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1. Introduction

Protein secretion is an essential process in all cells. Important in-
sights into protein secretion mechanisms have been gleaned from
studies performed in bacteria, given that many of the fundamental
mechanistic elements of the process appear to have been conserved
throughout evolution. The hallmark of a secretory protein is the
amino-terminal extension — the signal (or leader) peptide. The major-
ity of bacterial proteins, whose final destination resides on the trans-
side of the cytoplasmic membrane, are secreted post-translationally
via the general Sec-system [1,2]. Protein secretion, catalyzed by the
Sec-system, can be thought of as occurring in three separate steps: 1)
targeting to the membrane, 2) translocation across the membrane,
and 3) release from the membrane. Very briefly, the molecular chaper-
one SecB binds to themature region of a secretory preprotein, keeping it
in a translocation competent (molten globular) state and helping to
guide it to the translocase (SecYEG/SecA) at the membrane surface.
SecA, an ATPase, appears to push the preprotein through the SecYEG
channel. Accessory proteins SecDFyajC may also play a role, but do not
appear to be essential. The translocated preprotein is tethered to
the cytoplasmic membrane via its signal peptide until the signal pep-
tide is cleaved off by type I signal peptidase (SPase I). Besides the
Sec-system, there are many more specialized bacterial secretion sys-
tems and even other signal peptidases, such as the type II [3] and
type IV [4] signal peptidases that specialize in the processing of
pre-lipoproteins and pre-pilin proteins respectively. These enzymes
e
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(aspartic acid proteases) are neither structurally nor mechanistically
related to SPase I (a serine protease).

This review will focus on what is currently known about the third
step of the general protein secretion process (SPase I catalyzed cleavage
of secretory preproteins) in the model organism Escherichia coli.

2. The substrate–membrane bound secretory preproteins

The substrates for SPase I are secretory preproteins tethered to the
membrane via their signal peptide (Fig. 1). SPase I catalyzes the cleav-
age of the secretory preproteins to create two products, the released
mature secretory protein and the membrane bound signal peptide.
Early sequence analysis revealed the fundamental features of the signal
peptide located at the amino-terminus of every secretory protein: a
length of approximately 20–30 residues, an amino-terminal region
with a net positive charge (N-region), followed by a hydrophobic region
(H-region), and then a protease recognition sequence (C-region)with a
preference for small residues at the−3(P3) and −1(P1) positions rel-
ative to the cleavage site (scissile bond). The specificity is sometimes re-
ferred to as the “(−3,−1) rule” or the “Ala-X-Ala rule” [5–8] because of
its preference for alanine at the P1 and P3 positions. The average eu-
karyotic signal peptide is ~23 residues in length while the average
Gram-negative eubacterial signal peptide is ~25 residues in length,
and the average Gram-positive eubacterial signal peptide is ~32 resi-
dues in length [9,10]. It is believed that the variations in the signal pep-
tide lengths may reflect the differences in the thickness of the lipid
bilayers in which the signal peptides reside.

Modern genomic sequencing methods (UniProt [11,12]) along with
computational signal sequence prediction programs (SignalP [13,14])
have provided lists of potential SPase I substrates for a large number
of species whose genome has been sequenced. There is also a growing
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Fig. 1. A schematic diagram of the amino-terminal region of an E. coli secretory preprotein. The signal peptide (region before the SPase I cleavage site) is shown in blue/green/yellow. The
N-region (blue) has a net positive charge. The H-region (green) is hydrophobic in nature with leucine being the most common residue found in this region. Biophysical studies are con-
sistent with themembrane embeddedH-region beingα-helical. The C-region (yellow) contains the cleavage specificity residues andmost likely undertakes an extended β-conformation
when bound within the SPase I substrate-binding groove. The residue just preceding the cleavage site is referred to as the P1 or−1 residue. The mature region (region after the SPase I
cleavage site) is shown in red. The residue just after the cleavage site is referred to as the P1′ or the +1 residue. The allowed residues at the P1, P3, P6 and P1′ are listed above the sche-
matic. A secretory preprotein with a proline at the P1′ position acts as a SPase I competitive inhibitor and is not cleaved by SPase I.
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list of experimentally verified secretory preproteins (and therefore
signal peptides) accelerated by the use of tandemmass spectrometry
proteomic techniques [15]. Based on these methods, it is currently
estimated that approximately 10% of the E. coli genes contain signal
peptides, fewer than previously thought.

