A short proof of Kneser's addition theorem for abelian groups

Matt DeVos

mdevos@sfu.ca

Abstract

Martin Kneser proved the following addition theorem for every abelian group G. If $X, Y \subseteq G$ are finite and nonempty, then $|X + Y| \ge |X + K| + |Y + K| - |K|$ where $K = \{g \in G \mid g + X + Y = X + Y\}$. The purpose of this note is to give a short proof of this fact. Our proof relies only upon a simple intersection union argument.

Throughout we shall assume that G is an additive abelian group. If $X, Y \subseteq G$ and $g \in G$, then $X + Y = \{x + y \mid x \in X \text{ and } y \in Y\}$ and $X + g = g + X = \{x + g \mid x \in X\}$. We define the stabilizer of X to be $stab(X) = \{g \in G \mid X + g = X\}$. Note that $stab(X) \leq G$.

Theorem 1 (Kneser) If $X, Y \subseteq G$ are finite and nonempty and K = stab(X + Y), then $|X + Y| \ge |X + K| + |Y + K| - |K|$.

Proof. We proceed by induction on |X+Y|+|X|. Suppose that $K \neq \{0\}$ and let $\phi: G \to G/K$ be the canonical homomorphism. Then $stab(\phi(X+Y))$ is trivial, so by applying induction to $\phi(X), \phi(Y)$ we have that $|X+Y| = |K|(|\phi(X)+\phi(Y)|) \ge |K|(|\phi(X)|+|\phi(Y)|-1) = |X+K|+|Y+K|-|K|$. Thus, we may assume that $K=\{0\}$. If |X|=1, then the result is trivial, so we may assume |X|>1 and choose distinct $x, x' \in X$. Since $x'-x \not\in stab(Y) \subseteq stab(X+Y)=\{0\}$, we may choose $y \in Y$ so that $y+x'-x \not\in Y$. Now by replacing Y by Y-y+x we may assume that $\emptyset \neq X \cap Y \neq X$.

Let $Z \subseteq X + Y$ and let H = stab(Z). We say that Z is a portion if

$$|Z| + |H| \ge |X \cap Y| + |(X \cup Y) + H|.$$

Set $Z_0 = (X \cap Y) + (X \cup Y)$ and observe that $Z_0 \subseteq X + Y$. Since $0 < |X \cap Y| < |X|$, we may apply induction to $X \cap Y$ and $X \cup Y$ to conclude that Z_0 is a portion. Thus a portion exists, and we may now choose a portion Z with H = stab(Z) minimal. If $H = \{0\}$ then $|X + Y| \ge |Z| \ge |X \cap Y| + |X \cup Y| - |\{0\}| = |X| + |Y| - 1$ and we are finished. Therefore, we may assume (for a contradiction) that $H \ne \{0\}$. Since $stab(X + Y) = \{0\}$ and stab(Z) = H, we may choose $a \in X$ and $b \in Y$ so that $(a + b + H) \not\subseteq X + Y$. Let $X_1 = X \cap (a + H)$, $X_2 = X \cap (b + H)$, $Y_1 = Y \cap (b + H)$, and $Y_2 = Y \cap (a + H)$ and note that $X_1, Y_1 \ne \emptyset$. For i = 1, 2 let $Z_i = Z \cup (X_i + Y_i)$ and let $H_i = stab(X_i + Y_i)$. Observe that if $X_i, Y_i \ne \emptyset$, then $H_i = stab(Z_i) < H$. The following equation holds for i = 1, and it also holds for i = 2 if $X_2, Y_2 \ne \emptyset$. It follows from the fact that Z_i is not a portion (by the minimaity of H), and induction applied to X_i, Y_i .

$$|(X \cup Y) + H| - |(X \cup Y) + H_i| < (|Z| + |H| - |X \cap Y|) - (|Z_i| + |H_i| - |X \cap Y|)$$

$$= |H| - |X_i + Y_i| - |H_i|$$

$$\leq |H| - |X_i + H_i| - |Y_i + H_i|$$
(1)

If $Y_2 = \emptyset$, then $|(X \cup Y) + H| - |(X \cup Y) + H_1| \ge |H| - |X_1 + H_1|$ which contradicts equation 1 for i = 1. We get a similar contradiction under the assumption that $X_2 = \emptyset$. Thus $X_2, Y_2 \ne \emptyset$ and equation 1 holds for i = 1, 2. If a + H = b + H, then $X_1 = X_2$ and $Y_1 = Y_2$ and we find that $|(X \cup Y) + H| - |(X \cup Y) + H_1| \ge |H| - |(X_1 \cup Y_1) + H_1| \ge |H| - |X_1 + H_1| - |Y_1 + H_1|$ which contradicts equation 1. Therefore, $a + H \ne b + H$. The following inequality follows from the observation that the left hand side of equation 1 is nonnegative, and all terms on the right hand side are multiples of $|H_i|$.

$$|H| \ge |X_i| + |Y_i| + |H_i| \tag{2}$$

Let $A = (a+H) \setminus (X_1 \cup Y_2)$ and let $B = (b+H) \setminus (X_2 \cup Y_1)$. Note that A and B are disjoint. The following equation follows from the fact that X + Y is not a portion (by the minimality of H), and induction applied to X_i, Y_i .

$$|H| \geq |(X \cup Y) + H| + |X \cap Y| - |Z|$$

$$\geq |A| + |B| + |X \cup Y| + |X \cap Y| - |X + Y| + |X_i + Y_i|$$

$$> |A| + |B| + |X_i| + |Y_i| - |H_i|$$
(3)

Summing the four inequalites obtained by taking equations 2 and 3 for i=1,2 and then dividing by two yields $2|H|>|X_1|+|Y_2|+|A|+|X_2|+|Y_1|+|B|$. However, $a+H=A\cup X_1\cup Y_2$ and $b+H=B\cup X_2\cup Y_1$. This final contradiction completes the proof.

Acknowledgements

The author would like to thank Dexter for his help in finding this argument.

References

[1] M.B. Nathanson, Additive Number Theory: Inverse Problems and the Geometry of Sumsets, GTM 165, Springer, 1996.