy is apparent; p and 𝜋 are primary parameters, a and b are secondary
parameters and 𝜎a and 𝜎b are tertiary parameters. The hierarchical labelling is relevant to the
discussion in Section 3.1.

In Gerlach & Stamey (2007), it was convenient to model the logits of the true classification
probabilities as linear combinations of covariate vectors u with an additive normal error. Given
constraints

∑q
k=1 pik = 1 in the multinomial setting, we instead assign a prior distribution to the

pik parameters via

(pi1,… , piq)′ ∼ Dirichlet(exp(a′1ui),… , exp(a′qui)), (5)

where the true classifications are covariate dependent. Note that the distribution in Expression (5)
corresponds to the ith covariate pattern and independence is assumed for i = 1,… , r. Typically,
it would be sensible to include a constant (intercept) term in the covariate vector ui.

As in Gerlach & Stamey (2007), it is also reasonable to consider misclassification rates that
are covariate dependent. We therefore assign a prior distribution to the misclassification rates via

(𝜋il1,… , 𝜋ilq)′ ∼ Dirichlet(exp(b′l1ui),… , exp(b′lqui)), (6)

where i = 1,… , r, l = 1,… , q and the distribution identified in Expression (6) is condition-
ally independent of the distribution specified in Expression (5). The prior assignments in
Expressions (5) and (6) are the first steps in the hierarchical model-building process.

The second step in this process involves the assignment of hyperpriors for the a’s and b’s.
With covariate vectors of dimension v, these priors are assigned as follows:

(ak1,… , akv)′ ∼ Normal((a(0)k1 ,… , a(0)kv )
′,D𝜎a

),

(blk1,… , blkv)′ ∼ Normal((b(0)lk1,… , b(0)lkv)
′,D𝜎b

),

where l, k = 1,… , q, and D𝜎a
and D𝜎b

are diagonal matrices with diagonal vectors 𝜎a and
𝜎b, respectively. The components of 𝜎a and 𝜎b have priors that are independent Inverse
Gamma(r(0)a , s(0)a ) and Inverse Gamma(r(0)b , s(0)b ) distributions, respectively. Parameters with a
superscript (0) are user-specified.

Hence the posterior distribution is proportional to the product of Equations (3) and (4) with
possible parameter constraints used to ameliorate nonidentifiability issues (Swartz et al., 2004).

3. PRAGMATIC ISSUES

3.1. Nonidentifiability
As modern statistical practice entertains increasingly complex models, the problem of noniden-
tifiability has become an increasingly important topic. Not only is it sometimes difficult to
handle nonidentifiability issues, it is sometimes difficult to detect nonidentifiability. Strangely,
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the topic of nonidentifiability does not appear to be receiving its due coverage in current statistics
curricula. In a nonscientific survey of the third author’s bookshelf, he discovered 12 texts on
mathematical statistics, and only two of the texts had “identifiability” or “nonidentifiability” or
“unidentifiability” listed in the table of contents.

A statistician’s first encounter with nonidentifiability often occurs in a regression context.
Consider the simple one-way ANOVA

yi𝑗 = 𝜇 + 𝜏i + 𝜖i𝑗 ,

where yi𝑗 is the 𝑗th response under treatment i, 𝜇 is the overall mean, 𝜏i is the ith treatment effect,
i = 1, 2, and the 𝜖i𝑗 are random error terms. In matrix notation, y = (y11,… , y1n1

, y21,… , y2n2
)′

and the design matrix is given by X = (1, x1, x2) where 1 is a vector of ones, x1 is a vector of n1
ones followed by n2 zeros and x2 is a vector of n1 zeros followed by n2 ones. The least squares
estimator of (𝜇, 𝜏1, 𝜏2)′ given by (X′X)−1X′y cannot be calculated since X′X is not invertible (i.e.,
X is not full rank). Clearly, this is a problem, but a simple solution is to introduce the constraint
𝜏1 + 𝜏2 = 0.

More formally, Basu (1983) defined nonidentifiability as follows:

Definition. Let U be an observable random variable with distribution function F𝜃 and let F𝜃

belong to a family  = {F𝜃 ∶ 𝜃 ∈ Ω} of distribution functions indexed by a parameter 𝜃. Here
𝜃 could be scalar or vector-valued. We say that 𝜃 is nonidentifiable by U if there is at least one
pair (𝜃, 𝜃′), 𝜃 ≠ 𝜃′, where 𝜃 and 𝜃′ both belong to Ω such that F𝜃(u) = F𝜃′ (u) for all u. In the
contrary case we shall say 𝜃 is identifiable.

