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Macroscopic description of nonequilibrium effects in thermal transpiration
flows in annular microchannels
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Thermal transpiration flow of rarefied gases in annular channels is considered where the driving force for the
flow is a temperature gradient applied in the channel walls. The influence of gas rarefaction, aspect ratio of the
annulus, and surface accommodation coefficient on mass and heat transfer in the process are investigated. An
analytical approach to the problem is conducted based on linearized Navier-Stokes-Fourier (NSF) and regularized
13-moment (R13) equations, and a closed-form expression for Knudsen boundary layers is obtained. The results
are compared to available solutions of the Boltzmann equation to highlight the advantages of the R13 over the
NSF equations in describing nonequilibrium effects in this particular thermally driven flow. Through comparisons
with kinetic data, it is shown that R13 equations are valid for moderate Knudsen numbers, i.e., Kn < 0.5 where
NSF equations fail to describe the flow fields properly.
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I. INTRODUCTION

In a rarefied gas confined in a channel or a pipe, when
a temperature gradient is applied on the walls, a flow is
induced in the direction of the temperature gradient, i.e.,
from cold to hot [1,2]. This pure thermally induced flow,
initiates within a thin layer adjacent to the walls. However,
as a result of shear-stress diffusion, the thickness of this layer
grows, and the flow eventually fills the width of the channel
or pipe if its length is sufficiently large. This phenomenon
was first reported by Reynolds [3] in 1879 who named it
thermal transpiration flow. At the same time, Maxwell [4]
was trying to provide a microscopic description for this
problem using the kinetic theory of gases. Later, experimental
observations by Knudsen [5,6] proved the existence of a
pumping effect in thermally driven flows, the so-called
thermomolecular pressure difference [7–12]. Recently, the
possibility of using the pumping effect of thermal transpi-
ration to create a microcompressor without moving parts
(Knudsen compressor) has motivated rigorous experimental
studies [13–15].

In gaseous flows, the measure for gas rarefaction is the
Knudsen number Kn = λ/�, where the ratio of the molecular
mean free path is λ, and the geometric characteristic length
of the flow is �. Accordingly, rarefied conditions (large
Knudsen numbers) are common in microsettings as well as
in low-density (near vacuum) flows. Since, in rarefied gas
flows, there are not sufficient collisions between the gas
particles, an equilibrium state cannot be maintained, and the
arising nonequilibrium effects alter the transport fields of
mass and heat. Furthermore, since collisions between the gas
molecules and the solid wall are different from intermolecular
collisions, a nonequilibrium layer known as the Knudsen
boundary layer forms adjacent to the solid surface, which
extends to a distance of about two to three mean free paths.
It is evident that, for nonequilibrium gas flows, the well
established equations of classical fluid dynamics, i.e., Navier-
Stokes and Fourier (NSF) equations, cease to be valid [16].
Consequently, nonequilibrium transport processes, including

thermal transpiration flow, are mostly investigated numerically
through kinetic models using the Boltzmann equation.

Thermal transpiration between two parallel plates is a well-
known problem in kinetic theory, for which kinetic solutions
obtained from the Bhatnagar-Gross-Krook (BGK) model are
reported in Refs. [17–21]. For this fundamental problem,
more realistic kinetic data based on a linearized Boltzmann
(LB) equation are also available in Refs. [22,23]. For circular
channels, kinetic simulations of thermal transpiration were
initiated by Sone and Yamamoto [24] and Loyalka [25] in
1968. Due to the popularity of tubular flow passages in
practical applications, their work was extended to study the
effects of surface accommodation on mass and heat transfer in
thermally induced flows of monatomic and polyatomic gases
[26–31]. An extensive bibliography and careful comparison
of kinetic solutions for thermal transpiration is available in
Ref. [32].

Although kinetic solutions are very accurate, their complex-
ity and computational cost limit their application, particularly
in the engineering community. As alternatives to kinetic
approaches, extended macroscopic transport equations, which
are derived from the Boltzmann equation, can be used to
describe rarefied gas flows at lower computational cost than
the Boltzmann equation itself [33]. This is performed by
reducing the degrees of freedom of the velocity distribution
function, which is the main variable in the kinetic equation,
to the degrees of freedom of a finite set of macroscopic vari-
ables. Grad’s moment expansion [34,35] and the Chapman-
Enskog expansion [36] are the classical methods to extract
hydrodynamic-like equations from the Boltzmann equation.

