EQUATION OF STATE

The Ideal-Gas Equation of State

Any equation that relates the pressure, temperature, and specific volume of a substance is called an equation of state.
The simplest and best known equation of state for substances in the gas phase is the ideal-gas equation of state.

Gas and vapor are often used as synonymous words. The vapor phase of a substance is called a gas when it is above the critical temperature. Vapor usually implies a gas that is not far from a state of condensation.

It is experimentally observed that at a low pressure the volume of a gas is proportional to its temperature:

$$
\left\{\begin{array}{l}
P \propto T \\
P \propto \frac{1}{v}
\end{array} \rightarrow P \propto \frac{T}{v}\right.
$$

or

$$
P v=R T
$$

where R is the gas constant. The above equation is called the ideal-gas equation of state (ideal gas relation). Since R is a constant for a gas, one can write:

$$
R=\frac{P_{1} v_{1}}{T_{1}}=\frac{P_{2} v_{2}}{T_{2}}
$$

where subscripts 1 and 2 denote two states of an ideal gas. Note that the constant R is different for each gas; see Tables A1 and A2 in Cengel book.
The ideal gas equation of state can be written in several forms:

$$
\left\{\begin{array}{c}
V=m v \rightarrow P V=m R T \\
m R=(M N) R=N R_{u} \rightarrow P V=N R_{u} T \\
V=N \bar{v} \rightarrow P \bar{v}=R_{u} T
\end{array}\right.
$$

where $\bar{v}\left(\mathrm{~m}^{3} / \mathrm{kmol}\right)$ is the molar specific volume. That is the volume per unit mole. $R_{u}=$ $8.314 \mathrm{~kJ} /(\mathrm{kmol} . \mathrm{K})$ is the universal gas constant, $R=R_{u} / \mathrm{M}$.
The molar mass M : is defined as the mass of one mole of a substance (in gmole or $\mathrm{kgmol})$. The mass of a system is equal to the product of its molar mass M and the mole number N :

$$
\begin{equation*}
m=M N \tag{kg}
\end{equation*}
$$

See Table A-1 for R and M for several substances.
An ideal gas is an imaginary substance that obeys the relation $P v=R T$. It is experimentally observed that the ideal gas closely approximate the $P-v-T$ behavior of real gases at low densities.

In the range of practical interest, many familiar gases such as air, nitrogen, oxygen, hydrogen, helium, argon, neon, and CO_{2} can be treated as ideal gases with negligible error.

Note: Water vapor and refrigerant vapor in refrigerators should not be treated as ideal gases.

Note: Water vapor at pressures below 10 kPa can be treated as an ideal gas, regardless of temperature.

Compressibility Factor

The assumption of ideal gas relation implies that:

- The gas particles take up negligible volume
- The intermolecular potential energy between particles is small
- Particles act independent of one another

However, real gases deviate from ideal gas behavior. This deviation at given temperature and pressure can be accurately accounted for by introduction of a correction factor called the compressibility factor Z .

$$
Z=\frac{P v}{R T} \quad \text { or } \quad P v=Z R T
$$

or $Z=v_{\text {actual }} / v_{\text {ideal }} \leq 1$. Obviously, $\mathrm{Z}=1$ for ideal gases.
Gases behave very much the same at temperatures and pressures normalized with respect to their critical temperatures and pressures.

$$
P_{R}=\frac{P}{P_{c r}} \quad \text { and } \quad T_{R}=\frac{T}{T_{c r}}
$$

Here P_{R} and T_{R} are called the reduced pressure and temperature, respectively.
By curve-fitting all the data, the general compressibility chart is obtained which can be used for all gases, see Fig. A-15.

Fig. 6: Z factor, general compressibility chart.

From the Z chart, one can conclude:

- At very low pressure $\left(P_{R} \ll 1\right)$, the gases behave as an ideal gas regardless of temperature
- At high temperatures ($T_{R}>2$), ideal gas behavior can be assumed.
- The deviation is highest in the vicinity of the critical point.

Example: Ideal Gas

Determine the specific volume of R-134a at 1 MPa and $50^{\circ} \mathrm{C}$, using (a) ideal gas equation (b) the generalized compressibility chart. Compare the values obtained with the actual value of $0.02171 \mathrm{~m}^{3} / \mathrm{kg}$.

Solution:

From Table A-1, for R-134a, $R=0.0815 \mathrm{kPa.m}{ }^{3} /(\mathrm{kg} . \mathrm{K}), \mathrm{P}_{\mathrm{cr}}=4.067 \mathrm{MPa}$, and $T_{\text {cr }}=374.3$ K
(a) Ideal gas equation of state

$$
v=\frac{R T}{P}=\frac{\left[0.0815 \mathrm{kPa} \cdot \mathrm{~m}^{3} /(\mathrm{kg} \cdot \mathrm{~K})\right](323 \mathrm{~K})}{(1000 \mathrm{kPa})}=0.02632 \mathrm{~m}^{3} / \mathrm{kg}
$$

Comparing with the tabulated value, using ideal gas equation one would get an error of ($0.02632-0.02171$) $/ 0.02171=0.212$ or 21.2%.
(b) To determine the correction factor Z ,

$$
\begin{aligned}
& P_{R}=\frac{P}{P_{c r}}=\frac{1 M P a}{4.067 \mathrm{MPa}}=0.246 \\
& T_{R}=\frac{T}{T_{c r}}=\frac{323 \mathrm{~K}}{374.3 \mathrm{~K}}=0.863
\end{aligned}
$$

From Fig. A-15, $\mathrm{Z}=0.84$. Thus,
$v=Z v_{\text {ideal }}=0.84\left(0.02632 \mathrm{~m}^{3} / \mathrm{kg}\right)=0.02211 \mathrm{~m}^{3} / \mathrm{kg}$
The error is less than 2%.
Therefore, in the absence of exact tabulated data, the generalized compressibility chart can be used.

Other Equations of States

Van der Waals Equation of State:

$$
\left(P+\frac{a}{v^{2}}\right)(v-b)=R T
$$

where.

$$
a=\frac{27 R^{2} T_{c r}^{2}}{64 P_{c r}} \quad \text { and } \quad b=\frac{R T_{c r}}{8 P_{c r}}
$$

In this relationship, the intermolecular attraction forces and the volume occupied by molecules are considered.

Note: the accuracy of the Van der Waals equation of state is often inadequate.

Beattie-Bridgeman Equation of State

It is based on five experimentally determined constants:

$$
P=\frac{R_{u} T}{\bar{v}^{2}}\left(1-\frac{c}{\bar{v} T^{3}}\right)(\bar{v}+B)-\frac{A}{\bar{v}^{2}}
$$

where

$$
A=A_{0}\left(1-\frac{a}{\bar{v}}\right) \quad \text { and } \quad B=B_{0}\left(1-\frac{b}{\bar{v}}\right)
$$

Constants appearing in the above equation are given in Table 3-4, Cengel book.