Basu’s definition essentially states that a nonidentifiable model is one where no matter
what data are observed, there are parameter values that cannot be distinguished. If we interpret
nonidentifiability as a pejorative term concerning models, then perhaps the Basu (1983) definition
is overly rigid, and the definition may not be appropriate for Bayesian statistical practice. For
example, consider the following posterior density expressed in a common hierarchical structure

[𝜃1, 𝜃2 ∣ y] ∝ [y ∣ 𝜃1] [𝜃1 ∣ 𝜃2] [𝜃2]. (7)

Now Expression (7) may be considered the bread and butter of Bayesian modelling. There
is certainly nothing wrong with Expression (7), and such models are widespread in statistical
practice. However, according to the Basu (1983) definition, there exists a nonidentifiability
in the model specified in Expression (7) as both (𝜃1, 𝜃2) and (𝜃1, 𝜃

′
2) yield the same sampling

distribution given by [y ∣ 𝜃1]. In fact, all hierarchical models, which are the mainstream of
Bayesian modelling, are nonidentifiable.

On the opposite side of the spectrum, there is an extreme point of view with respect to
nonidentifiability and Bayesian statistics. Lindley (1971) stated, “In passing, it might be noted
that unidentifiability causes no real difficulty in the Bayesian approach.” Reading into Lindley’s
statement, he may have intended to convey the message that after writing down the posterior
which is proportional to the product of the likelihood and prior, there is no obstacle to integrating.

Despite Lindley’s claim, nonidentifiability is a problem for Bayesian statistical practice,
and this has been explored by many authors including Gustafson (2005, 2010) and Martin
and Gonzalez (2010). A common problem concerning nonidentifiability is that likelihood is
assigned to regions of the parameter space which are not a priori plausible. For example,
consider the simple problem discussed in Evans et al. (1996). Here, there is a random patient
having probability p of being sick, probability 𝜃 of being misdiagnosed as healthy and proba-
bility 𝜙 of being misdiagnosed as sick. Therefore, the probability that the patient is diagnosed
sick is 𝑓 (p, 𝜃, 𝜙) = p(1 − 𝜃) + (1 − p)𝜙. This leads to a nonidentifiable model as 𝑓 (p, 𝜃, 𝜙) =
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𝑓 (1 − p, 1 − 𝜙, 1 − 𝜃). But moreover, we see that the model does not correspond to common
sense as 𝑓 (p, 𝜃, 𝜙) is not necessarily an increasing function of p (without introducing appropriate
constraints).

Essentially, problematic issues involving nonidentifiability in Bayesian statistics may be
viewed as an artifact of nonsensical model building with respect to the sampling model.

In Swartz et al. (2004), various constraints were introduced on the parameter space to avoid
nonsensical model building in the misclassified multinomial model. A simple constraint which
was suggested there, and will be utilized in this article is

𝜋ilk < 𝜋ill, (8)

for i = 1,… , r and all l ≠ k. The constraint identified in Expression (8) essentially states that it
is more probable for a subject to be classified correctly than in an incorrect category. Although
Expression (8) does not entirely resolve the issue of nonidentifiability in our model, it goes
a long way in improving inferences as it eliminates unacceptable regions of the posterior
space.

Constraints other than the one specified in Expression (8) have also been discussed in the
literature with respect to nonidentifiability. For example, Wang & Gustafson (2014) consider
the misclassification of an ordinal exposure variable in the context of hypothesis testing. Such
frameworks are common in studies where disease outcome is regressed against exposure. Wang
& Gustafson (2014) provide discussion of how power is lost and gained when misclassification
probabilities are tapered (i.e., decrease in probability as one moves away from the true
classification). Ogburn & Vanderweele (2013) investigate the setting where there is a binary
treatment and an ordinal confounding variable which is subject to misclassification. Ogburn
& Vanderweele ((2013) impose monotonicity assumptions on the effect of the misclassified
confounder on the treatment and the outcome.