In the present paper, regularized 13-moment (R13) equa-
tions are used to describe the thermal transpiration flow of
moderately rarefied gases in an annulus between two concen-
tric cylinders. The R13 system is a regularized version of the
classical Grad’s 13-moment equations [16,37,38], suitable for
flow simulation in the transition regime Kn � 1, the regime
in which the flow is dominated with Knudsen layers [39].
In contrast to Grad’s 13-moment system, the R13 equations
yield smooth shock structures over a wide range of Mach
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numbers [40] and correctly predict the formation of Knudsen
boundary layers in fundamental boundary value problems for
microflows [12,41–45]. Knudsen boundary layers are common
rarefaction (nonequilibrium) effect in low-speed rarefied gas
flows.

Annular channels are considered in this paper due to their
specific geometrical property. When the aspect ratio of the
annulus (ratio of the inner cylinder radius to outer cylinder
radius) is zero, the problem represents thermal transpiration
in tubes, and for annuli with aspect ratios close to unity,
the problem represents thermal transpiration in parallel plate
channels.

In the following, linearized R13 equations and their bound-
ary conditions [46] are adopted to describe thermally induced
flows in annular flow passages. Since experimental data for the
considered problem are not available, analytical solutions for
linearized R13 and Navier-Stokes-Fourier (NSF) equations are
obtained and are compared to some accurate kinetic data [47].
Through comparisons, it is shown that, due to the capability of
the R13 equations in capturing of rarefaction effects, which are
missing in the NSF solutions, the R13 results match better with
kinetic data. Our compact analytical solutions, which required
modest computational effort, revealed that the presence of
Knudsen boundary layers in the R13 solutions and their contri-
butions to mass and heat transfer were the main reasons for this
improvement.

II. FORMULATION OF THE PROBLEM

Monatomic ideal gases are considered with p = ρθ as the
equation of state in which p, ρ, and θ = RT are pressure,
mass density, and temperature in energy units (J kg−1),
respectively. The gas constant is R, and T is the absolute
temperature.

The flow configuration is shown in Fig. 1. The gas, confined
in the annulus between two stationary coaxial cylinders,
flows axially as a result of temperature variation along the
cylindrical walls, i.e., thermal transpiration flow. Suggested
by the channel geometry, it is appropriate to use cylindrical
coordinates x = {r,ϕ,z} as shown in Fig. 1.

The pressure along the channel is a constant p0. The wall
temperature at the inlet and outlet of the channel are θw

1 and θw
2 ,

respectively, with θw
1 < θw

2 . The superscript “w” refers to the
properties at the cylindrical walls. The temperature distribution
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FIG. 1. (Color online) Cylindrical coordinates and flow config-
uration in thermal transpiration flow between two coaxial cylinders
of length L. The flow is driven by a constant temperature gradient
in the axial direction, applied on both cylinders. Wall temperatures
at the ends of the channel are θw

1 and θw
2 with θw

2 > θw
1 . The

annular gap size is �r = ro − ri, and the annulus aspect ratio is
ε = ri/ro.

in the walls is θw(z) = θw
1 + αz, where α = (θw

2 − θw
1 )/L

is a positive and constant temperature gradient in the axial
direction. The inner and outer radii of the circular gap are ri and
ro, respectively. The aspect ratio of the annulus is ε = ri/ro,
and the gap size is �r = ro − ri. The length of the flow passage
L is assumed to be significantly large compared to its radial
dimension, L � �r , thus, boundary effects at the entry and
exit can be neglected, and the established temperature gradient
in the gas and channel walls is the same.

At this configuration, a pure thermally driven flow occurs
from the cold side of the channel to the hot side. We investigate
steady-state flow of the gas in the absence of external force
(e.g., gravity), driven by a constant and small temperature
gradient in the z direction. Since the cylinders are not rotating,
the flow is irrotational vϕ = 0 and independent of the azimuthal
direction ∂/∂ϕ = 0.

