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ENERGY ANALYSIS: CLOSED SYSTEM 
A closed system can exchange energy with its surroundings through heat and work 
transfer. In other words, work and heat are the forms that energy can be transferred across 
the system boundary. 

Sign convention: work done by a system is positive, and the work done on a system is 
negative. Heat transfer to the system is positive and from a system will be negative. 

 
Fig. 1: Sign convention for heat and work. 

Moving Boundary Work 
The expansion and compression work is often called moving boundary work, or simply 
boundary work. We analyze the moving boundary work for a quasi-equilibrium process. 
Consider the gas enclosed in a piston-cylinder at initial P and ܸ. If the piston is allowed 
to move a distance ds in a quasi-equilibrium manner, the differential work is:  

dVPPAdsFdsWb ===δ  

 
Fig. 2: the area under P-V diagram represents the boundary work. 
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The quasi-equilibrium expansion process is shown in Fig. 2. On this diagram, the 
differential area under the process curve in ܲ െ ܸ diagram is equal to ܸܲ݀, which is the 
differential work. 

Note: a gas can follow several different paths from state 1 to 2, and each path will have a 
different area underneath it (work is path dependent). 

The net work or cycle work is shown in Fig. 3. In a cycle, the net change for any 
properties (point functions or exact differentials) is zero. However, the net work and heat 
transfer depend on the cycle path.  

ΔU = ΔP = ΔT = Δ(any property) = 0        for a cycle 

 

  
Fig. 3: network done during a cycle. 

Polytropic Process  
During expansion and compression processes of real gases, pressure and volume are 
often related by PVn = C, where n and C are constants. The moving work for a polytropic 
process can be found: 
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The special case n =1 is the isothermal expansion P1V1 = P2V2 = mRT0= C, which can be 
found from: 
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Since for an ideal gas, PV=mRT0 at constant temperature T0, or P=C/V. 
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Example 1: Polytropic work 

A gas in piston-cylinder assembly undergoes a polytropic expansion. The initial pressure 
is 3 bar, the initial volume is 0.1 m3, and the final volume is 0.2 m3. Determine the work 
for the process, in kJ, if a) n=1.5, b) n=1.0, and c) n=0. 

Solution: 

Assumptions 

i. The gas is a closed system 
ii. The moving boundary is only work mode 

iii. The expansion is polytropic. 

a) n =1.5 
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We need P2 that can be found from ଵܲ ଵܸ
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b) n =1 (isothermal) , the pressure volume relationship is PV = constant. The work is: 
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c) For n = 0 (constant-pressure), the pressure-volume relation reduces to P = constant 
(isobaric process) and the integral become W= P (V2-V1).  

Substituting values and converting units as above, W=30 kJ. 
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Example 2: Mechanical work 

Calculate the work transfer in the following process: 

 

 
Fig. 4: Schematic P-V diagram for Example 2. 

Solution: 

Process 1-2 is an expansion (V2 > V1) and the system is doing work (W12 >0), thus: 

W12 = P1 (V2 - V1) + [0.5(P1+P2) – P1] (V2 – V1) 

= (V2 – V1) (P1 + P2) / 2 
Process 2 - 3 is an isometric process (constant volume V3 = V2), so W23 = 0 

Process 3 - 1 is a compression (V3 > V1), work is done on the system, (W31 < 0) 

W31 = - P1 (V2 – V1) 

Wcycle = Wnet = W12 + W23 + W31 = (V2 – V1) (P2 – P1) / 2 
Note that in a cycle ΔU = ΔP = ΔT = Δ(any property) = 0 

 

First Law of Thermodynamics For a Closed System 
First law, or the conservation of energy principle, states that energy can be neither created 
nor destroyed; it can only change forms. 

The first law cannot be proved mathematically, it is based on experimental observations, 
i.e., there are no process in the nature that violates the first law. 

The first law for a closed system or a fixed mass may be expressed as: 

net energy transfer to (or from) the 
system as heat and work 

= net increase (or decrease) in the total 
energy of the system 

Q – W = ΔE (kJ) 
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where  

Q = net heat transfer (=ΣQin – ΣQout) 

W= net work done in all forms (=ΣWin – ΣWout) 

ΔE= net change in total energy (= E2 – E1) 

The change in total energy of a system during a process can be expressed as the sum of 
the changes in its internal, kinetic, and potential energies: 

ΔE= ΔU + ΔKE + ΔPE (kJ) 
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Note: for stationary systems ΔPE = ΔKE = 0, the first law reduces to 

Q – W = ΔU 
The first law can be written on a unit-mass basis: 

q – w = Δe (kJ/kg) 

or in differential form: 

δQ – δW = dU            (kJ) 

  δq – δW = du  (kJ/kg) 

or in the rate form: 

ሶܳ െ ሶܹ ൌ
ܧ݀
ݐ݀   ሺ݇ݓሻ 

For a cyclic process, the initial and final states are identical, thus ΔE = 0. The first law 
becomes: 

Q – W = 0 (kJ) 

Note: from the first law point of view, there is no difference between heat transfer and 
work, they are both energy interactions. But from the second law point of view, heat and 
work are very different. 