How do we then reconcile the overly rigid Basu (1983) definition with legitimate concerns
for nonidentifiability in Bayesian practice? We suggest an alternative definition which takes the
Bayesian hierarchical structure into account. For ease of notation, let y = 𝜃0, and express the
posterior density as

[𝜃1,… , 𝜃k ∣ 𝜃0] ∝ [𝜃0 ∣ 𝜃1] [𝜃1 ∣ 𝜃2] · · · [𝜃k−1 ∣ 𝜃k]

=
k∏

i=1

[𝜃i−1 ∣ 𝜃i],

where 𝜃1,… , 𝜃k are potentially vector-valued, and there is uniqueness in the hierarchical
structure. We then say that a Bayesian model contains a hierarchical nonidentifiability if for
some i = 1,… , k, there exists 𝜃i ≠ 𝜃′i for which [𝜃i−1 ∣ 𝜃i] = [𝜃i−1 ∣ 𝜃′i ] for all values 𝜃i−1. The
idea is that nonidentifiability occurs when at least one of the links in the hierarchical model does
not identify between parameters. This is a weaker definition than the Basu (1983) definition, and
the proposed definition prevents the immediate disqualification of hierarchical models as being
nonidentifiable.

In the model considered in this article, we refer to the expressions in Section 2.2, and obtain
the posterior density

[p, 𝜋, a, b, 𝜎a, 𝜎b ∣ y, x, z] ∝ [y, x, z ∣ p, 𝜋] [p, 𝜋 ∣ a, b, 𝜎a, 𝜎b] [a, b ∣ 𝜎a, 𝜎b] [𝜎a, 𝜎b], (9)

where [y, x, z ∣ p, 𝜋] = L1L2 from Equations (1) and (2). Viewing the terms in Expression (9),
the only possibility of hierarchical nonidentifiability occurs in the [y, x, z ∣ p, 𝜋] specification.
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TABLE 1: Parameter summary for the misclassified multinomial model with covariates.

Parameters Description Number

pik Primary parameters of interest which r(q − 1)

describe the true classification probabilities

𝜋ilk Primary parameters of interest which rq(q − 1)

describe the misclassification probabilities

akt Secondary parameters of interest relating qv

covariates to the true classification probabilities

blkt Secondary parameters of interest relating q2v

covariates to the misclassification probabilities

𝜎a, 𝜎b Tertiary parameters of interest 2v

In fact, if complete gold standard data exists (i.e., mi ≥ 1, i = 1,… , r), then the model is
hierarchically identifiable. In the absence of gold standard data (i.e., no L2 term), there are
nonidentifiability issues as discussed in Swartz et al. (2004). The impact of gold standard
data, the prior specification and constraints with respect to nonidentifiability and inference are
explored in the simulated data example of Section 4.1.

3.2. Computation
Misclassified multinomial data in the presence of covariates leads to a complex model where the
number of observations

∑r
i=1(ni + mi) is sometimes exceeded by the number of parameters. The

model parameters are summarized in Table 1.
With so many parameters and constraints, inferential procedures relying on exact integration

are clearly infeasible. Approximation techniques such as Laplace’s method, importance sampling
and quadrature (Evans & Swartz, 2000) are also not well-suited to this application. It seems
that a Markov chain procedure may be the only avenue for obtaining inferential summaries. In
this approach, a Markov chain is constructed whose equilibrium distribution corresponds to the
posterior. By averaging over samples, posterior estimates can be approximated.

It was originally our intention to use a Bayesian programming language such as WinBUGS
(Lunn et al., 2013) or JAGS (Plummer, 2015) to implement the models considered in this article.
Such software is attractive as it avoids the need for special purpose Markov chain Monte Carlo
(MCMC) code. However, we were unsuccessful with an RJAGS implementation as the Markov
chains would hang after a number of iterations.

Our next computational attempt involved the consideration of a Gibbs sampling algorithm.
This approach may be facilitated via data augmentation where the latent variable Ti𝑗 is introduced
in the context of data that are only classified by a fallible classifier. For i = 1,… , r, 𝑗 = 1,… , ni,
we define

Ti𝑗 ≡ k if the 𝑗th observation sharing the ith covariate pattern has true classification k.

