Summary: These notes cover the eighth week of classes. We present a theorem on the additivity of graph genera. Then we move on to cycles of embedded graphs, the three-path property, and an algorithm for finding a shortest cycle in a family of cycles of a graph.

1 Additivity of Genus

Theorem 1.1 (Additivity of Genus). Let G be a connected graph, and let B_1, B_2, \ldots, B_r be the blocks of G. Then the genus of G is,

$$g(G) = \sum_{i=1}^{r} g(B_i)$$

and the Euler genus of G is,

$$eg(G) = \sum_{i=1}^{r} eg(B_i).$$

Observation 1.2. In order to prove the theorem it suffices to prove that if $G = G_1 \cup G_2$, where $G_1 \cap G_2 = \{v\}$, then $g(G) = g(G_1) + g(G_2)$ and $eg(G) = eg(G_1) + eg(G_2)$.

Proof. We set

$$g(G) = \min\{g(\Pi) \mid \Pi \text{ is an orientable embedding of } G\}$$

$$g(G_1) = \min\{g(\Pi_1) \mid \Pi_1 \text{ is an orientable embedding of } G_1\}$$

$$g(G_2) = \min\{g(\Pi_2) \mid \Pi_2 \text{ is an orientable embedding of } G_2\}$$

Let v_1, v_2 be vertices in G_1, G_2 respectively, distinct from v. Note that the local rotations of v_1, v_2 are independent, but the local rotation of v is not. So if we take Π an embedding of G and split it along v we obtain Π_1, Π_2 embeddings of G_1, G_2 respectively. Facial walks in G that do not pass from G_1 to G_2 remain unchanged in Π_1, Π_2, however if a facial walk does pass from G_1 to G_2 then when we split we form an extra face. But we also have an extra vertex. So, $g(\Pi) = g(\Pi_1) + g(\Pi_2)$.

* Lecture Notes for a course given by Bojan Mohar at the Simon Fraser University, Winter 2006.
Claim: The min value of \(g(G) \) is attained at an embedding where the local rotation at the cut vertex \(v \) groups the edges from \(G_1 \) into a single block.

Assume that this is not the case. Then each facial walk must use “mixed angles” in pairs (by mixed angle we refer to the angle formed at \(v \) between two edges, one from \(G_1 \) and one from \(G_2 \)). By considering the local rotations we see that we must traverse an odd number of negative signatures from \(v \) to \(v \) on any walk using mixed angles. Thus we have a 1-sided cycle in our embedding. However this is a contradiction as we assumed that \(\Pi \) was orientable. This proves the claim. It also proves that

\[
g(G) = g(G_1) + g(G_2).
\]

This proof can be repeated with minor changes to prove that,

\[
eg g(G) = \neg g(G_1) + \neg g(G_2).
\]

This completes the proof. \(\square\)

2 Induced Embeddings

Given \(\Pi \) an embedding of \(G \) we wish to develop the notion of a corresponding embedding \(\Pi' \) of \(H \) a subgraph of \(G \). Suppose that \(e \in E(G) \) is not a cut-edge of \(G \), then we can consider deleting \(e \) from \(G \). Without loss of generality, we may assume that \(\lambda(e) = +1 \). If \(e \) is in two distinct facial walks, then we can see that \(G - e \) embeds in the same surface as \(G \), this follows as \(G - e \) will have the same Euler characteristic as \(G \). If \(e \) appears twice on one face, then \(G - e \) will embed in a simpler surface (the Euler genus will decrease by either 1 or 2). From this we can see that in the specific case of multigraphs, the embedding of the underlying simple graph cannot have larger genus, and never changes from orientable to non-orientable.

3 Cycles of Embedded Graphs

We start by giving an intuitive explanation of the classes of cycles we will consider. For example, say we are considering the surface \(S_3 \), pictured below.

- \(C_1 \) bounds a disk on the surface. Such cycles are called contractible cycles.
- Cutting along \(C_2 \) separates the surface. Such cycles are called surface separating cycles.
• C_3 and C_4 are called surface non-separating cycles.

• Note that contractible cycles are also surface separating.