It must be pointed out that, due to compressibility ef-
fects, the actual transpiration flow in the annulus is a two-
dimensional problem in the r-z plane, which requires a
numerical approach. Nevertheless, it is shown through kinetic
simulations that, for low Mach number flows through long
capillaries, one can safely use “linear analysis” to discard the
axial compressibility effects and to simplify the problem such
that a one-dimensional analysis suffices to investigate the local
distribution of flow properties across the channel [12,32,44].
As discussed in Ref. [44], it is straightforward to show that a
nonzero radial velocity vr is a nonlinear phenomenon due to
compressibility effects, thus, in our linear analysis, vr = 0 is
considered.

III. REGULARIZED 13-MOMENT EQUATIONS
IN LINEAR FORM

The derivations of regularized 13-moment (R13) equations
and their corresponding boundary conditions for channel flows
are discussed in Refs. [37,46]. The transformed equations and
boundary conditions in cylindrical coordinates are presented
in Ref. [12]; details on the transformation are available in
Ref. [48].

In the present paper, in order to obtain closed-form
analytical solutions, linearized and steady-state equations
are considered. For linearization, we consider a reference
equilibrium state defined by p0, θ0 = (θw

1 + θw
2 )/2, and ρ0 =

p0/θ0 in which the gas is at rest, v0 = 0, and in equilibrium,
i.e., q0 = σ 0 = 0. The vectors v and q correspond to velocity
and heat flux, whereas, σ is the stress tensor deviator tensor.

The core equations in the R13 system are the main conser-
vation laws for mass, momentum, and energy densities, which,
for the considered problem in steady-state and linearized
forms, read

∇ · v = 0, (1)

∇ · σ = 0, (2)

∇ · q = 0. (3)

In the R13 system, stress deviator tensor σ and heat-flux
vector q are given by their respective moment equations
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[16,37] that again, in steady-state and linearized forms, are
4

5
〈∇q〉 + ∇ · m = −2p0〈∇v〉 − p0

μ0
σ , (4)

θ0∇ · σ + 1

2
∇ · R = −5

2
p0∇θ − Pr

p0

μ0
q. (5)

Here, μ0 is the viscosity of the gas at the reference (equilib-
rium) state, and Pr is the Prandtl number.

Closure for Eqs. (1)–(5) is obtained from regularization
[16,37] and leads to constitutive relations for higher-order
moments R and m, which, in linear form, read

R = −A
μ0

ρ0
〈∇q〉, (6)

m = −B
μ0

ρ0
〈∇σ 〉. (7)

In the above equations, the terms inside the angular brackets
〈· · · 〉 indicate the trace-free part of the symmetric tensors. For
instance, the trace-free part of the symmetric velocity gradient
reads

〈∇v〉 = 1

2
[∇v + (∇v)T] − 1

3
(∇ · v)I, (8)

where the superscript “T” indicates the transposed tensor and
I is the unit tensor. For the trace-free part of rank-3 tensors,
see Appendix A in Ref. [16].

The Prandtl number (Pr) in the moment equation for heat
flux and the coefficients A and B in the constitutive equations
are different in the BGK kinetic model and the linearized
Boltzmann equation for Maxwellian molecules [16]. For the
BGK kinetic model, these coefficients are

PrBGK = 1, ABGK = 28

5
, BBGK = 3, (9)

whereas, for the LB equation, they read

PrLB = 2

3
, ALB = 24

5
, BLB = 2. (10)

In the hydrodynamics limit where the high-order moments
R and m vanish, the terms on the left-hand side of Eqs. (4)
and (5) are zero, and they reduce to the linearized Navier-
Stokes and Fourier laws of classical hydrodynamics, that is,
Newtonian viscous shear and Fourier’s heat conduction,

σ = −2μ0〈∇v〉, (11)

q = −κ0∇θ. (12)

with κ0 = 5μ0/(2 Pr) as the thermal conductivity coefficient
for ideal gas at the reference state. Equations (11) and (12)
along with the conservation laws (1)–(3) form the linearized
Navier-Stokes-Fourier system,

∇ · v = 0, ∇2v = 0, ∇2θ = 0. (13)

IV. WALL BOUNDARY CONDITIONS

For the considered boundary value problem, wall boundary
conditions are required to relate properties of the gas (adjacent
to the wall) to the wall temperature and the wall velocity. Since
R13 equations are derived from the Boltzmann equation, it is
natural to base the derivation of their boundary conditions on
the boundary condition for the Boltzmann equation. Detailed
discussion on the derivation of wall boundary conditions for

R13 equations is available in Refs. [46,48] where macroscopic
boundary conditions for high-order moments are derived from
Maxwell’s boundary condition for the Boltzmann equation [4].