Accordingly, the posterior density simplifies and takes the form

[p, 𝜋, a, b, 𝜎a, 𝜎b,T ∣ y, x, z] ∝

(
r∏

i=1

ni∏
𝑗=1

pi,Ti𝑗
𝜋i,Ti𝑗 ,

∑q
k=1 kyi𝑗k

)
⋅ L2 ⋅ [p, 𝜋, a, b, 𝜎a, 𝜎b],

where the likelihood L2 and the prior [p, 𝜋, a, b, 𝜎a, 𝜎b] are given in Section 2.2.
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Although it is possible to derive the required full conditional distributions from the above
expression, it is clearly a laborious process that is prone to coding errors. It is especially tedious
when small changes to the model or changes in parameter constraints lead to considerable
changes in the full conditional distributions.

For this problem, we then turned to a hybrid of Gibbs sampling and slice sampling (Neal,
2003) to generate variates from the joint posterior distribution [p, 𝜋, a, b, 𝜎a, 𝜎b,T ∣ y, x, z]. Details
concerning the implementation of the algorithm are provided in the Appendix.

4. EXAMPLES

4.1. Simulated Data
We considered r = 50 covariate patterns and q = 5 categorical responses, which is typical of
surveys carried out on a Likert scale. In the baseline dataset, we began with 20% gold standard
data where there are 1,000 observations. This was accomplished by setting ni = 0 for covariate
patterns i = 5, 10, 15,… , 50 and ni = 20 otherwise, using the fallible classifier as specified in
Equation (1). For the gold standard data, we set mi = 20 for covariate patterns i = 5, 10, 15,… , 50
and mi = 0 otherwise, as specified in Equation (2).

The covariates ui in Expressions (5) and (6) have dimension v = 2 where ui = (1, i)′ contains
a constant term and a term which increases linearly according to the covariate pattern i. The
parameter coefficients corresponding to the covariate in Expression (5) were set according to
a1 = (0.1, 0.05)′, a2 = (0.2, 0.05)′, a3 = (0.3, 0.05)′, a4 = (0.4, 0.05)′ and a5 = (0.5, 0.05)′. This
implies that the probabilities of classification pik have prior probability distributions that are
increasing across the five cells but the effect diminishes as i increases.

For the misclassification probabilities 𝜋ilk identified in Expression (6), we set the parameter
coefficients as follows:

b11 = (2.0, 0.0)′ b12 = (1.0, 0.0)′ b13 = (0.0, 0.0)′ b14 = (0.0, 0.0)′ b15 = (0.0, 0.0)′

b21 = (1.0, 0.0)′ b22 = (2.0, 0.0)′ b23 = (1.0, 0.0)′ b24 = (0.0, 0.0)′ b25 = (0.0, 0.0)′

b31 = (0.0, 0.0)′ b32 = (1.0, 0.0)′ b33 = (2.0, 0.0)′ b34 = (1.0, 0.0)′ b35 = (0.0, 0.0)′

b41 = (0.0, 0.0)′ b42 = (0.0, 0.0)′ b43 = (1.0, 0.0)′ b44 = (2.0, 0.0)′ b45 = (1.0, 0.0)′

b51 = (0.0, 0.0)′ b52 = (0.0, 0.0)′ b53 = (0.0, 0.0)′ b54 = (1.0, 0.0)′ b55 = (2.0, 0.0)′.

This implies that misclassification occurs in neighbouring categories with the greatest prior
probability and does not depend on the covariate pattern i.

Using the above settings, we generated the underlying classification probabilities pik and
the underlying misclassification probabilities 𝜋ilk according to the Dirichlet distributions in
Expressions (5) and (6). In turn, we used multinomial distributions to generate the data yi𝑗
according to the fallible classifier and to generate the doubly classified gold standard data
(xi𝑗 , zi𝑗).

We then repeated the entire simulation process described above N = 20 times. This pro-
vided N datasets from which we can assess the performance of the model and the MCMC
procedure.

The model is completely specified except for the hyperparameters. For the hyperpa-
rameters, we began with settings a(0)k𝑗 = b(0)lk𝑗 = 0 for all k = 1,… , q, l = 1,… , q and 𝑗 =
1,… , v. We also introduced diffuse hyperpriors 𝜎a ∼ Inverse Gamma(1.0, 0.01) and 𝜎b ∼
Inverse Gamma(1.0, 0.01).