Now we formally define these notions. Let C be a two-sided cycle of a Π-embedded graph G. We may assume that $\lambda(e) = +1$ for all edges $e \in E(C)$. We can arbitrarily choose a “perspective” from which to view C. Now since C is two-sided we have a “left” and “right” side of C with respect to our perspective. This allows us to define:

$$
E_L := \text{the set of all edges incident to a vertex of } C \text{ embedded on the “left” of } C
$$

$$
E_R := \text{the set of all edges incident to a vertex of } C \text{ embedded on the “right” of } C
$$

$$
G_L(C) := \text{the subgraph of } G \text{ consisting of } E_L \text{ and all vertices and edges in } G - C \text{ reachable from } E_L
$$

$$
G_R(C) := \text{the subgraph of } G \text{ consisting of } E_R \text{ and all vertices and edges in } G - C \text{ reachable from } E_R
$$

Definition 3.1. For a two-sided cycle C, if $G_L(C) \cap G_R(C) \subseteq C$, then we say that C is a surface separating cycle.

Proposition 3.2. Let C be a surface separation cycle of a Π-embedded graph G. Consider the induced embeddings of $G'_L := G_L(C) \cup C$ and $G'_R := G_R(C) \cup C$. The sum of the Euler genera of the embeddings of G'_L and G'_R is $eg(\Pi)$.

Proof. Claim #1: Every facial walk of G is either a facial walk of G'_L or a facial walk of G'_R.
If a facial walk never reaches C, the claim holds trivially. Suppose we have a facial walk F that intersects C. Since we take all signatures on C to be positive and all rotations to be equal, we can see that each time F enters C on a right edge, it will leave on a right edge (and vice versa). This proves the claim.

Claim #2: C is facial in G'_L and G'_R.
This holds for the same reason as Claim #1.
Thus the number of faces of G is two less than the sum of the number of faces in G'_L and G'_R. Now we simply apply Euler’s formula to G, G'_L and G'_R to prove the proposition. \(\square \)

Definition 3.3. A cycle C of a Π-embedded graph G is Π-contractible if it is surface separating and the Euler genus of either the induced embedding of $G_L(C) \cup C$ or $G_R(C) \cup C$ is zero.

Note that this is equivalent to C bounding a disk on the surface.

Definition 3.4. If C is contractible and $G_L(C) \cup C$ has genus zero, then

$$
\text{int}(C) = \text{int}(C, \Pi) := G_L(C)
$$

$$
\text{Int}(C) = \text{Int}(C, \Pi) := G_L(C) \cup C
$$

Now we can classify cycles of embeddings as:
4 Cutting Surfaces Along Cycles

Cutting a surface along a cycle \(C \) gives rise to a graph in which \(C \) is replaced by 2 cycles, \(C' \) and \(C'' \) (both are copies of \(C \)). The edges on the left of \(C \) (with respect to some perspective) are incident with the corresponding vertices of \(C' \), the vertices on the right of \(C \) are incident with the corresponding vertices of \(C'' \). The graph that we obtain by performing this operation is isomorphic to \(G_L(C) \cup G_R(C) \cup C' \cup C'' \). Embeddings of \(G \) induce embeddings of \(C' \) and \(C'' \) as one might expect.

Proposition 4.1. If \(C \) is surface separating, then cutting along \(C \) gives two graphs isomorphic to \(G' \) and \(G'' \) respectively, and \(eg(G'_L, \Pi) + eg(G'_R, \Pi) = eg(G, \Pi) \).

If \(C \) is two-sided, but not surface separating, then the graph obtained after cutting along \(C \), \(G' \), is connected, and \(eg(G', \Pi) = eg(G, \Pi) - 2 \).

If \(C \) is one-sided, then the graph \(G' \), obtained after cutting along \(C \), is connected, and \(eg(G', \Pi) = eg(G, \Pi) - 1 \).

Note that in proposition 4.1, the orientability may change from non-orientable to orientable in the last two cases.

In the following drawings of the Projective Plane, Torus, and Klein Bottle we have the following:

- \(C_1, C_2, C_4 \) and \(C_7 \) are contractible
- \(C_3, C_9 \) and \(C_{10} \) are one-sided
- \(C_5 \) and \(C_6 \) are non-contractible
- \(C_8 \) is surface separating and non-contractible
- \(C_{11} \) is two-sided and non-separating
Note that the only surface separating cycles on the Torus are contractible, as the Torus is orientable. Also note that cutting along C_1 is the inverse operation of adding a twisted handle.

5 The Three-Path Property

Given vertices x, y of a graph G and internally disjoint xy-paths P_1, P_2, \ldots, P_r, we denote the cycle formed by paths P_i, P_j as C_{ij}.