Example 3: The Fist law 

Air is contained in a vertical piston-cylinder assembly fitted with an electrical resistor. 
The atmospheric pressure is 100 kPa and piston has a mass of 50 kg and a face area of 0.1 
m2. Electric current passes through the resistor, and the volume of air slowly increases by 
0.045 m3. The mass of the air is 0.3 kg and its specific energy increases by 42.2 kJ/kg. 
Assume the assembly (including the piston) is insulated and neglect the friction between 
the cylinder and piston, g = 9.8 m/s2. Determine the heat transfer from the resistor to air 
for a system consisting: a) the air alone, b) the air and the piston. 
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Fig. 5: Schematic for problem 3. 

Assumptions: 

• Two closed systems are under consideration, as shown in schematic. 
• The only heat transfer is from the resistor to the air. ΔKE = ΔPE= 0 (for air) 
• The internal energy is of the piston is not affected by the heat transfer. 

a) Taking the air as the system, 

(ΔKE + ΔPE + ΔU)air = Q – W 

Q = W + ΔUair 
For this system work is done at the bottom of the piston. The work done by the system is 
(at constant pressure): 
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The pressure acting on the air can be found from: 

PApiston = mpiston g + Patm Apiston 
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Thus, the work is 

W = (104.91 kPa)(0.045m3) = 4.721 kJ 
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With ΔUair = mair Δuair, the heat transfer is 

Q = W + mair Δuair = 4.721 kJ + (0.3 kg)(42.2 kJ/kg) = 17.38 kJ 

 

b) System consists of the air and the piston. The first law becomes: 

(ΔKE + ΔPE + ΔU)air + (ΔKE + ΔPE + ΔU)piston = Q – W 

where (ΔKE = ΔPE)air = 0 and (ΔKE = ΔU)piston= 0. Thus, it simplifies to: 

(ΔU)air + (ΔPE)piston = Q – W 

For this system, work is done at the top of the piston and pressure is the atmospheric 
pressure. The work becomes 

W = Patm ΔV = (100 kPa)(0.045m3) = 4.5 kJ 

The elevation change required to evaluate the potential energy change of the piston can 
be found from the volume change: 

Δz = ΔV / Apiston = 0.045 m3/ 0.1 m2 = 0.45 m 

(ΔPE)piston = mpiston g Δz = (50 kg)(9.81 m/s2)(0.45 m) = 220.73 J = 0.221 kJ 

Q = W + (ΔPE)piston + mair Δuair 

Q = 4.5 kJ + 0.221 kJ + (0.3 kg)(42.2 kJ/kg) = 17.38 kJ 

Note that the heat transfer is identical in both systems. 

 

Specific Heats 
The specific heat is defined as the energy required to raise the temperature of a unit mass 
of a substance by one degree. There are two kinds of specific heats: 

• Specific heat at constant volume, cv: the energy required when the volume is 
maintained constant. 

• Specific heat at constant pressure, cp: the energy required when the pressure is 
maintained constant. 

The specific heat at constant pressure cp is always higher than cv because at constant 
pressure the system is allowed to expand and energy for this expansion must also be 
supplied to the system. 

Let us consider a stationary closed system undergoing a constant-volume process, 
௕ݓ ൌ 0. Applying the first law in the differential form: 

ݍߜ െ ݓߜ ൌ  ݑ݀
at constant volume (no work) and by using the definition of cv, one can write: 
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Similarly, an expression for the specific heat at constant pressure Cp can be found. From 
the first law, for a constant pressure process, ݓ௕ ൅ Δݑ ൌ Δ݄. It yields: 
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Specific heats (both cv and cp) are properties; therefore, depend on the state and/or 
independent of the type of processes.  

Note: cv is related to the changes in internal energy u, and cp to the changes in enthalpy, 
h. 

It would be more appropriate to define: cv is the change in specific internal energy per 
unit change in temperature at constant volume. Similarly cp is the change in specific 
enthalpy per unit change in temperature at constant pressure. 

Note: one important exception is two-phase mixtures; since the temperature remains 
constant while the internal energy and enthalpy of the mixture change. 

