Extending Partial 3-Colourings in a Planar Graph

Matt DeVos*

Applied Math Department

Princeton University

Princeton, NJ 08544

matdevos@math.princeton.edu

Paul Seymour[†]

Department of Mathematics

Princeton University

Princeton, NJ 08544

pds@math.princeton.edu

Abstract

Let D be a disc, and let X be a finite subset of vertices on the boundary of D. An essential part of the proof of the four colour theorem is the fact that many sets of 4-colourings of X do not arise from the proper 4-colourings of any graph drawn in D. In contrast to this, we show that every set of 3-colourings of X arises from the proper 3-colourings of some graph drawn in D.

1 Introduction

Let X be a finite subset of the boundary of a disc D. Call a set Q of k-colourings of X k-feasible if there exists a drawing G in D with $X \subseteq V(G)$ such that the k-colourings of X which can be extended to k-colourings of G are precisely those in G. We are interested in the following question: what sets of colourings are k-feasible? Kempe chain arguments show that only certain heavily restricted sets of 4-colourings are 4-feasible, and this is an

^{*}This research was supported by the Navy under Navy Assert grant N00014-98-1-0457

 $^{^\}dagger \text{This}$ research was supported by the ONR under grant N0014-97-1-0512 and the NSF under grant DMS 9701598

important technique in the proof of the four colour theorem. In contrast, we shall show that any set of 3-colourings is 3-feasible.

One may ask the question: given a set of k-colourings of X which is k-feasible, how large is the smallest graph which admits precisely this set of k-colourings? For 3-colouring, our proof yields a bound of $O(9^{|X|})$ on the size of this graph. For k=4 and k=5 we do not know of any bound, but for k=6, we will prove a quadratic bound in Section 3. When $k \geq 7$ there is a simple linear bound resulting from Euler's formula.

It will be convenient for us to work with vertex colouring in terms of partitions. We will consider a k-colouring of a set to be a partition of its elements into at most k nonempty sets. A k-colouring of a graph G is a k-colouring of V(G) so that each member of the partition is a stable set. For any set X, we define C(X) to be the set of all 3-colourings of X. If $\tau \in C(X)$ and $x \in T \in \tau$, we define $\tau(x) = T$. If G is a graph and $X \subseteq V(G)$, we define

$$\Phi_G(X) = \{ \tau \in C(X) | \tau \text{ can be extended to a 3-colouring of } G \}$$

2 3-Feasible Colourings

Our main result is the following theorem.

Theorem 2.1 Let D be a disc, let X be a finite subset of the boundary of D, and let $Q \subseteq C(X)$ be a set of 3-colourings of X. Then there exists a drawing G in D with $X \subseteq V(G)$, such that $\Phi_G(X) = Q$.

The proof of this theorem will require three lemmas. The first two lemmas will be used to construct a graph G_0 with $X \subseteq V(G_0)$ and with the property that $\Phi_{G_0}(X) = Q$. The third lemma will define a particular planar graph *Cloverleaf* which provides a planar simulation of a crossing. We will then draw G_0 in a disc (with crossings) with X on the boundary as required, and then use *Cloverleaf* as a gadget to remove the crossings. The resulting graph G will satisfy the theorem.

Lemma 2.2 For every finite set of vertices X, and every 3-colouring τ of X, there exists a graph G with $X \subseteq V(G)$ such that $\Phi_G(X) = C(X) \setminus \{\tau\}$.

Proof: We proceed inductively on |X|. If |X| < 3 or if there do not exist $x_1, x_2 \in X$ with $\tau(x_1) = \tau(x_2)$, then one of the graphs K_4 , K_2 , $K_{1,3}$, $K_4 - e$ has the required properties. Hence we may assume that $|X| \geq 3$ and that there exist distinct $x_1, x_2 \in X$ such that $\tau(x_1) = \tau(x_2) = T$. Let z be a new vertex (not in X), let $X' = (X \setminus \{x_1, x_2\}) \cup \{z\}$, let $T' = (T \setminus \{x_1, x_2\}) \cup \{z\}$, and $\tau' = (\tau \setminus \{T\}) \cup \{T'\}$. Inductively, we may choose a graph G' with the property that $X' \subseteq V(G')$ and $\Phi_{G'}(X') = C(X') \setminus \{\tau'\}$. Let F be the graph of Figure 1, and let G be the graph obtained from the disjoint union of G' and F by identifying the vertex z of G' and the vertex z of F. Let $\sigma \in C(X)$ be given. We claim that σ is extendable to G if and only if $\sigma \neq \tau$.