Definition 5.1. Let \mathcal{C} be a family of cycles in G. \mathcal{C} has the **three-path property** if:

\[\forall x, y \in V(G), \forall P_1, P_2, P_3 \text{ internally disjoint} \ xy\text{-paths}, \text{ if } C_{12} \notin \mathcal{C} \text{ and } C_{23} \notin \mathcal{C}, \text{ then } C_{13} \notin \mathcal{C}. \]

Example 5.2. The following are examples of families with the three-path property:

1. $\mathcal{C} = \{C | \text{the length of } C \text{ is odd}\}$
2. $\mathcal{C} = \{\text{cycles with and odd number of edges in } E'\}, \text{ where } E' \subseteq E(G)$
3. $\mathcal{C} = \{\text{one-sided cycles of } \Pi\}$
4. $\mathcal{C} = \{\text{non-contractible cycles of } \Pi\}$

We now give a short proof of 4.

Proof. Take $x, y \in V(G)$ and P_1, P_2, P_3 internally disjoint xy-paths. Assume that C_{12} and C_{23} are contractible. First we alter Π so that all signatures on C_{12} are positive. If $P_3 \subseteq \text{Int}(C_{23})$ then the result is clear. Similarly, if $P_1 \subseteq \text{Int}(C_{23})$ then the result is also clear. So we need only consider the case where P_2 lies “between” P_1 and P_3. Now we have that C_{13} is surface separating and $\text{int}(C_{13}) = \text{int}(C_{23}) \cup \text{int}(C_{12}) \cup P_2$. It follows from Euler’s formula that the genus of $\text{Int}(C_{13})$ is zero, and thus C_{13} is contractible. This completes the proof.

We now present an algorithm for finding a shortest cycle in \mathcal{C}, where \mathcal{C} has the three-path property.
Algorithm 5.3. Input: A graph G and a family of cycles C with the three-path property.
For all $v \in V(G)$:
 Build the breadth-first search spanning tree of G starting at v, T_v.
 For every edge $e \notin E(T_v)$:
 Let C_e be the unique cycle in $T_v + e$.
 Choose a shortest of the cycles C_e to be C_v.
Choose C to be a shortest of the cycles C_v.
Return: C is a shortest cycle in C.

Proposition 5.4. Algorithm 5.3 correctly finds a shortest member of C in time $O(nqT + nq)$, where $n = |G|$, $q = \|G\|$, and T is the time complexity of $C \in C$ queries.

Proof. For a vertex $v \in V(G)$ let T_v be the BFS tree built by Algorithm 5.3. Let $C \in C$, $C = v_0, \ldots, v_{k-1}$, and $v_0 \in V(C)$ be selected subject to C being shortest in C and then having minimum intersection with $T = T_{v_0}$. We prove that Algorithm 5.3 finds a cycle of length $|C|$.

Claim 1: $d_G(v_0v_i) = d_C(v_0v_i)$ for $i = 0, \ldots, k - 1$. Let i be smallest such that $d_G(v_0v_i) \neq d_C(v_0v_i)$ and let P be the shortest path from v_0 to v_i. P contains a subpath P' that connects two vertices $x, y \in V(C)$. Let A, B be the cycles, formed by P' and xCy, yCx. A and B are shorter than C, thus none of them is in C. By the three-path-property, neither is C. This contradiction establishes the claim.

Claim 2: There exists $e \in E(C)$, incident with v_t, $t = \lfloor \frac{k}{2} \rfloor$, such that $C - e \subseteq T$. Let i be smallest such that $v_iv_{i+1} \notin E(T)$. By symmetry we may assume $i < t$. Let P be the path from v_0 to v_{i+1} in T. The claim follows by the same argument as the previous one, using the fact that P has length $i + 1$, implied by Claim 1.

Since there is only one edge of C missing in T, this cycle is examined by the algorithm, thus the cycle that is chosen at v_0 and subsequently in G has length at most $|C|$.

BFS tree can be found in time $O(q)$ and using it the length of the cycles can be compared in constant time. Thus there is at most $O(qT + q)$ time spent in the loop for each of the n vertices. The complexity follows. \hfill \square

Corollary 5.5. If C satisfies the three-path property and membership in C can be determined in polynomial time, then the above algorithm finds a shortest cycle in C in polynomial time.

Note that Algorithm 5.3 can be applied to find a shortest one-sided cycle, non-contractible cycle, surface non-separating cycle, etc.