6 Subsequence Sums III: length = exp(G)

In this section, we will study another restricted subsequence sum problem. If G is a group, the exponent of G, denoted exp(G), is the smallest integer m so that the order of every element in G divides m. If G is a finite abelian group, then there exist positive integers m_1, m_2, \ldots, m_d so that m_i divides m_{i+1} for $1 \le i \le d$ and so that $G \cong \mathbb{Z}_{m_1} \times \mathbb{Z}_{m_2} \ldots \mathbb{Z}_{m_d}$. In this case, $exp(G) = m_d$. The exponent length Davenport constant, denoted $D^{exp}(G)$, is the smallest integer ℓ so that every sequence of elements from G of length exp(G) with sum equal to 0. The goal of this section is to prove a lovely theorem of Reiher - conjectured by Kemnitz - that $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n) = 4n-3$. We begin with an observation (due to Kemnitz) which includes the trivial lower bound on $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n)$ together with the useful fact that the general problem reduces to the special case when n is prime.

Observation 6.1

- (i) $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n) \ge 4n 3$
- (ii) If $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n) = 4n 3$ holds for n prime, then it holds for all n.

Proof: For part (i), consider the sequence consisting of n-1 copies of the four elements (0,0), (0,1), (1,0) and (1,1). This sequence has no length n subsequence with zero sum, so $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n) \geq 4n-3$.

For part (ii), we proceed by induction on n. If n=1 or n is prime, there is nothing to prove. Otherwise we may choose a,b>1 with ab=n. Let g_1,g_2,\ldots,g_{4n-3} be a sequence of elements in $\mathbb{Z}_n\times\mathbb{Z}_n$ and let $H\leq\mathbb{Z}_n\times\mathbb{Z}_n$ be a subgroup isomorphic to $\mathbb{Z}_a\times\mathbb{Z}_a$. By repeatedly applying the theorem for $\mathbb{Z}_b\times\mathbb{Z}_b\cong (\mathbb{Z}_n\times\mathbb{Z}_n)/H$ we may choose pairwise disjoint subsets J_1,J_2,\ldots,J_{4a-3} of I so that $|J_i|=b$ and $\sum_{j\in J_i}g_j\in H$ (every subset of I of size $\geq 4b-3$ contains such a set, so if we have chosen J_1,J_2,\ldots,J_k , we can always choose a suitable J_{k+1} , unless 4ab-3 - kb = $|I\setminus\bigcup_{i=1}^k J_i|<4b-3$ in which case k>4a-4). Now, applying the result for $\mathbb{Z}_a\times\mathbb{Z}_a$ to the sequence $\sum_{j\in J_1}g_j,\sum_{j\in J_2}g_j,\ldots\sum_{j\in J_{4a-3}}g_j$ gives us a sequence of length n=ab with sum 0 as required. \square

Now let us fix a prime p and a sequence $g_1, g_2, \ldots, g_{4p-3}$ of elements in \mathbb{Z}_p where $g_i = (a_i, b_i)$. We let $I = \{1, 2, \ldots, 4p-3\}$ denote the index set, and for any $J \subseteq I$ and any nonnegative integer k we let (k|J) denote the number of subsets $J' \subseteq J$ with |J'| = k so that

 $\sum_{j\in J'} g_j = 0$. Through the remainder of this section, we shall use the symbol \equiv to denote numbers which are equivalent modulo p. Our proof of Reiher's theorem will proceed with three lemmas which establish a number of equations (modulo p) concerning numbers of the form (k|J). The only tool we require for this is the Chevalley-Warning theorem.

Lemma 6.2 Let $J \subseteq I$

(i)
$$-1 + (p|J) - (2p|J) + (3p|J) \equiv 0 \text{ if } |J| > 3p - 3$$

(ii)
$$-1 + (p|I) - (2p|I) + (3p|I) \equiv 0$$

(iii) If
$$|J| = 3p - 2$$
 or $|J| = 3p - 1$, then $(p|J) \equiv 0$ implies $(2p|J) \equiv -1$

(iv) If
$$|J| = 3p$$
 and $(3p|J) = 1$, then $(p|J) > 0$

(v)
$$(p-1|I) - (2p-1|I) + (3p-1|I) \equiv 0$$

Proof: Consider the following family of polynomials over \mathbb{Z}_p .

$$\sum_{j \in J} x_j^{p-1} \qquad \sum_{j \in J} a_j x_j^{p-1} \qquad \sum_{j \in J} b_j x_j^{p-1}$$