Case 1:
$$\sigma(x_1) \neq \sigma(x_2)$$

In this case $\sigma \neq \tau$. Since only one colouring of X' does not extend to G', and $|X'| \geq 2$, we may always choose a colour for z such that the resulting colouring of X' will extend to G'. Since this colouring of z can also be completed to a proper 3-colouring of F, we have found a proper 3-colouring of G, and we conclude that $\sigma \in \Phi_G(X)$.

Case 2:
$$\sigma(x_1) = \sigma(x_2)$$

Let $S = \sigma(x_1)$ and $S' = (S \setminus \{x_1, x_2\}) \cup \{z\}$. When x_1 and x_2 are given the same colour, σ can only be completed to a proper 3-colouring of F so that z has the same colour as x_1, x_2 . Thus, σ cannot be extended to a proper 3-colouring of G if and only if the colouring $\sigma' \in C(X')$ given by $\sigma' = (\sigma \setminus \{S\}) \cup \{S'\}$ cannot be extended to a proper 3-colouring of G'. This is true if and only if $\sigma' = \tau'$, which is true if and only if $\sigma = \tau$. Thus, we have that $\Phi_G(X) = C(X) \setminus \{\tau\}$ as desired. \square

Lemma 2.3 For every finite set of vertices X, and $Q \subseteq C(X)$, there exists a graph G with $X \subseteq V(G)$ such that $\Phi_G(X) = Q$.

Proof: For each $\tau \in C(X) \setminus Q$, we may choose a graph G_{τ} such that $X \subseteq V(G_{\tau})$ and $\Phi_{G_{\tau}}(X) = C(X) \setminus \{\tau\}$ by Lemma 1. Now, we construct G by taking the disjoint union of the G_{τ} graphs and then identifying all of the copies of each vertex in X. Now, a colouring $\sigma \in C(X)$ is not extendable to all of G if and only if σ is not extendable to G_{τ} for some $\tau \in C(X) \setminus Q$, which holds if and only if $\sigma \in C(X) \setminus Q$. Thus, we have $\Phi_{G}(X) = Q$ as desired. \square

Lemma 2.4 Let Cloverleaf and $W = \{w_1, w_2, w_3, w_4\}$ be defined by Figure 2. Then

$$\Phi_{Cloverleaf}(W) = \{ \tau \in C(W) | \tau(w_1) = \tau(w_3), \tau(w_2) = \tau(w_4) \}$$

Proof: Cloverleaf is made up of four triangular pieces by identifying their outermost vertices. Each triangular piece only accepts 3-colourings for which the outermost vertices all have the same colour, or all have distinct colours. The proof follows easily from this. \Box

For the remainder of the paper, it will be helpful to consider graphs with two kinds of edges, ordinary edges and special edges. We redefine a colouring τ of such a graph to be a colouring of the vertex set so that for any adjacent vertices x, y, we have $\tau(x) \neq \tau(y)$ if xy is an ordinary edge, and $\tau(x) = \tau(y)$ if xy is a special edge. The colourings of G are in one to one correspondence with the colourings of the graph obtained from G by contracting all of its special edges.

Proof of Theorem 2.1: Let D be a disc, and let X be a finite subset of the boundary of D. It will be helpful for us to consider graphs which are drawn in D with crossings. Let a *scribble* G be a drawing of a graph in D such that $X \subseteq V(G)$, and with the additional properties that any two edges of G have at most one point in common, either an endpoint or a crossing, no three edges have a common crossing point, and the interior of every edge is disjoint from the vertex set. Now, let G be a set of 3-colourings of G. By Lemma 2 (and since every graph is isomorphic to some scribble) we may choose a scribble G0 in G2 such that G3.