There is no shortage of ways that one might investigate the simulation results. We chose to
concentrate on the true classification probabilities pik since these are the parameters of primary
interest. Let pik denote the underlying values that were generated and let p̃ik denote the posterior
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means from the Markov chain. For the 𝑗th dataset, 𝑗 = 1,… ,N, we defined the statistic

D(𝑗) = 1
rq

r∑
i=1

q∑
k=1

(pik − p̃ik)2, (10)

as a measure of the ability of the model to estimate the classification probabilities. We interpreted
D(𝑗) in Equation (10) as the average distance between an estimated pik and its underlying
value. Smaller values of D(𝑗) indicated successful estimation. An overall measure of estimation
(i.e., over all datasets) is given by D = (1∕N)

∑N
𝑗=1 D(𝑗) and SD =

√∑N
𝑗=1(D(𝑗) − D)2∕(N − 1).

Standard diagnostics were assessed to confirm convergence of the Markov chains.
In the baseline model, although there was evidence of autocorrelation in some of the

parameters blk2, we observed convergence of Markov chains. Initially, we observed D = 0.0069
(SD = 0.0012) based on 100,000 iterations of the Markov chain. We then increased the size of
the dataset from 1,000 observations to 5,000 observations and retained the 20% gold standard
data ratio. In this case we observed D = 0.0051 (SD = 0.0008). This suggests (as expected) that
more data improve estimation.

To investigate the effect of the constraint identified in Expression (8) which is intended to
reduce nonidentifiability issues, we repeated the simulation procedure with the original 1,000
observations under the baseline model without the constraint. In this case, we observed a larger
D = 0.0073 (SD = 0.0014) which suggests that the constraint is mildly helpful in this example.

It is also the case that a higher proportion of gold standard data improves estimation. This
was observed by setting ni = 0 for covariate patterns i = 2, 4, 6,… , 50 and ni = 20 for covariate
patterns i = 1, 3, 5,… , 49 using the fallible classifier associated with Equation (1). For the gold
standard data, we set mi = 20 for covariate patterns i = 2, 4, 6,… , 50 and mi = 0 otherwise
according to Equation (2). In this case, we had 50% gold standard data and 1,000 observations as
before. In this case, there was a reduction from D = 0.0069 in the baseline model to D = 0.0056
(SD = 0.0007).

We then investigated the sensitivity of our procedures with respect to the prior specification.
We set the hyperparameters according to a(0)k = (0.3, 0.05)′, b(0)kk = (2.0, 0.0)′ and b(0)lk = (0.0, 0.0)′
(l ≠ k) for all k = 1,… , q and l = 1,… , q. Previously, the hyperpriors on 𝜎a and 𝜎b were diffuse.
With a more informative prior Inverse Gamma(10000.0, 1.0), less probability is assigned to
implausible regions in the contours resulting from nonidentifiability. This resulted in quicker
mixing and improved estimation; we obtained D = 0.0064 (SD = 0.0011) which is improved
when compared to the baseline results.

Finally, we report on some details associated with the baseline case in the simulation study.
We required 661.6 s (i.e., roughly 11 min) of computation on an Intel Core i5, 1.3 GHz processor
based on 10,000 iterations of the Markov chain. The average acceptance rate of the rejection
sampler was 91.7% which caused no difficulties for our sampling scheme. The average MCMC
effective sample size of pik is 7,525.35 for 50,000 MCMC iterations after burn-in.

4.2. Actual Data and Analysis
The following example is relatively simple. However, the application area is novel, and the
results are both readily interpretable and interesting.

Here we consider data taken from Replay Challenges during the last five regular seasons
(2014–2018) of the National Football League (NFL). During this period, there have been no rule
changes with respect to Replay Challenges. In an attempt to improve decision making by game
officials, each of the two coaches in an NFL game is allowed to appeal decisions concerning a
maximum of two plays using video replay technology. In the case where a coach has made two
successful challenges, he is allowed to make a third challenge.

DOI: 10.1002/cjs The Canadian Journal of Statistics / La revue canadienne de statistique



664 WANG, WANG AND SWARTZ Vol. 48, No. 4

FIGURE 1: Histograms of 𝜋112 − 𝜋212 and 𝜋121 − 𝜋221, and scatterplots for posterior samples of
𝜋112 versus 𝜋212 and 𝜋121 versus 𝜋221. The red vertical lines indicate posterior means and the

blue vertical lines indicate 2.5% and 97.5% quantiles, respectively.