It follows from the Chevalley-Warning theorem that whenever |J| > 3p - 3, the number of common solutions to the above polynomials is congruent to 0 modulo p. This gives us

$$0 \equiv 1 + (p-1)^p (p|J) + (p-1)^{2p} (2p|J) + (p-1)^{3p} (3p|J)$$
$$\equiv 1 - (p|J) + (2p|J) - (3p|J).$$

which completes the proof of (i). Parts (ii) and (iii) are immediate consequences of (i). Part (iv) follows from (iii) applied to a subset of J of size 3p-1 and the observation that (p|J) = (2p|J) if |J| = 3p and (3p|J) = 1. Part (v) follows from a similar argument to the first, applied to the following family of polynomials.

$$1 + \sum_{i \in I} x_i^{p-1}$$
 $\sum_{i \in I} a_i x_i^{p-1}$ $\sum_{i \in I} b_i x_i^{p-1}$

This completes the proof. \Box

Lemma 6.3

$$3 - 2(p-1|I) - 2(p|I) + (2p-1|I) + (2p|I) \equiv 0$$

Proof: Let $J \subseteq I$ satisfy |J| = 3p - 3 and consider the following family of polynomials

$$y^{p-1} + \sum_{j \in J} x_j^{p-1}$$
 $\sum_{j \in J} a_j x_j^{p-1}$ $\sum_{j \in J} b_j x_j^{p-1}$

Again by the Chevalley-Warning theorem, the number of common solutions to this family is 0 modulo p. The number of solutions with y=0 has size $1+(p-1)^p(p|J)+(p-1)^{2p}(2p|J)\equiv 1-(p|J)+(2p|J)$ and the number with $y\neq 0$ has size $(p-1)^p(p-1|J)+(p-1)^{2p}(2p-1|J)\equiv -(p-1|J)+(2p-1|J)$. Thus, we have

$$0 \equiv 1 - (p-1|J) - (p|J) + (2p-1|J) + (2p|J).$$

Summing this identity over all subsets J of I of size 3p-3 gives us

$$0 \equiv \sum_{\substack{J \subseteq I: |J| = 3p - 3}} \left(1 - (p - 1|J) - (p|J) + (2p - 1|J) + (2p|J) \right)$$

$$\equiv \binom{4p - 3}{3p - 3} - \binom{3p - 2}{2p - 2} (p - 1|I) - \binom{3p - 3}{2p - 3} (p|I) + \binom{2p - 2}{p - 2} (2p - 1|I) + \binom{2p - 3}{p - 3} (2p|I)$$

$$\equiv 3 - 2(p - 1|I) - 2(p|I) + (2p - 1|I) + (2p|I).$$

which completes the proof. \Box

Lemma 6.4 If (p|I) = 0, then $(p-1|I) \equiv (3p-1|I)$.

Proof: Let t denote the number of partitions of I into $\{A, B, C\}$ which satisfy |A| = p - 1, |B| = p - 2, |C| = 2p and $\sum_{i \in A} g_i = 0$, $\sum_{i \in B} g_i = \sum_{i \in I} g_i$, and $\sum_{i \in C} g_i = 0$. We will first count t (modulo p) by running through all possible choices for A and applying part (iii) of Lemma 6.2. This gives us

$$t = \sum_{A} (2p|I \setminus A) \equiv \sum_{A} -1 \equiv -(p-1|I)$$

On the other hand, summing over all choices for B and applying part (iii) of Lemma 6.2 gives us

$$t = \sum_{B} (2p|I \setminus B) \equiv \sum_{B} -1 \equiv -(3p-1|I)$$

Combining these equations gives us the desired result. \Box

Theorem 6.5 (Reiher) $D^{exp}(\mathbb{Z}_n \times \mathbb{Z}_n) = 4n - 3$

Proof: By Observation 6.1 it suffices to prove that our sequence $g_1, g_2, \ldots, g_{4p-3}$ in \mathbb{Z}_p contains a subsequence of length p with sum 0. Assume (for a contradiction) that this does not hold. Then adding the equations from (ii) and (v) of Lemma 6.2, the equation from Lemma 6.3 and the equation $0 \equiv (p-1|I) - (3p-1|I)$ from Lemma 6.4 we get

$$2 - (p|I) + (3p|I) \equiv 0$$

Part (iv) of Lemma 6.2 now gives us a contradiction. \Box

Although the proof is a bit beyond our scope, we will mention the following interesting result concerning the exponent length Davenport constant.

Theorem 6.6 (Alon, Dubiner) For every $d \ge 1$ there exists a constant c so that $D^{exp}(\mathbb{Z}_n^d) \le cn$.