 

Specific heats for ideal gases 
It has been shown mathematically and experimentally that the internal energy is a 
function of temperature only, for ideal gases. 

u = u(T) 
Using the definition of enthalpy (h = u + Pv) and the ideal gas equation of state (Pv = 
RT), we have: 

h = u + RT 
Since R is a constant and u is a function of T only: 

h = h(T) 
Therefore, at a given temperature, u, h, cv and cp of an ideal gas will have fixed values 
regardless of the specific volume or pressure. For an ideal gas, we have: 

( )
( ) dTTcdh

dTTcdu
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The changes in internal energy or enthalpy for an ideal gas during a process are 
determined by integrating: 
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As low pressures, all real gases approach ideal-gas behavior, and therefore their specific 
heats depend on temperature only. The specific heats of real gases at low pressures are 
called ideal-gas specific heats (or zero-pressure specific heats) and are often denoted by 
cp0 and cv0. To carry out the above integrations, we need to know cv(T) and cp(T). These 
are available from a variety of sources: 

Table A-2a: for various materials at a fixed temperature of T = 300 K 

Table A-2b: various gases over a range of temperatures 250 ≤ T ≤ 1000 K 

Table A-2: various common gases in the form of a third order polynomial 

For an ideal gas, we can write: 
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In a mole basis: 

ܿҧ௣ െ ܿҧ௩ ൌ ܴ௨       ሺ
ܬ݇

.݈݋݉݇  ሻܭ

 

where Ru is the universal gas constant. The ratio of specific heats is called the specific 
heat ratio: 

݇ ൌ
ܿ௣

ܿ௏
 

• The specific heat ratio varies with temperature, but this variation is very mild. 
• For monatomic gases, its value is essentially constant at 1.67. 
• Many diatomic gases, including air, have a specific heat ratio of about 1.4 at room 

temperature. 

Specific heats for solids and liquids 
A substance whose specific volume (or density) is constant is called incompressible 
substance. The specific volumes of solids and liquids (which can be assumed as 
incompressible substances) essentially remain constant during a process.  

The constant volume assumption means that the volume-work (or boundary work) is 
negligible compared with other forms of energy. As a result, it can be shown that the 
constant-volume and constant-pressure specific heats are identical for incompressible 
substances: 
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ܿ௩ ൌ ܿ௣ ൌ ܿ 

Specific heats of incompressible substances are only a function of temperature, 

ܿ ൌ ܿሺܶሻ 
The change of internal energy between state 1 and 2 can be obtained by integration: 

( ) )/(
2

1
12 kgkJdTTCuuu ∫=−=Δ

 
For small temperature intervals, a c at averaged temperature can be used and treated as a 
constant, yielding: 

( )12 TTcu ave −≈Δ  

The enthalpy change of incompressible substance can be determined from the definition 
of enthalpy (h = u + Pv) 

h2 – h1 = (u2 – u1) + v(P2 – P1) 

Δh = Δu + vΔP    (kJ/kg) 
The term vΔP is often small and can be neglected, so: 

Δ݄ ൌ Δݑ ؆ ܿ௔௩௘Δܶ 

Note: for constant-temperature processes such as in pumps ሺΔܶ ൌ 0ሻ: Δ݄ ൌ  Δܲ. For aݒ
process between states 1 and 2; it can be expressed as: 

݄ଶ െ ݄ଵ ൌ ሺݒ ଶܲ െ ଵܲሻ. 

 

Example 4: Specific heat and first law 

Two tanks are connected by a valve. One tank contains 2 kg of CO2 at 77°C and 0.7 bar. 
The other tank has 8 kg of the same gas at 27°C and 1.2 bar. The valve is opened and 
gases are allowed to mix while receiving energy by heat transfer from the surroundings. 
The final equilibrium temperature is 42°C. Using ideal gas model, determine: a) the final 
equilibrium pressure b) the heat transfer for the process. 

Assumptions: 

• The total amount of CO2 remains constant (closed system). 
• Ideal gas with constant cv. 

The initial and final states in the tanks are equilibrium. No work transfer. 
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The final pressure can be found from ideal gas equation of state: 
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For tank 1 and 2, we can write: V1 = m1RT1/P1 and V2 = m2RT2/P2. Thus, the final 
pressure, Pf becomes: 
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b) The heat transfer can be found from an energy balance: 

ΔU = Q – W 
With W = 0, 

Q = Uf –Ui 
where initial internal energy is: Ui = m1 u(T1) + m2 u(T2) 

The final internal energy is: Uf = (m1 + m2) u(Tf) 

The energy balance becomes: 

Q = m1 [u(Tf) – u(T1)] + m2 [u(Tf) – u(T2)] 
Since the specific heat cv is constant 

Q = m1 cv [Tf – T1] + m2 cv [Tf – T2] 
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The plus sign indicates that the heat transfer is into the system. 

 

CO2 
8 kg, 27°C, 1.2 bar 

CO2 
2 kg, 77°C, 0.7 bar 

Valve 


