9 Higher Surfaces

Embeddings in Other Surfaces

Disc: Any space which can be continuously deformed to $\{(x,y) \in \mathbb{R}^2 : x^2 + y^2 < 1\}$.

Surfaces and Embeddings: A *surface* is a topological space with the property that every point has a neighborhood which is a disc (so locally, it looks like the plane). The definition of graph embedding in the plane extends naturally to *embeddings* in other surfaces.

Sphere: We define the *sphere* to be $S = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1^2 + x_2^2 + x_3^2 = 1\}.$

Observation 9.1 The following are equivalent for every graph G.

- (i) G is planar.
- (ii) G has an embedding in the sphere.
- (iii) G has an embedding in a disc.

Torus: The *torus* is a surface which is obtained from the square

$$\{(x,y) \in \mathbb{R}^2 : 0 \le x \le 1 \text{ and } 0 \le y \le 1\}$$

by identifying the points (0, y) and (1, y) for every $0 \le y \le 1$ and identifying (x, 0) and (x, 1) for every $0 \le x \le 1$.

Handles: To add a handle to a surface S, we remove two disjoint discs from it, and then add a cylinder, so that each end of the cylinder is identified with the boundary of (a distinct) one of the removed discs.

Genus: For every nonnegative integer g, we let \mathcal{S}_g denote a surface obtained from \mathcal{S} by adding g handles. There is a theorem which states that any two surfaces obtained in this manner are topologically equivalent (homeomorphic), and we call such a space the *surface* of genus g. Note that \mathcal{S}_1 is equivalent to the torus.

Observation 9.2 For every graph G there exists g so that G has an embedding in S_q .

Proof: Draw G in the plane (possibly with crossings). Then, anytime two edges cross, add a handle near this crossing point, and route one edge over the other.

2-Cell: An embedding of G in a surface is a 2-cell embedding if every face is a disc (faces are defined analogously with planar embeddings).

Theorem 9.3 Let G be a one vertex graph 2-cell embedded in S_g so that there is exactly one face. Then |E(G)| = 2g.

Proof: omitted.

Theorem 9.4 (Euler's Formula) If G is a connected graph 2-cell embedded in S_g then

$$|V(G)| - |E(G)| + |F(G)| = 2 - 2g$$

Proof: We proceed by induction on |E(G)|. If there is a non-loop edge e, then the result follows by applying induction to $G \cdot e$. Otherwise, every edge is a loop. If there are at least two faces, we may choose a loop edge e with distinct faces on either side and then the result follows by applying induction to G - e. If no such edge exists, then the result follows by the above theorem. \square

Theorem 9.5 (Heawood's Theorem) If G is a loopless graph which can be embedded in S_g , with g > 0 then $\chi(G) \leq \frac{7+\sqrt{1+48g}}{2}$.

Proof: Set $c = \frac{7+\sqrt{1+48g}}{2}$. By Observation 6.2, it suffices to show that every simple graph embedded in \mathcal{S}_g has a vertex of degree $\leq c-1$. Suppose (for a contradiction) that G is such a graph with $\delta(G) \geq c$. Note that this implies $|V(G)| \geq c$ and note as well that every face has size ≥ 3 so $3|F(G)| \leq 2|E(G)|$. In the equation below, we use these facts with Euler's

Formula.

$$\begin{split} c(c-7) &= 12g-12 \\ &= -6|V(G)| + 6|E(G)| - 6|F(G)| \\ &\geq -6|V(G)| + 2|E(G)| \\ &= \sum_{v \in V(G)} (deg(v) - 6) \\ &\geq |V(G)|(c-6) \\ &\geq c(c-6) \end{split}$$

Since $c \geq 7$ by definition, this is contradictory. \square

Corollary 9.6 Every graph which can be embedded in a torus has chromatic number ≤ 7 and this bound is best possible.

Proof: The upper bound is a consequence of Heawood's Theorem. To see that this is the best possible upper bound, observe that K_7 may be embedded in the torus as in the figure below.

