7 Sumsets in Abelian Groups (Kneser's Theorem)

Throughout this section we shall assume that G is an additive abelian group. Our goal here is to prove a theorem of Kneser which gives a natural lower bound on the size of a sumset in an abelian group. This result may be viewed as a generalization of the Cauchy-Davenport theorem. To state it, we need just one added piece of notation. If $A \subseteq G$, we define the stabilizer of A to be $S(A) = \{g \in G \mid A + g = A\}$. Note that $S(A) \leq G$.

Theorem 7.1 (Kneser) If $A, B \subseteq G$ are finite and nonempty and $K = \mathcal{S}(A+B)$, then $|A+B| \ge |A+K| + |B+K| - |K|$.

Proof. We proceed by induction on |A + B| + |A|. Suppose that $K \neq \{0\}$ and let $\phi : G \to G/K$ be the canonical homomorphism. Then $\mathcal{S}(\phi(A+B))$ is trivial, so by applying induction to $\phi(A), \phi(B)$ we have that $|A + B| = |K|(|\phi(A) + \phi(B)|) \ge |K|(|\phi(A)| + |\phi(B)| - 1) = |A + K| + |B + K| - |K|$. Thus, we may assume that $K = \{0\}$. If |A| = 1, then the result is trivial, so we may assume |A| > 1 and choose distinct $a, a' \in A$. Since $a' - a \notin \mathcal{S}(B) \subseteq \mathcal{S}(A+B) = \{0\}$, we may choose $b \in B$ so that $b + a' - a \notin B$. Now by replacing B by B - b + a we may assume that $\emptyset \neq A \cap B \neq A$.

Let $C \subseteq A + B$ and let $H = \mathcal{S}(C)$. We say that C is a portion if

$$|C| + |H| \ge |A \cap B| + |(A \cup B) + H|.$$

Set $C_0 = (A \cap B) + (A \cup B)$ and observe that $C_0 \subseteq A + B$. Since $0 < |A \cap B| < |A|$, we may apply induction to $A \cap B$ and $A \cup B$ to conclude that C_0 is a portion. Thus a portion exists, and we may now choose a portion C with $H = \mathcal{S}(C)$ minimal. If $H = \{0\}$ then $|A + B| \ge |C| \ge |A \cap B| + |A \cup B| - |\{0\}| = |A| + |B| - 1$ and we are finished. Therefore, we may assume (for a contradiction) that $H \ne \{0\}$. Since $\mathcal{S}(A + B) = \{0\}$ and $\mathcal{S}(C) = H$, we may choose $x \in A$ and $y \in B$ so that $(x + y + H) \not\subseteq A + B$. Let $A_1 = A \cap (x + H)$, $A_2 = A \cap (y + H)$, $B_1 = B \cap (y + H)$, and $B_2 = B \cap (x + H)$ and note that $A_1, B_1 \ne \emptyset$. For i = 1, 2 let $C_i = C \cup (A_i + B_i)$ and let $H_i = \mathcal{S}(A_i + B_i)$. Observe that if $A_i, B_i \ne \emptyset$, then $H_i = \mathcal{S}(C_i) < H$. The following equation holds for i = 1, and it also holds for i = 2 if $A_2, B_2 \ne \emptyset$. It follows from the fact that C_i is not a portion (by the minimaity of H), and

induction applied to A_i, B_i .

$$|(A \cup B) + H| - |(A \cup B) + H_i| < (|C| + |H| - |A \cap B|) - (|C_i| + |H_i| - |A \cap B|)$$

$$= |H| - |A_i + B_i| - |H_i|$$

$$\leq |H| - |A_i + H_i| - |B_i + H_i|$$
(1)

If $B_2 = \emptyset$, then $|(A \cup B) + H| - |(A \cup B) + H_1| \ge |H| - |A_1 + H_1|$ which contradicts equation 1 for i = 1. We get a similar contradiction under the assumption that $A_2 = \emptyset$. Thus $A_2, B_2 \ne \emptyset$ and equation 1 holds for i = 1, 2. If x + H = y + H, then $A_1 = A_2$ and $B_1 = B_2$ and we find that $|(A \cup B) + H| - |(A \cup B) + H_1| \ge |H| - |(A_1 \cup B_1) + H_1| \ge |H| - |A_1 + H_1| - |B_1 + H_1|$ which contradicts equation 1. Therefore, $x + H \ne y + H$. The following inequality follows from the observation that the left hand side of equation 1 is nonnegative, and all terms on the right hand side are multiples of $|H_i|$.

$$|H| \ge |A_i| + |B_i| + |H_i|$$
 (2)

Let $X = (x + H) \setminus (A_1 \cup B_2)$ and let $Y = (y + H) \setminus (A_2 \cup B_1)$. Note that X and Y are disjoint. The following equation follows from the fact that A + B is not a portion (by the minimality of H), and induction applied to A_i, B_i .

$$|H| \geq |(A \cup B) + H| + |A \cap B| - |C|$$

$$\geq |X| + |Y| + |A \cup B| + |A \cap B| - |A + B| + |A_i + B_i|$$

$$> |X| + |Y| + |A_i| + |B_i| - |H_i|$$
(3)

Summing the four inequalites obtained by taking equations 2 and 3 for i = 1, 2 and then dividing by two yields $2|H| > |A_1| + |A_2| + |X| + |B_2| + |B_1| + |Y|$. However, $x + H = X \cup A_1 \cup B_2$ and $y + H = Y \cup A_2 \cup B_1$. This final contradiction completes the proof.