The data were obtained using the R package nflscrapr (Horowitz, Yurko & Ventura, 2018),
and we have restricted the dataset to the 410 coaches’ challenges that involved pass completion
rulings. In this dataset, we assume the result of the video replay is correct and this provides us
with gold standard data. Therefore, following Equation (2), (xi𝑗1, xi𝑗2) and (zi𝑗1, zi𝑗2) correspond
to the 𝑗th challenge under the ith covariate pattern where (xi𝑗1, xi𝑗2) = (1, 0) if the play was ruled
a completion on the field, (xi𝑗1, xi𝑗2) = (0, 1) if the play was ruled an incompletion on the field,
(zi𝑗1, zi𝑗2) = (1, 0) if the play was ruled a completion by video replay and (zi𝑗1, zi𝑗2) = (0, 1) if
the play was ruled an incompletion by video replay. In this application, we are mostly interested
in the misclassification probabilities 𝜋i11 that the video replay confirmed a completion and 𝜋i12
that the video replay reversed an original ruling of pass incompletion. The misclassification
probabilities are important as they address the accuracy of the original calls.

For simplicity, we consider r = 2 covariate patterns:

• i = 1 ≡ challenge by the home team
• i = 2 ≡ challenge by the road team

It is instructive to note that the home team will only challenge calls corresponding to an
incompletion by the home team or a completion by the road team. Similarly, the road team will
only challenge calls corresponding to an incompletion by the road team or a completion by the
home team.

We set default covariates u1 = u2 = 1, and default hyperparameters a(0)11 = a(0)21 = 0, b(0)111 =
b(0)121 = b(0)211 = b(0)221 = 0, r(0)a = r(0)b = 1, s(0)a = s(0)b = 0.01. For this application, we did not impose
constraints, such as the one identified in Expression (8), since the gold standard data alleviate
nonidentifiability.

For this simple problem, the Markov chain converged rapidly. We obtained the following
posterior estimates of the true classification and the misclassification probabilities: p̂11 = 0.53,
p̂21 = 0.48, �̂�112 = 0.37, �̂�121 = 0.55, �̂�212 = 0.36 and �̂�221 = 0.51. Panels 1 and 2 of Figure 1
display posterior histograms of 𝜋112 − 𝜋212 and 𝜋121 − 𝜋221, respectively. Panels 3 and 4 of
Figure 1 display scatterplots for posterior samples of 𝜋112, 𝜋212 and 𝜋121, 𝜋221. Based on the
point estimates, our most interesting observation is that incorrect on-field decisions in favour of
the road team are slightly more probable than incorrect on-field decisions in favour of the home
team (i.e., �̂�112 > �̂�212 and �̂�121 > �̂�221). However, referring to panel 1 of Figure 1, the posterior
variability suggests that there there is no evidence of the phenomenon known as the “home team
advantage” in the context of replay challenges in the NFL; see Swartz & Arce (2014) and the
references therein. This is in keeping with recent discussions (https://twitter.com/StatsbyLopez/
status/1161775001596567559) indicating that the home team advantage has been decreasing
over time.
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FIGURE 2: Histograms of P1U∕P1R and P2U∕P2R. The red vertical lines indicate posterior means
and the blue vertical lines indicate 2.5% and 97.5% quantiles respectively.

Furthermore, under covariate pattern i, we can express

PiU = Prob(on-field decision upheld) = pi1𝜋i11 + pi2𝜋i22, (11)

and

PiR = Prob(on-field decision reversed) = 1 − PiU .

Using Expression (11), we obtain posterior means P̂1U = 0.55 and P̂2U = 0.56. Therefore, when
challenged, the initial calls on the field are correct more than half the time. This may be a
surprising result since coaches typically invoke challenges only when they believe that officials
have made mistakes. Figure 2 displays the posterior histograms of P1U∕P1R and P2U∕P2R. The
plots confirm that in the context of replay challenges, the on-field calls are correct most of the
time.

4.3. Reduced Gold Standard Data
We consider the NFL Replay Challenge data from Section 4.2 where we utilize the full likelihood
identified in Equation (3). To do this, we eliminate some of the gold standard data (zi𝑗1, zi𝑗2) so
that we have both a fallible classifier (i.e., the on-field calls) and gold standard data (i.e., the
video review results). Of the 410 challenges, we randomly eliminate 10%, 20% and 30% of the
gold standard data corresponding to 41, 82 and 123 replay challenge decisions. We use the same
prior distributions as in Section 4.2.