A. Boundary conditions for the regularized
13-moment equations

The required boundary conditions for the R13 system in
linearized form are [44,46,48,49]

σtn = χ

2 − χ

√
2

πθ0

(
−p0Vt − 1

5
qt − 1

2
mtnn

)
, (14)

Rtn = χ

2 − χ

√
2

πθ0

(
p0θ0Vt − 11

5
θ0qt − 1

2
θ0mtnn

)
. (15)

The subscripts “t” and “n” indicate tangential and normal
directions with respect to the wall, that is, the z and r directions,
respectively [cf. Fig. 1]. The wall normal points in the radial
direction toward the gas, thus, wall normal vectors have
opposite signs on the inner and outer cylinders. Slip velocity
on the wall is denoted by Vt and

Vt = vt − vw
t . (16)

The kinetic between the gas particles and the wall surface
is reflected in the surface accommodation coefficient χ , where
χ = 0 and χ = 1 describe fully reflective (smooth) and fully
diffusive (rough) walls, respectively.

As discussed in Ref. [44], additional boundary conditions
for temperature, density, and normal components of heat flux
and stress are required for the nonlinear R13 equations. Since,
in the present paper, we consider the linearized problem only,
the boundary conditions required for the nonlinear setting are
not shown.

B. Slip condition for Navier-Stokes-Fourier equations

The Chapman-Enskog expansion of the quantities in bound-
ary conditions (14) and (15) allows identifying their high-order
terms. This general strategy is introduced in Ref. [50] to obtain
a second-order velocity-slip condition for the NSF system.
In Appendix C of Ref. [48], this strategy was extended to
derive the second-order slip condition for curved boundaries.
For axial flows in cylindrical coordinates, the slip boundary
condition in linear form reads [12]

V NSF
z =−2−χ

χ

√
πθ0

2

σ NSF
rz

p0
nr − 1

5

qNSF
z

p0
+

[(
1

5 Pr
+ 4B

15

)

× ∂σ NSF
rz

∂r
+

(
1

5 Pr
− B

15

)
σ NSF

rz

r

]
μ0θ0

p2
0

. (17)

The quantities σ NSF
rz and qNSF

z are the Navier-Stokes shear-
stress Eq. (11) and Fourier’s heat conduction Eq. (12). The first
and second terms represent the first-order slip velocity, and the
rest are second-order corrections. The term σ NSF

rz /r accounts
for the curvature effect of the channel wall. The wall normal is
indicated by nr with nr = +1 for the inner wall and nr = −1
for the outer wall.
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V. FLOW EQUATIONS

Flow equations for thermal transpiration in annular chan-
nels are obtained by transforming Eqs. (1)–(7) and the NSF
equations [cf. Eq. (13)] into cylindrical coordinates. Details on
the transformation are available in Ref. [48]. For the considered
flow configuration, as discussed in Sec. II, the velocity vector
v, the heat-flux vector q, and the stress tensor σ simplify to

v =
⎛
⎝ 0

0
vz (r)

⎞
⎠ , q =

⎛
⎝qr (r)

0
qz(r)

⎞
⎠ ,

(18)

σ =
⎛
⎝σrr (r) 0 σrz(r)

0 σϕϕ(r) 0
σrz(r) 0 σzz(r)

⎞
⎠ ,

where all components only depend on the radial coordinate r .
Since the stress tensor is trace free, we have σ ϕϕ = −σ rr −
σ zz, that confirms flow is completely independent of the ϕ

direction.
The reference (equilibrium) state properties {p0,ρ0,θ0} and

an arbitrary length scale � can be used to define dimensionless
quantities. The radial and axial coordinates are normalized
with respect to the length scale,

r̃ = r

�
, z̃ = z

�
. (19)

The remaining variables in dimensionless form are defined
as

ρ̃ = ρ

ρ0
, θ̃ = θ

θ0
, p̃ = p

p0
, ṽ = v√

θ0
,

q̃ = q

p0
√

θ0
, σ̃ = σ

p0
, R̃ = R

p0θ0
, m̃ = m

p0
√

θ0
.

(20)

The isothermal speed of sound
√

θ0 is used to scale the velocity.
The tilde signs indicate dimensionless quantities.