Lists of secretory preprotein and signal peptide sequences (proposed
and experimentally verified) from a large number of genomes are avail-
able from the Signal Peptide database (SPdb) [16]. For a current list of
predicted and experimentally verified secretory preprotein and signal
peptide sequences from E. coli K-12, see the Ecogene database [17,18].

Both secretory preproteins as well as synthetic peptides have been
used in experimental investigations of the E. coli SPase I amino acid pref-
erences for each of the signal peptide residue positions, before and after
the cleavage site. Synthetic peptides, based on the pre-maltose binding
protein, were used to discover the minimal size peptide, (−3)ALA
↓KI(+2), that can be correctly processed by E. coli SPase I. The most ef-
ficiently cleaved synthetic peptide that was kinetically characterized in
this study was: (−7)FSASALA↓KI(+2) [19]. Site-directed mutagenesis
was used to investigate E. coli SPase I processing of the M13 procoat
[20]. It was found that E. coli SPase I was able to process substrates
with almost any residue in the +1, −2, −4, and −5 positions, but
only alanine, serine, glycine, and proline were allowed at the−1 posi-
tion and only serine, glycine, threonine, valine, and leucine at the −3
position. Proline was also required at the −6 position for efficient
cleavage. Site-directed mutagenesis experiments were also used to
investigate the E. coli SPase I catalyzed processing of E. coli alkaline
phosphatase preprotein. It was found that large residues at the −2
position and mid-sized residues at the −5 position allowed for the
most efficient cleavage [21]. This same preprotein was used to further
investigate residue preferences at the −6 to −4 positions [22]. A pro-
line at the+1 position has been shown to inhibit preprotein processing
[23–25].

Biophysical methods have been employed to investigate the struc-
ture of signal peptides within solution (+/− detergent micelles), with-
in phospholipid vesicles, or within membrane mimetic environments
[26–31]. Most of the findings from these studies are consistent with
theH-region of the signal peptide beinghelical in structurewhilewithin
the membrane. Based on the crystal structure of E. coli SPase I inhibitor
complexes and molecular modeling studies, the C-region is likely in an
extended β-conformation when bound within the SPase I substrate-
binding groove [32]. This is discussed in detail below. Fig. 1 summarized
the general features of E. coli signal peptides.

It has recently been shown that preproteins which are translocated
via the twin-arginine translocation (Tat) system are also processed by
SPase I [33]. Tat substrates contain a signal peptide with the twin-
arginine motif (SRRxFLK) located between the N- and H-regions. The
H- and C-regions are similar to the corresponding regions in the Sec-
system signal peptides except that the Tat signal peptide C-region
often contains a positively charged residue. The Tat system is responsi-
ble for catalyzing the translocation of fully folded proteins, many of
which contain redox sensitive co-factors [34]. The Tat system is found
in bacteria, archaea and the thylakoid of chloroplasts. There are 27
known Tat substrates in E. coli [35].

3. E. coli type I signal peptidase (SPase I)

3.1. Discovery and characterization

E. coli SPase I activity was first observed in 1978 [36], shortly after
the discovery of signal peptides [37], and is currently the most char-
acterized SPase I. It was the first SPase I to be cloned [38], sequenced
[39], overexpressed [40,41], purified [39,40,42,43], and biochemically
[44–47] and structurally [32] characterized. Each E. coli cell contains ap-
proximately 1000 SPase I molecules [48]. SPase I is constitutively
expressed from the single-copy lepB gene which has been mapped to
a location betweenpurl andnadB atmin 54 and 55 on the E. coli chromo-
some [49]. It is an essential gene for E. coli survival [41,50,51]. E. coli
SPase I has the enzyme commission number EC 3.4.21.89 and is catego-
rized within the evolutionary clan SF and the serine protease family S26
(subfamily S26A), according to the MEROPS peptidase database [52].