In these analyses, we again consider estimation of the misclassification probabilities 𝜋112,
𝜋121, 𝜋212 and 𝜋221. The results are summarized in Table 2. As expected, we observe that when
the gold standard data are plentiful (e.g., 10% reduction), inferences are nearly the same as in the
full data analysis reported in Section 4.2. As more gold standard data are eliminated, the estimates
begin to drift. However, even with a 30% reduction in gold standard data, there appears to be suf-
ficient information in the dataset to yield estimates that are in the vicinity of the original estimates.
We also observe that the posterior standard deviations increase with less gold standard data.

5. CONCLUDING REMARKS

This article has expanded earlier models on multinomial misclassification by considering the
inclusion of subject-specific cohorts in the presence of both fallible and infallible classifiers.
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TABLE 2: Parameter estimates based on fractional reductions of the gold standard data. Posterior standard
deviations are given in parentheses.

Parameter Full data 10% reduction 20% reduction 30% reduction

𝜋112 0.366 (0.043) 0.362 (0.044) 0.359 (0.045) 0.366 (0.046)

𝜋122 0.548 (0.046) 0.542 (0.048) 0.533 (0.051) 0.545 (0.051)

𝜋212 0.359 (0.052) 0.357 (0.053) 0.329 (0.054) 0.317 (0.056)

𝜋221 0.506 (0.052) 0.506 (0.054) 0.479 (0.054) 0.472 (0.056)

In addition, an alternative definition of nonidentifiability has been proposed which appears
well-suited to hierarchical models.

From our investigations on sample datasets, we have observed (1) that nonidentifiability
resulting from misclassification complicates inference in this class of problems, (2) that sufficient
gold standard data help alleviate the nonidentifiability issue, and (3) that a sufficiently informative
prior helps alleviate the nonidentifiability issue.

In this project, MCMC algorithms have been implemented in R to sample from the
corresponding distributions. The R source code is available from the authors upon request.

APPENDIX

MCMC Sampling for [p, 𝜋,a,b, 𝜎a, 𝜎b,T ∣ y , x , z]
For this problem, we implemented a hybrid of Gibbs sampling and slice sampling (Neal, 2003)
to generate variates from the joint posterior distribution [p, 𝜋, a, b, 𝜎a, 𝜎b,T ∣ y, x, z]. We sample
[p, 𝜋,T| ⋅ ] according to the following distributions:

[Ti𝑗 = m| ⋅ ] = pim ⋅ 𝜋im
∑q

k=1 kyi𝑗k
∕

q∑
l=1

pil ⋅ 𝜋il
∑q

k=1 kyi𝑗k
, where 𝑗 = 1,… , ni

[pi1,… , piq| ⋅ ] ∼ Dirichlet
( ni∑

𝑗=1

I(Ti𝑗 = 1) +
mi∑
𝑗=1

zi𝑗1 + exp(a′1ui),… ,

ni∑
𝑗=1

I(Ti𝑗 = q) +
mi∑
𝑗=1

zi𝑗q + exp(a′qui)
)
,

[𝜋il1,… , 𝜋ilq| ⋅ ] ∼ Dirichlet(cil1,… , cilq),

cilm = exp(b′lmui) +
ni∑
𝑗=1

I(Ti𝑗 = l)I
( q∑

k=1

kyi𝑗k = m
)
+

mi∑
𝑗=1

zi𝑗lxi𝑗m,

where i = 1,… , r, l = 1,… , q, m = 1,… , q.
For some covariate patterns involving data that are solely classified with a fallible classifier,

we sample [p, 𝜋,T| ⋅ ] occurring in the L1 case according to the following distributions:

[Ti𝑗 = m| ⋅ ] = pim ⋅ 𝜋im
∑q

k=1 kyi𝑗k
∕

q∑
l=1

pil ⋅ 𝜋il
∑q

k=1 kyi𝑗k
,
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[pi1,… , piq| ⋅ ] ∼ Dirichlet
( ni∑

