
14 Transpositions

Definition. A cycle is a permutation A with the property that the cycle representation of

A has exactly one cycle. For instance A = (a1a2 . . . ak). We call k the length of the cycle.

Note: It may seem that there is ambiguity about an expression such as (164)(29)(8735).

Is this one permutation with three cycles, or a product of the three cycles (164), (29), and

(8735)? Fortunately, the permutation (164)(29)(8735) is equal to the product of the three

cycles (164), (29), and (8735), so there is no trouble.

Definition. A transposition is a cycle of length 2. So, in cycle notation, a transposition

has the form (ab). Note that every transposition is its own inverse: (ab)(ab) = I.

Lemma 14.1. Every permutation can be expressed as a product of transpositions.

Proof. A quick check reveals that a cycle (a1, a2, . . . , ak) can be represented as follows:

(a1a2a3 . . . ak) = (a1ak) . . . (a1a4)(a1a3)(a1a2)

Since every permutation is a product of cycles, every permutation may be represented as a

product of transpositions.

Example: Represent the permutation (13584)(2967) ∈ S9 as a product of transpositions.

(13584)(2967) = (14)(18)(15)(13)(27)(26)(29)

Note: Every permutation can be expressed as a product of transpositions in many (actually

infinitely many) ways. For instance, the permutation (13584)(2967) from the above example

can also be expressed in all of the following ways

(13584)(2967) = (72)(38)(17)(28)(47)

= (69)(64)(68)(12)(17)(15)(13)(56)(24)

= (91)(95)(98)(94)(93)(92)(97)(96)(45)(83)(12)

We have just represented a particular permutation as a product of 5, 9, and 11 transpositions—

all odd numbers. This is not a coincidence! In fact for every permutation either all such

expressions will all have an even number of terms, or all such expressions will have an odd

number of terms. We next prove that this property holds for the identity.
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Lemma 14.2. If T1, . . . , Tm are transpositions and T1T2 · · ·Tm = I, then m is even.

Proof. We return to our original way of thinking about composition using a figure where

each bijection in is represented by arrows from 1, 2, . . . , n to 1, 2, . . . , n as follows:
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Now, if we start at the rightmost 1 and follow the arrows we go along a path, finally ending

up at the leftmost 1 (since the product T1T2 · · ·Tm is the identity). Let’s imagine this path as

a string which we call strand 1. Similarly, for every 2 ≤ i ≤ n we have a strand starting and

ending at i. The figure may be complicated since the strands may cross one another many

times, but nevertheless, we can reason about these crossings. Make the following definitions:

1. Let ci,j be the number of times strand i and strand j cross.

2. Let c be the total number of times one strand crosses another.

3. Let tk be the number of times one strand crosses another in the transposition Tk.

For any two distinct strands, say i and j, it must be that ci,j is even, since these strands

must cross an even number of times in order to end in the same positions in which they

begin. It follows from this that the total number of crossings c must also be even.

Next let us think about the number of crossings contributed by a single transposition Tk.

Suppose (without loss) that Tk = (ab) where a < b. If b = a + 1 then the only strands

crossing in Tk are strand a and a+ 1 so tk = 1. If b = a+ 2 then strands a and a+ 2 cross in

Tk but strand a + 1 also gets crossed by strand a and a + 2 for a total of 3 crossings. More

generally, if b = a + p then strands a and a + p will cross one another, and both of these

strands will cross all of the strands numbered a + 1, a + 2, . . . , a + p− 1. This gives a total

of 1 + 2(p− 1) crossings, so tk = 1 + 2(p− 1) is odd. The total number of crossings can also

be counted by summing the contributions from each transposition, giving us the equation

c = t1 + t2 + . . . + tm

Now c is even, but each tk is odd, and it follows that m must be even, as desired.
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Now we are ready to prove that this even/odd property holds for every permutation.

Theorem 14.3. For every permutation A ∈ Sn, either every representation of A as a product

of transpositions has an odd number of transpositions, or every such representation has an

even number of transpositions.

Proof. Let T1, . . . , Tj and U1, . . . , Uk be transpositions satisfying

A = T1T2 · · ·Tj

= U1U2 · · ·Uk

To prove the theorem it suffices to show that either j and k are both even, or j and k are

both odd. For any product of permutations B = B1B2 · · ·Bm−1Bm the inverse is always

given by B−1 = B−1
m B−1

m−1 · · ·B−1
2 B−1

1 . Since every transposition is its own inverse, we can

therefore express A−1 as

A−1 = UkUk−1 · · ·U2U1

Now we have

I = AA−1 = T1 · · ·TjUk · · ·U1

By the previous lemma we deduce that j + k is even, so either j and k are both even, or j

and k are both odd, as desired.

Definition. We call a permutation A ∈ Sn even if it can be represented as a product of

an even number of transpositions, and odd if it can be represented as a product of an odd

number of transpositions. By Theorem 14.3 every permutation is either even and not odd,

or is odd and not even. We call this characteristic (even or odd) the parity of A.

Note: If A is a cycle of length k, say A = (a1a2 . . . ak) then we can express A as A =

(a1ak) . . . (a1a3)(a1a2). Therefore a cycle of even length is an odd permutation, and a cycle

of odd length is an even permutation!

Observation 14.4. If A,B ∈ Sn then the product AB satisfies

AB is

{
even

odd

}
if

{
A,B are either both even or both odd

one of A,B is even and the other is odd

}
.
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Proof. Express A and B as products of transpositions

A = T1T2 · · ·Tj

B = U1U2 · · ·Uk

Now AB = T1T2 · · ·TjU1U2 · · ·Uk so AB is even if j + k is even and odd if j + k is odd.

The previous observation shows that parity of permutations acts just like the parity of

integers: Adding two integers that are both even or both odd gives an even integer; adding

two integers with one odd and the other even gives an odd integer.

Proposition 14.5. A permutation is

{
even

odd

}
if, in cycle notation, there are an

{
even

odd

}
number of cycles of even length.

Proof. This follows from the previous observation and the fact that a cycle of odd length is

an even permutation while a cycle of even length is an odd one.

Example: The parity of the permutation (13)(94)(657)(28) is odd since this permutation

has three cycles of even length.