3.2. Primary sequence

E. coli SPase I is 324 residues in length with a calculated molecular
mass of 35,960 Da and a theoretical isoelectric point of 6.85, which is
consistent with the measured value [40]. The numbering system used
for the E. coli SPase I amino acid sequence in this review corresponds
to the sequence in the UniProt database (accession number, P00803).
The discrepancy between the numbering system used in many E. coli
SPase I publications and the numbering used in P00803 is based on an
error in the original DNA sequencing in 1983 [39]. Arg42 in the
1983 report is actually Ala42–Gly43. This inserts a residue within
the cytoplasmic loop region, between the amino-terminal transmem-
brane segments, and moves the sequence up one number after that
point. The sequence 1–41 is correct in register and numbering. The se-
quence 44–324 is correct in register, but the numbering is one residue
different from the old numbering. It has been observed that the N-
terminus of E. coli SPase I is blocked [39] and it has been suggested
that it is acetylated at its N-terminus, but this has so far not been con-
firmed [53]. A disulphide bond links Cys171 and Cys177 [54]. Fig. 2
shows the primary sequence for E. coli SPase I with annotation for sec-
ondary structural elements and catalytically important residues.

uniprotkb:P00803)
uniprotkb:P00803)


Fig. 2. The primary sequence for E. coli SPase I. The green bars below the sequence signify the residues thatmake up the transmembrane segments (TM1 and TM2). Black arrows signify β-
sheets, black bars signify helices. Small red blocks signify the catalytic residues, stars are above the residues involved in the Ser/Lys catalytic dyad. Blue blocks signify the residues that
contribute atoms to the S1 substrate specificity pocket. Yellow blocks signify the residues that make up the S3 substrate specificity pocket. This sequence corresponds to UniProt data
base accession number: P00803.
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3.3. Membrane topology

The membrane topology of E. coli SPase I has been characterized
based on its sensitivity to protease digestion [39,55]. Its topology
has also been investigated by carrying out gene-fusion studies [56].
Based on these studies, it has been suggested that E. coli SPase I has
two N-terminal transmembrane segments (residues 4–28 and 58–76),
a small cytoplasmic domain (residues 29–57), and a large C-terminal
catalytic domain (residues 77–324). Hydropathy analysis of the E. coli
SPase I sequence suggests slightly different transmembrane segments,
two 19 residue long sections: 4–22 and 59–77 (Fig. 2). Site-directed di-
sulphide cross-linking studies were used to propose a structural model
for the two transmembrane segments [57]. Deletion analysis has shown
that the first transmembrane segment and the cytoplasmic loop region
are not essential for activity in vivo [58]. The second transmembrane
segment functions as a non-cleavable signal sequence. SPase I from
many other eubacterial species only contain one transmembrane seg-
ment. A soluble catalytically active domain of E. coli SPase I (Δ2-76, for-
mally known as Δ2-75) that lacks both transmembrane segments has
been characterized in vitro [53,59].

3.4. Purification

Overexpression and purification of full-lengthwild-type E. coli SPase
I is made difficult by autocatalyzed degradation. It has been shown
by N-terminal sequencing that the main self-cleavage site is right
after residue 40, which resides within the cytoplasmic loop region.
This site corresponds to a typical SPase I cleavage recognition sequence
(Ala38–Gln39–Ala40↓Ala41). The cleaved SPase I has 100-fold lower
activity than the full-length enzyme [60]. To avoid this self-cleavage
and expedite purification of the overexpressed protein from the
chromosome-expressed wild-type SPase I, residues 35–40 weremutat-
ed to histidine [47]. E. coli SPase I is extracted from the inner membrane
by non-ionic detergents such as Triton X-100. Evidence to date suggests
that E. coli SPase I functions as a monomer and does not require co-
factors. It has been observed that wild-type E. coli SPase I incorporated
within phospholipid vesicles does not show autodigestion [61].

3.5. Site directed mutagenesis and chemical modification to identify
catalytic residues

Site-directedmutagenesis studies have shown that E. coli SPase I has
an essential Ser91 [44] and Lys146 [45,47,62] (Ser90 and Lys145 in the
old numbering system), but no essential cysteine or histidine. Mutating
Lys146 to alanine, histidine, asparagine, methionine, aspartic acid, gly-
cine or serine all produced inactive enzymes. Site directed chemical
modification studies are consistent with Ser91 being the nucleophile.
When Ser91 was mutated to a cysteine (S91C) the enzymewas still ac-
tive but became susceptible to inhibition by the cysteine specific re-
agent N-ethylmaleimide [45]. A similar approach also supports Lys146
functioning as the general base. When Lys146 was mutated to cysteine
(K146C) the resulting enzyme was inactive but partial activity was re-
stored uponmodification of the cysteine by 2-bromoethylamine to pro-
duce the lysine analog (γ-thia-lysine) at position 146 [47].

