Combinatorics - MATH 821

Homework Assignment #1

19/1/2007

To be handed by 26/1/2007

- 1. Find a constructive description (explicit or by means of a recursive procedure) of $\binom{n}{\lfloor n/2 \rfloor}$ disjoint chains in $2^{[n]}$ covering all elements. (Hint: textbook.)
- 2. Lat $a_1, a_2, \ldots, a_{n^2+1}$ be a permutation of the integers $1, \ldots, n^2 + 1$. Show that Dilworth's theorem implies that the sequence has a subsequence of length n+1 that is monotone.
- 3. Let $\{A_1, \ldots, A_m\}$ be a collection of m distinct subsets of [n] such that if $i \neq j$ then $A_1 \not\subseteq A_j$, $A_i \cap A_j \neq \emptyset$, and $A_1 \cup A_j \neq [n]$. Prove that

$$m \le \binom{n-1}{\lfloor n/2 \rfloor - 1}.$$

4. Show that if an S(3,6,v) exists, then $v \equiv 2$ or 6 (mod 20).