The application of differential operators (divergences and
gradients) in cylindrical geometry [48] and then, the intro-
duction of the above dimensionless quantities in Eqs. (1)–(7)
yield the dimensionless form of the linearized R13 equations
in cylindrical coordinates,(

∂

∂r̃
+ 1

r̃

)
σ̃rz = 0, (21)

1

2

(
∂

∂r̃
+ 1

r̃

)
R̃rz = − Pr

Kn
q̃z − 5

2
τ, (22)

2

5

∂q̃z

∂r̃
+ ∂m̃rrz

∂r̃
+ m̃rrz − m̃ϕϕz

r̃
= − 1

Kn
σ̃rz − ∂ṽz

∂r̃
, (23)

where τ is the dimensionless temperature gradient along
the axial direction (a positive quantity for the flow setting
in Fig. 1),

τ = �

θ0

∂θ

∂z
= ∂θ̃

∂z̃
. (24)

In the dimensionless equations, the reference viscosity μ0

can be related to the reference molecular mean free path
λ0. Accordingly, the Knudsen number (Kn) appears in the

dimensionless equations as

Kn = λ0

�
with λ0 = μ0

√
θ0

p0
. (25)

The Knudsen number is a measure for gas rarefaction.
Equation (21) is the linearized and dimensionless momen-

tum balance [Eq. (2)] in the axial direction. Equation (22) is the
axial component of the heat-flux balance [Eq. (5)] in linearized
dimensionless form. Equation (23) is the tangential component
of shear-stress balance [Eq. (4)]. The dimensionless high-order
moments in Eqs. (22) and (23) follow from Eqs. (6) and (7) as

R̃rz = −1

2
A Kn

∂q̃z

∂r̃
, m̃rrz = −m̃ϕϕz = 2

3
B Kn

σ̃ rz

r̃
. (26)

Note that, in this flow setting, m̃rrz and m̃ϕϕz are geometric
curvature effects since they do not appear in transpiration flow
analysis through planar channels [43].

The required boundary conditions for the problem are the
same as in Eqs. (14) and (15) that, in dimensionless form and
with proper coordinate-indicative indices, read

σ̃ rz = χ

2 − χ

√
2

π

(
−Ṽz − 1

5
q̃z − 1

2
m̃rrz

)
nr, (27)

R̃rz = χ

2 − χ

√
2

π

(
Ṽz − 11

5
q̃z − 1

2
m̃rrz

)
nr . (28)

As mentioned in Sec. III, in the asymptotic limit of Kn → 0,
the balance equations for stress and heat flux [Eqs. (4) and
(5)] reduce to Newtonian viscous shear and Fourier’s heat
conduction, respectively, which, in linearized dimensionless
form in cylindrical coordinates, are

σ̃ NSF
rz = −Kn

∂ṽz

∂r̃
, q̃NSF

z = −5

2

Kn

Pr

∂θ̃

∂z̃
. (29)

Replacement of the above equations in Eqs. (21)–(23) and
setting R̃rz = m̃rrz = m̃ϕϕz = 0 gives the NSF equations for
this problem, i.e., (

∂

∂r̃
+ 1

r̃

)
∂ṽz

∂r̃
= 0. (30)

Note that Eqs. (22) and (23) are automatically satisfied.
The required boundary condition for Eq. (30) is the slip

condition (17) in dimensionless form

Ṽ NSF
z =

(
2−χ

χ

√
π

2

∂ṽz

∂r̃
nr+ 1

2 Pr
τ

)
Kn −

[(
1

5 Pr
+ 4B

15

)

× ∂2ṽz

∂r̃2
+

(
1

5 Pr
− B

15

)
1

r̃

∂ṽz

∂r̃

]
Kn2. (31)

The terms multiplied by Kn2 are the second-order corrections
to slip velocity.