𝑗=1

I(Ti𝑗 = 1) + exp(a′1ui),… ,

ni∑
𝑗=1

I(Ti𝑗 = q) + exp(a′qui)
)
,

[𝜋il1,… , 𝜋ilq| ⋅ ] ∼ truncated-Dirichlet(cil1,… , cilq),

cilm = exp(b′lmui) +
ni∑
𝑗=1

I(Ti𝑗 = l)I
( q∑

k=1

kyi𝑗k = m
)
,

where i = 1,… , r, l = 1,… , q, m = 1,… , q. The truncated-Dirichlet distributions are truncated
according to the constraint identified in Expression (8). We use the rejection sampling algorithm
and only accept samples that satisfy the constraint. However, rejection sampling may be too
inefficient for a large value of q, as a high proportion of proposed candidates are rejected.
We could consider a more efficient construction to generate samples for truncated-Dirichlet
distributions. As discussed in Swartz et al. (2004), for k = 1,… , q − 1, we sample

[�̃�ilk| 𝜋il1,… , 𝜋il,k−1, 𝜋il,k+1,… , 𝜋il,q−1 ] ∼ truncated-Beta(cilk, cilq),

where �̃�ilk = 𝜋ilk∕𝜋il(k), 𝜋il(k) = 1 − 𝜋il1 − · · · − 𝜋il,k−1 − 𝜋il,k+1 − · · · − 𝜋il,q−1, �̃�ilk is truncated
on interval (0, 𝜋ill∕𝜋il(k)) for k ≠ l, and is truncated on interval (maxk≠l 𝜋ilk, 1) for k = l.

For some covariate patterns where no data are solely classified with a fallible classifier, the
full conditional densities [p| ⋅ ] and [𝜋| ⋅ ] occurring in the L2 case are readily available and are
given by

[pi1,… , piq| ⋅ ] ∼ Dirichlet
( mi∑

𝑗=1

zi𝑗1 + exp(a′1ui),… ,

mi∑
𝑗=1

zi𝑗q + exp(a′qui)
)
,

[𝜋il1,… , 𝜋ilq| ⋅ ] ∼ Dirichlet
( mi∑

𝑗=1

zi𝑗lxi𝑗1 + exp(b′l1ui),… ,

mi∑
𝑗=1

zi𝑗lxi𝑗q + exp(b′lqui)
)
,

where i = 1,… , r, l = 1,… , q.
The full conditional densities [𝜎a| ⋅ ] and [𝜎b| ⋅ ] are given by

[𝜎a| ⋅ ] ∼ Inverse Gamma
(

r(0)a + q, s(0)a +
q∑

k=1

v∑
t=1

a2
kt∕2

)
,

[𝜎b| ⋅ ] ∼ Inverse Gamma
(

r(0)b + q2, s(0)b +
q∑

l=1

q∑
k=1

v∑
t=1

b2
lkt∕2

)
.

The full conditional densities [ak| ⋅ ] and [blk| ⋅ ] do not have familiar forms, and hence we
implement slice sampling on

[ak| ⋅ ] ∝ exp
{

−
(ak − a(0)k )′(ak − a(0)k )

2𝜎2
a

} r∏
i=1

[Γ(∑q
𝑗=1 exp(a′

𝑗
ui))

Γ(exp(a′kui))
p

exp(a′kui)
ik

]
,

[blk| ⋅ ] ∝ exp
{

−
(blk − b(0)lk )′(blk − b(0)lk )

2𝜎2
b

} r∏
i=1

[Γ(∑q
𝑗=1 exp(b′l𝑗ui))

Γ(exp(b′lkui))
𝜋

exp(b′lkui)
ilk

]
,

where l = 1,… , q and k = 1,… , q.
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Standard Error of MCMC Estimates
One technical challenge posed by MCMC algorithms is the estimation of standard errors
for posterior quantities of interest (Kass et al., 1998). The samples in a chain are typically
autocorrelated. The standard error of posterior quantities of interest will be underestimated
without considering the autocorrelation within a chain. We use the effective sample size (ESS)
to measure the number of independent samples within a Markov chain.

The ESS of a chain is defined as a function of autocorrelations within the chain at different
lags. We let 𝜃(1),… , 𝜃(N) denote the sequence of N MCMC samples. We let 𝜌t denote the
autocorrelation at lag t for 𝜃. The effective sample size of N samples generated by a process with
autocorrelations 𝜌t is defined by

Neff =
N∑∞

t=−∞ 𝜌t
= N

1 + 2
∑∞

t=1 𝜌t
.

If we let 𝜃 denote the mean of 𝜃(1),… , 𝜃(N), and let sd(𝜃) denote the standard deviation of
𝜃(1),… , 𝜃(N), then the standard error of 𝜃 is estimated as sd(𝜃)∕

√
Neff.
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