3.6. In vitro assays and kinetics analysis

Early analysis of secretory protein cleavage by E. coli SPase I was
performed using cell-free assays with radioactive (35S-methionine
labeled) preproteins. The extent of the preprotein substrate cleavage
by E. coli SPase I was accessed by SDS-PAGE, followed by autoradiog-
raphy [36,43,63].

The first kinetic analysis of E. coli SPase I was performed with syn-
thetic peptides, based on the SPase I cleavage site region within the
maltose binding protein [19]. The progress of the cleavage reaction
was analyzed by reverse phase high-performance liquid chromatog-
raphy. The resulting kinetic constants were quite poor in comparison
to other characterized proteases. Interestingly, kinetic assays using
macromolecular preprotein substrates revealed more efficient pro-
cessing rates than the smaller synthetic peptide cleavage assays
[46,64]. The down side of the preprotein assays is that they usually
required time consuming SDS-PAGE and autoradiography or densi-
tometry steps. The most frequently used preprotein substrate is
pro-OmpA-nuclease A [46]. This substrate has been used to measure
the activation energy of E. coli SPase I catalyzed preprotein cleavage
and the value of 10.4 kcal/mol shows that E. coli SPase I has a catalytic
efficiency close to that of other serine proteases [65]. Continuous assays
that utilize synthetic peptides with fluorescence resonance energy
transfer (FRET) donor and acceptor pairs are the most convenient and
most sensitive substrates for SPase I kinetic characterization [66,67]. In-
cluding a sequence, in the substrate, that mimicked a signal peptide N
and H- region in front of the SPase I recognition sequence, was shown
to drastically improve the cleavage efficiency [67]. A similar effect was
observedwhen a fatty acidwas included at theN-terminus [68]. This ef-
fect is likely due to a more optimal presentation of the substrate (local
effective concentration) to the detergent micelle embedded SPase I.

image of Fig.�2
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Combinatorial libraries of synthetic peptides on beads have been used
to optimize fluorogenic peptide substrates [69,70]. See Table 1 for a de-
scription of a selection of substrates used to characterize E. coli SPase I.

3.7. In vivo assays

A temperature sensitive strain of E. coli (IT41) has been used in
complementation assays to confirm the role of putative SPase I
gene products from a number of different bacterial species [51].
This mutant strain is normally only able to grow at permissive tem-
peratures (28 to 32 °C), but when transformed with a plasmid con-
taining a functional SPase I gene, IT41 is able to grow at a non-
permissive temperature (42 °C). Briefly, IT41 cultures, transformed
with a plasmid +/− the gene for a functional SPase I, are grown at
non-permissive temperature and the optical density (540 nm) of
the cultures is periodically measured (every 30 min) for 8 h.

The cause of the temperature sensitivity within the IT41 strain
appears to be an amber mutation at nucleotide position 115 (C to
T) within the lepB gene, which is within the codon for Gln39 and re-
sults in a TAG amber termination codon [71].

An E. coli strainwas developed that has regulatable expression of the
lepB gene [72] and can be used to test cellular inhibition of SPase I. The
strain has a lepB gene within an L-arabinose inducible pBAD plasmid
while the chromosomal copy of lepB has been removed.

3.8. Inhibitors

SPase I is a promising antibiotic target because, as mentioned above,
it is an essential bacterial enzyme and its active site is located on the
extra-cytoplasmic surface of the membrane and thus relatively accessi-
ble to drugs. The fact that it has a different catalyticmechanismand olig-
omeric nature from the functionally homologous enzyme found within
human cells suggests that there would likely be few side effects from a
SPase I specific inhibitor. Therefore many industrial, as well academic,
labs have been actively searching for compounds that inhibit SPase I.
These compounds could potentially lead to a novel class of antibiotics.

The observation that E. coli SPase I was not inhibited by standard
commercially available protease inhibitors was one of the first clues
that this enzyme may be mechanistically unique [53,73–75]. Other
characteristics discovered about the inhibition of E. coli SPase I include:
E. coli SPase I activity appears to decrease in the presence of sodium
chloride above 160 mM and magnesium chloride above 1 mM [73];
E. coli SPase I shows product inhibition — the M13 procoat signal pep-
tide has been demonstrated by in vitro assays to be a competitive inhib-
itor [24]; and preproteins with a proline at the +1 (P1′) position are
effective competitive inhibitors of E. coli SPase I [23,25].