VI. RESULTS AND DISCUSSIONS

A. Analytical solution for regularized 13-moment equation

Replacement of Eq. (26) into Eqs. (22) and (23) and
subsequent integration gives the following analytical solutions
for shear stress σ̃ rz, axial heat flux q̃z, and velocity ṽz:

σ̃rz =
{

C1

r̃

}
, (32)
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q̃z =
{
−5

2

Kn

Pr
τ

}
+ C2I0

(
2

Kn

√
Pr

A
r̃

)
+ C3K0

(
2

Kn

√
Pr

A
r̃

)
,

(33)

ṽz =
{
C4 + Kn

Pr
τ − C1

Kn
ln (r̃)

}
− 2

5

[
C2I0

(
2

Kn

√
Pr

A
r̃

)

+ C3K0

(
2

Kn

√
Pr

A
r̃

)]
. (34)

The terms within curly brackets indicate the solution of
the NSF equations. In the above general solutions, C1 to C4

are the integrating constants that must be determined from the
boundary conditions on both inner and outer walls. For the NSF
solution, the constants C1 and C4 can be obtained from the slip
condition (31). For the R13 solution, the required boundary
conditions are (27) and (28). The expressions for constants
C1 to C4 are too bulky, hence, they are not shown here. These
constants can be computed using analytical software packages,
such as MATHEMATICA or MAPLE. It is important to mention
that all constants linearly depend on the axial temperature
gradient τ . Details of integrating constants for Poiseuille flows
in annular channels are thoroughly discussed in Ref. [45], and
a similar analysis can be applied for the considered problem.

As given in Eq. (32), both R13 and NSF systems yield an
identical solution for shear stress. Equation (33) confirms that
NSF yields heat flow only in the presence of a temperature
gradient, whereas, the full R13 solution includes other terms
that describe rarefaction effects, i.e., a heat flux which is not
driven by temperature gradient. The zeroth-order modified
Bessel functions I0 and K0 represent the Knudsen boundary
layers. The R13 velocity solution shows that Knudsen layers
contribute in the flow velocity. This effect is missing in the
NSF velocity solution.

For χ = 1, ε = 0.1, and Kn = {0.05,0.15,0.3}, the dimen-
sionless solutions (32)–(34) are plotted in Fig. 2, which are
normalized with respect to the dimensionless temperature
gradient τ . The results are obtained for both BGK and LB
coefficients as given in Eqs. (9) and (10). The slip condition
for the NSF yields C1 = 0. Accordingly, σ̃ NSF

rz = 0, and the
second-order slip condition reduces to

Ṽ NSF
z = 1

2

Kn

Pr
τ. (35)

Due to this simplification, the effects of accommodation
coefficients and second-order slip terms cannot be captured
for NSF equations in linear analysis.

Figure 2(a) shows shear-stress distribution in the annular
gap between ri/�r = ε/(1 − ε) and ro/�r = 1/(1 − ε). In
contrast to the NSF, the constant C1 does not vanish in the R13
solution, and the predicted shear stress is nonzero. However,
in the hydrodynamic limit, when Kn → 0, the R13 shear
stress converges to that of the NSF. As the Knudsen number
increases, the solutions with LB coefficients yield higher shear
stress on the inner wall, compared to BGK coefficients. Un-
fortunately, kinetic data (solutions of the Boltzmann equation)
for shear stress are not reported in the literature to perform a
comparison and to evaluate the accuracy of our results.

Figure 2(b) shows the heat-flux distribution across the
channel. As given in Eq. (33), the NSF predicts a uniform
heat flow in the opposite direction of the temperature gradient,
postulated by Fourier’s law. For Kn = 0.05, the R13 solution
differs from the NSF only on the narrow region close to the
boundaries, which is the effect of Knudsen boundary layers,
i.e., the terms with Bessel functions. As the Knudsen number
increases, the thickness of the Knudsen layers increases;
for Kn = {0.15,0.3}, the Knudsen layers affect the whole
cross section. The heat flow in the Knudsen layers competes
with Fourier heat flow, i.e., it occurs in the direction of the
temperature gradient. The magnitude of heat flow predicted

(a) (c)(b)

Kn = 0.3

Kn = 0.05

Kn = 0.15

Kn = 0.3

Kn = 0.15

Kn = 0.05

r Δr/

Kn = 0.3

Kn = 0.15

Kn = 0.05R13 (BGK)
R13 (LB)

NSF (LB)
R13 (BGK)

NSF (BGK)

R13 (LB)

NSF (LB)

R13 (BGK)

NSF (BGK)

R13 (LB)

NSF (LB)