We construct a new scribble G_1 from G_0 as follows: If e is an edge of G_0 which crosses k other edges, we subdivide it k times, forming a path P of length k+1 consisting of k special edges and one ordinary edge. This can be done in such a way that each special edge of P crosses exactly one other edge, and the ordinary edge of P does not cross another edge. Let G_1 be the scribble formed by repeating this process on each edge of G_0 . Since G_0 is precisely the graph obtained by contracting the special edges of G_1 , we have that $\Phi_{G_1}(X) = Q$. Furthermore, G_1 also has the properties that no ordinary edge crosses another edge, and each special edge crosses exactly one other edge.

Now, we construct a new scribble G from G_1 as as follows: If x_1x_2 and y_1y_2 are special edges that cross, then x_1, x_2, y_1, y_2 are all distinct, and we may choose a disc D' such that

D' contains all of x_1x_2, y_1y_2 with x_1, x_2, y_1, y_2 on the boundary of D', and such that no other edges of G_1 intersect D' except at the points x_1, x_2, y_1, y_2 . Let G'_1 denote the scribble $G_1 \setminus \{x_1x_2, y_1y_2\}$. Since x_1x_2 and y_1y_2 were crossing edges, we may assume that x_1, y_1, x_2, y_2 occur on the boundary of D' in this clockwise order, and we may modify G'_1 by placing Cloverleaf in D' and identifying the points x_1, y_1, x_2, y_2 of G'_1 with w_1, w_2, w_3, w_4 of Figure 2 respectively. Call this new scribble G''_1 . Now, the proper 3-colourings of G_1 are precisely those proper 3-colourings τ of G'_1 in which $\tau(x_1) = \tau(x_2)$ and $\tau(y_1) = \tau(y_2)$, but these are precisely the 3-colourings of w_1, w_2, w_3, w_4 which can be extended to Cloverleaf. Thus we find that $\Phi_{G''_1}(X) = \Phi_{G_1}(X) = Q$. Let G be the graph obtained by repeating this process for each pair of crossing edges in G_1 . Then, $\Phi_G(X) = Q$, and G has no special edges or crossings, so G is an ordinary graph drawn in D with all of the required properties, and we are done. \Box

3 Bounding the Graph Size

If a set of k-colourings is k-feasible, one may ask how large a graph realizing it needs to be. From the proof of Theorem 1 in the previous section, $O(9^{|X|})$ is a bound when k=3. We do not know of a bound for the cases k=4 and k=5, but when $k\geq 6$ we have a bound again. Indeed, in general we may assume that no vertex in $V(G)\setminus X$ has degree < k. If k>6, it follows from Euler's formula that $|V(G)|\leq O(|X|)$. In the remainder of this section, we will prove a bound of $O(|X|^2)$ for the case k=6.

Theorem 3.1 Let G be a simple planar graph with the infinite region bounded by a cycle C, and such that the degree of every vertex in $V(G) \setminus V(C)$ is at least 6. Then $|V(G)| \le |V(C)|^2/12 + |V(C)|/2 + 1$.

Although this theorem does not directly concern graph colouring, we are including it in part because of its own interest. We note that the theorem is tight for a regular hexagonal piece of the triangular lattice.

A quilt is a simple planar drawing G with a cycle C bounding the infinite region, such that every finite region is bounded by a triangle, and such that the degree of any vertex in $V(G) \setminus V(C)$ is at least 6. If $P \subseteq C$ is a path with distinct terminal vertices of degree 3 and all internal vertices of degree 4, we will call P a convenient path (of the quilt).

Lemma 3.2 If G is a quilt with no vertices of degree 2, then G has ≥ 6 convenient paths.