The first small molecule inhibitor of E. coli SPase I was reported in
1994. It was shown that β-lactam compounds could inhibit E. coli
SPase I in a pH and time-dependent manner [76]. The β-lactam (or
penem) class of compounds was subsequently investigated for their
Table 1
E. coli SPase I in vitro activity assays.

Substrate Assay method

Preprotein: (Pro-OmpA-nuclease A) Outer membrane protein A
signal peptide from E. coli fused to nuclease A from Staphylococcus
aureus.

SDS-PAGE gel-assay

Preprotein: (AS-b5) alkaline phosphatase signal peptide fused to
full-length mammalian cytochrome b5

SDS-PAGE gel-assay

Fluorometric peptide: Y(NO2)FSASALA↓KIK(Abz) FRET spectroscopy
Fluorometric peptide: K(5)-L(10)-Y(NO2)FSASALA↓KIK(Abz) FRET spectroscopy
Decanoyl-LTPTAKA↓ASKIDD-OH HPLC–MS
Ac-WSASA↓LA↓KI-AMC Fluorescence (coupled

digest of KI-AMC produ
FSASALA↓KIEEG HPLC
FSASALA↓KI HPLC

FRET: fluorescence resonance energy transfer; Abz: 2-aminobenzoyl; AMC: aminomethylcoum
SPase I inhibition potential [77–80]. The most effective penem com-
pounds are the 5S stereoisomers. The compound allyl (5S,6S)-6-[(R)-
acetoxyethyl]-penem-3-carboxylate has a IC50 of less than 1 μM
(Fig. 6A). The stereochemistry of this inhibitor led to the proposal that
the nucleophile of E. coli SPase I (Ser91) attacks the scissile bond of its
substrate from the si-face rather than the more commonly seen re-
face nucleophilic attack [77]. The crystal structure of the E. coli SPase
I–5S,6S penem complex would later confirm this hypothesis [32]
(Fig. 6). New routes to the synthesis of the 5S-penem SPase I inhibitors
have been reported and studies of structure–activity relationships have
begun to explore the binding specificity for these compounds that rep-
resent a potential new class of antibiotic [81].

Arylomycins are lipohexapeptides that have been shown to have an-
tibiotic properties [82,83] (Fig. 8A). These compounds were first isolat-
ed from extracts of Streptomyces sp. Tu 6075. The hexapeptide has the
sequence: D-MeSer, D-Ala, Gly, L-MeHpG, L-Ala, and L-Tyr. The amino
acid L-MeHpG is N-methyl-4-hydroxy-phenylglycine (a tyrosine miss-
ing the Cβ carbon). The L-MeHpG is cross-linkedwith the C-terminal ty-
rosine to form a three residue macrocycle via a 3,3-biaryl bridge. A fatty
acid is attached to the N-terminus. Crystallographic and biophysical
analysis of the mode of binding of arylomycin within the E. coli SPase I
substrate-binding groove has revealed that the inhibitor binds in a
non-covalent fashion. Specifics of the interactions are discussed below.
Arylomycins have now been synthesized andwork is underway to opti-
mize their SPase I inhibitory effectiveness and antibiotic properties
against a broad range of bacterial species [84–90]. Recently arylomycin
compounds have been identified from Streptomyces roseosporus [91].

A substrate based peptide aldehyde SPase I inhibitor has recent-
ly been developed that has an IC50 value around 13 μM against
E. coli SPase I and is approximately 100-fold more effective against
Saccharomyces aureus SPase I (SpsB) [92].

Table 2 lists a number of E. coli SPase I inhibitors and their reported
IC50 values.

3.9. A soluble catalytically active domain

A catalytically active soluble form of E. coli SPase I (Δ2-76), which
lacks the two amino-terminal transmembrane segments, was first char-
acterized in 1993 [53]. Electrospray ionizationmass-spectrometry anal-
ysis revealed a mass of 27,952 a.m.u., 42 a.m.u. different from the
theoretical value based on sequence. This construct, like the full-
length construct, is blocked to amino-terminal sequencing suggesting
that the N-terminus of E. coli SPase I (Δ2-76) is acylated. E. coli SPase I
(Δ2-76) was further characterized in 1995 [59]. It was shown that the
catalytic efficiency of this construct is only 15-fold lower than full-
length enzyme and that, for optimal activity, it requires detergent or
E. coli phospholipids. The isoelectric point of this construct was mea-
sured to be 5.6, in contrast to 6.9 for the full-length enzyme. An opti-
mized large-scale refolding and purification procedure was developed
that allowed for the crystallization of E. coli SPase I (Δ2-76) [93].
kcat (s−1) Km (μM) kcat/Km (s−1 M−1) Ref.