σ rz
τ

qz

τ τ
˜ ˜ vz˜

r Δr/ r Δr/

FIG. 2. (Color online) Normalized distributions of (a) shear stress, (b) heat flux, and (c) velocity across the annulus are plotted. The plots are
obtained for χ = 1 and ε = 0.1 with both BGK and LB coefficients. Solutions for the NSF and R13 are compared for Kn = {0.05,0.15,0.3}.
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τ
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FIG. 3. (Color online) Normalized distributions of (a) and (b) shear stress, (c) and (d) heat flux, and (e) and (f) velocity across the annulus
are compared between the NSF and the R13. The plots are obtained for Kn = 0.15, χ = {0.6,0.8,1}, and ε = {0.2,0.9} with LB coefficients.

by the LB model is considerably larger than the BGK model,
mainly due to the difference in Prandtl numbers. Kinetic data
for heat flux are not available for comparison. The validity of
our heat-flux solutions are discussed in the next section where
the thermal energy flow rate is evaluated from NSF and R13
solutions and is compared to kinetic data.

Figure 2(c) shows the velocity profiles. Similar to heat flux,
velocity distribution is uniform in the NSF solution. The term
C1ln(r̃)/Kn in Eq. (34), which represents asymmetric velocity
distribution due to curvature effects, vanished in the NSF
solution because C1 = 0. The validity of the R13 velocity
solution and the effects of the Knudsen layers contribution
are discussed in the next section where the mass flow rate is

evaluated from NSF and R13 solutions and is compared to
kinetic data.

To show the influence of the annulus aspect ratio and the
surface accommodation coefficient on the process, solutions
for Kn = 0.15, ε = {0.2,0.9}, and χ = {0.6,0.8,1} are plotted
in Fig. 3. For the plots, the LB coefficients in Eq. (10) are
employed. For ε = 0.2, i.e., plots (a), (c), and (e) in Fig. 3,
the curvature difference between the inner and the outer walls
is significant, and R13 profiles are asymmetric with respect to
the centerline of the annulus. For larger values of ε, when the
size of the gap decreases and surface curvatures become close,
the curvature difference effects vanish, and solutions converge
to the planar geometry results [44]. As shown in plots (b), (d),
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FIG. 4. (Color online) Variations in (a) dimensionless mass flow rate ˜̇m and (b) dimensionless heat flow rate ˜̇e with respect to the Knudsen
number are shown for χ = 1 and ε = {0.175,0.523,0.872}. R13 and NSF results are compared to kinetic data from linearized Boltzmann
model [47]: symbols.

and (f), for ε = 0.9, the stress distribution converges to a linear
distribution (with very small magnitudes), and heat flux and
velocity distributions are almost symmetric. Fully dissuasive
walls with χ = 1 exhibit more friction, hence, at the walls,
stress increases with χ , but heat flux and velocity decrease.

B. Mass and thermal energy flow rates: Comparison
with kinetic data

Following the paper of Lo et al. [47], flow rates for mass
ṁ (kg s−1) and heat ė (J s−1) in transpiration flow can be
expressed by phenomenological laws (for the linear case),

ṁ = FmJ̃m, ė = FeJ̃e, (36)

where Fm and Fe are the thermodynamic forces for mass and
heat transfer, respectively, and J̃m and J̃e are the correspond-
ing dimensionless thermodynamic fluxes of mass and heat.
The thermodynamic forces, which include the temperature
gradient, are [47]

Fm =−2
√

2πL3 ρ0√
θ0

∂θ

∂z
, Fe = −2

√
2πL3 p0√

θ0

∂θ

∂z
, (37)

where L is an arbitrary length. The dimensionless fluxes read

J̃m =
∫ r̃o

r̃i

ṽzr̃ dr̃, J̃e =
∫ r̃o

r̃i

q̃zr̃ dr̃, (38)

For the sake of consistency with Ref. [47], we set L =
ro/r̃0 in Eq. (37) and � = ro in Eq. (24). After straightforward
manipulation, dimensionless mass and heat flow rates can be
obtained from Eq. (36) as

˜̇m = − 2ṁ

πr2
o ρ0

√
2θ0τ

= 4

r̃3
o

∫ r̃o

r̃i

ṽzr̃ dr̃, (39)

˜̇e = − 2ė

πr2
o p0

√
2θ0τ

= 4

r̃3
o

∫ r̃o

r̃i

q̃zr̃ dr̃. (40)

In the kinetic simulations [47], a rarefaction parameter δ is
defined, that is related to our definition of the Knudsen number
[cf. Eq. (25)] via δ = 1/(

√
2Kn).