Proof: Let C be the cycle bounding the infinite region, and let |V(G)| = n and |V(C)| = m. Construct a new graph G' by adding a new vertex u in the infinite region of G, and adding an edge joining u to each vertex of V(C). Now, G' is a planar triangulation with n+1 vertices, so we have

$$6(n+1) - 12 = \sum_{v \in V(G')} deg_{G'}(v)$$

$$= \sum_{v \in V(C)} (deg_G(v) + 1) + m + \sum_{v \in V(G) \setminus V(C)} deg_G(v)$$

$$\geq \sum_{v \in V(C)} deg_G(v) + 6(n-m) + 2m$$

Rearranging, we find that $\sum_{v \in V(C)} deg_G(v) \leq 4m-6$. Thus, there are at least 6 more vertices of degree 3 than vertices of degree ≥ 5 in C. It follows that G has at least 6 convenient paths. \Box

Proof of Theorem 3.1: It suffices to prove the theorem for quilts, so we will let G be a quilt and let C be the cycle of G bounding the infinite region. Let C_G be the set of all convenient paths in G, and let

$$\mu(G) = \begin{cases} 1 & \text{if } G \text{ has a vertex of degree 2} \\ \min_{P \in \mathcal{C}_G} |E(P)| & \text{otherwise} \end{cases}$$

$$\Psi(G) = |V(C)|^2 / 12 + |V(C)| / 2 + 1$$

$$\Psi_0(G) = \mu(G) + |V(C)|^2 / 12 + |V(C)| / 3 + 1$$

Claim 1 If |V(C)| < 6, then $|V(G)| \le \Psi(G) \le \Psi_0(G)$.

If |V(C)| < 6, then G must have a vertex of degree 2 by Lemma 3.2. Deleting this vertex and repeating the argument proves that V(G) = V(C). But for all k, we have $k \le k^2/12 + k/2 + 1$. Thus, $|V(G)| \le \Psi(G) \le \Psi_0(G)$

Claim 2 If
$$|V(G)| \ge 6$$
, then $|V(G)| \le \Psi_0(G) \le \Psi(G)$

We prove the claim by induction on |V(G)|. If G has a vertex of degree 2, then $\Psi_0(G) \leq \Psi(G)$. Also, if G has no vertices of degree 2, then by the lemma and the fact that the convenient paths of G are edge-disjoint it follows that $\Psi_0(G) \leq \Psi(G)$. Thus, to prove the claim, it will suffice to show that $|V(G)| \leq \Psi_0(G)$. Let m = |V(C)|.

Suppose that C has a chord edge e, and let C_1, C_2 be the two cycles such that $E(C_1 \cup C_2) = E(C) \cup \{e\}$ and $E(C_1 \cap C_2) = \{e\}$. Let G_1, G_2 be the quilts bounded by the cycles C_1 and C_2 respectively. Let k = |V(C)|; then $(k-3)(m-k-1) \geq 0$. Thus, by induction

$$|V(G)| = |V(G_1)| + |V(G_2)| - 2 \le \Psi(G_1) + \Psi(G_2) - 2$$

$$\le k^2/12 + k/2 + 1 + (m - k + 2)^2/12 + (m - k + 2)/2 + 1 - 2$$

$$= m^2/12 - mk/6 + 5m/6 + k^2/6 - k/3 + 4/3$$

$$= m^2/12 + m/3 + 11/6 - (k - 3)(m - k - 1)/6 \le \Psi_0(G)$$

Thus, we may assume that C does not have a chord, so in particular G has minimum degree 3. Let P be the shortest convenient path in C.

Case 1:
$$|E(P)| = 1$$

Let u, v be the endvertices of P. Since C does not have any chords, $G' = G \setminus \{u, v\}$ is a quilt. Let C' be the cycle bounding the infinite region of G'. Then |V(C')| = m - 1, so by induction we have:

$$|V(G)| = |V(G')| + 2 \le \Psi(G') + 2$$
$$= (m-1)^2/12 + (m-1)/2 + 1$$
$$= m^2/12 + m/3 + 7/12 \le \Psi_0(G)$$

Case 2: $|E(P)| \ge 2$

Let v be an endvertex of P, and let $G' = G \setminus v$. Then G is a quilt with boundary C' and |V(C')| = |V(C)| = m. However, the length of the shortest convenient path of G' is strictly less than that of G and G, G' have no vertices of degree 2. Thus, we have by induction:

$$|V(G)| = |V(G')| + 1 \le \Psi_0(G') + 1 = \Psi_0(G)$$