In Fig. 4, variations in dimensionless mass flow rate ˜̇m
and heat flow rate ˜̇e with respect to the Knudsen number are
plotted for χ = 1 and ε = {0.175,0.523,0.872}. NSF and R13
results are compared to kinetic data from the LB model [47],
shown by symbols. As expected, both mass and heat flow rates
increase when the diameter of the inner cylinder decreases
since larger values for ε correspond to narrower annuli. The
solution for a cylindrical tube [12] can be obtained for ε → 0
(not shown here). As depicted, R13 accurately predicts mass
and heat flow rates for Kn � 0.5, whereas, the NSF fails to
follow the kinetic data for the mass flow rate. The NSF results
are acceptable only for the heat flow rate at small Knudsen
numbers, i.e., Kn < 0.07. At Kn = 0.5, the error of the R13
results with respect to kinetic data, evaluated from error =
(data − model)/model, is about 7% for the mass flow rate and
10% for the heat flow rate.

As suggested by the analytical solutions, Eqs. (32)–(34),
the presence of Knudsen boundary layers in the R13 solutions
besides its accurate boundary conditions are the main reasons
for the priority of the R13 over the NSF system.

More comparison is performed in Fig. 5 where the
dimensionless mass and heat flow rates from both BGK and
LB kinetic models [47] are compared to our macroscopic
results for narrow and wide annuli ε = {0.175,0.872} with
χ = 1. In the transition regime where Kn < 1, our results
agree with the trend in the kinetic data. Compared to the
BGK model, the LB model yields higher values for ˜̇m and ˜̇e
because velocity and heat flux have larger magnitudes in the
LB predictions, see Fig. 2.

VII. CONCLUSION

A compact analytical model based on the R13 equations
was employed to describe thermal transpiration flow of rarefied
gases in tubes with annular cross sections. Thermally driven
flows, forced by small temperature gradients, were investigated
with linearized equations where their solutions linearly depend
on the temperature gradient. The effects of gas rarefaction,
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FIG. 5. (Color online) Variations in (a) dimensionless mass flow rate ˜̇m and (b) dimensionless heat flow rate ˜̇e with respect to the Knudsen
number are shown for χ = 1 and ε = {0.175,0.872}. R13 and NSF results are compared to kinetic data from linearized Boltzmann model:
diamonds, and BGK model: circles. Kinetic data are borrowed from Ref. [47].

annulus geometry, and surface accommodation on the
solutions of shear stress, heat flux, and velocity were examined.

Comparison of R13 solutions with kinetic data revealed
that the dominant rarefaction effects in the considered flow
were as follows: (i) formation of the Knudsen boundary
layers and (ii) slip velocity on the walls. The effects of these
nonequilibrium phenomena on mass and heat flow rates are
thoroughly demonstrated and are compared to high-quality
Boltzmann solutions as experimental measurements for this
problem are not reported. The presented comparisons with
kinetic solutions confirm that the R13 system successfully
predicts mass and heat transfers for Kn < 0.5 with errors below
7% for the mass flow rate and below 10% for the heat flow rate.

By comparing NSF and R13 solutions, it is evident that
Knudsen layers and their contribution on velocity slip are
absent in the NSF theory; this is where the real advantage
of the R13 stands out. We highlighted the consequence of
these shortcomings in the NSF equations by computing mass
and heat flow rates and showed that the NSFs were valid in the
slip flow regime only.

To conclude, we point to the insufficiency of the R13
equations for the description of highly rarefied flows in which

the magnitude of rarefaction effects is beyond the resolution
of the R13 equations. In such conditions, larger systems of
moment equations [51] are suggested. As demonstrated in
Ref. [39], higher-order linearized moment systems lead to so-
lutions with multiple Knudsen layers, and their superposition
provides a more accurate structure for the Knudsen layers. The
authors agree that solutions of large moment systems can be
computationally as expensive as kinetic solutions, specifically,
full numerical solutions. Indeed, the derivation of analytical
solutions is a cumbersome task too, particularly, in curvilinear
coordinates; however, it needs to be performed once. Analyt-
ical solutions are continuous in the independent variables and
show explicitly how the parameters of the system are involved.
Also, analytical solutions give much insight into the underlying
physics, which is one of the primary objectives of modeling.
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