8.7 16.5 5.3 × 105 [46]

10.6 50 2.1 × 105 [64]

0.0098 144 85 [66,67]
1.5 0.6 2.5 × 106 [67]
418 988 4.2 × 105 [68]

with leucine aminopeptidase
ct) or HPLC analysis

4.6 × 10−3 78 59 [76]

1.25 × 10−4 1400 8.9 × 10−2 [19]
3.2 × 10−2 800 40 [19]

arin; Y(NO2): 3-nitro-L-tyrosine; K(Abz), ε-(2-aminobenzoyl)-L-lysine.



Table 2
E. coli SPase I inhibitors.

Inhibitor IC50 (μM) Ref.

Allyl (5S,6S)-6-[(R)-acetoxyethyl]
penem-3-carboxylate

0.38 [77–80,122]

morpholino-β-sultam 610 (±18)a [104]
Arylomycin A2 1 (±0.2)a

0.007(±0.002)b
[104,123]

Decanoyl-PTANA-aldehyde 13.4 (±1.3) [92]

IC50: half maximal inhibitory concentration.
a Based on kinetic analysis with the soluble domain of E. coli SPase I (Δ2-76).
b Based on kinetic analysis with the full-length E. coli SPase I.

Fig. 3. A ribbon diagram of E. coli SPase I. The β-strands are numbered sequentially. The
small helices are not shown for clarity. The structure is colored in a gradient from the
amino-terminus (Nter, residue 78, blue) to the carboxy-terminus (Cter, residue 324,
red). The side chains of the catalytic residues (Ser91, Lys146, Ser89, Ser279) as well as
the side chains of the residues that divide the S1/S3 substrate specificity pockets (Ile87,
Ile145) are shown in ball & stick. Semitransparent van der Waals spheres highlight the
Ser/Lys catalytic dyad. The disulfide bond (Cys171/Cys177) is shown in ball & stick.

1501M. Paetzel / Biochimica et Biophysica Acta 1843 (2014) 1497–1508
4. The three-dimensional structure of E. coli type I signal peptidase

Five crystal structures of E. coli SPase I (Δ2-76) have been deter-
mined to date (Table 3). Thefirst three-dimensional structure of a signal
peptidasewas reported in 1998 [32]. The crystal structure of E. coli SPase
I (Δ2-76) was solved by multiple isomorphous replacement methods
and refined to 1.9 Å resolution, in complex with the β-lactam (5S,6S
penem) inhibitor discussed above.

4.1. Protein fold

E. coli SPase I (Δ2-76) has a mainly β-sheet protein fold made up
of two anti-parallel β-sheet domains (domain I and II), and a number
of small helices (Figs. 2–5). There is also an extended β-ribbon that
gives the protein an overall conical shape of approximate dimensions
60 × 40 × 70 Å. A disulphide bond (Cys171\Cys177) precedes a β-
turnwithin domain II. The structure shows that the highly conserved re-
gions of sequence revealed in earlier sequence alignment analysis [94]
(boxes B–E, Figs. 2 and 5) are all contained within domain I, clustered
around the active site. The extended β-ribbon (residues 108–124,
made up of β-stands 3 and 4) and domain II (residues 151–269, β-
stands 7–14) are both insertions within domain I, and are variably
present in SPase I from different species (Fig. 5). Domain I shows
structural similarity to E. coli UmuD, a protease involved in damage
inducible SOS mutagenesis [95]. Despite only 17.4% sequence identi-
ty in this region, 69Cα atoms superimpose with a root mean square
deviation of 1.6 Å [96].

4.2. Catalytic residues and surrounding conserved residues

The only titratable functional group within hydrogen bonding
distance to Ser91 Oγ is the ε-amino group of Lys146 (2.9 Å), which
is consistent with its proposed function as the general base (Fig. 6).
Lys146 Nζ is also coordinated to the Oγ of Ser279 and atom O10 of
the penem. Ser279 resides within the box E region of conservation
seen in SPase I sequence alignments (Fig. 2, 5). Subsequent site directed
mutagenesis experiments have shown that this residue is essential for
Table 3
Crystal structures of E. coli SPase I.

Structure PDB Res.a (Å) Space group

Penem complex 1B12 1.95 P21212
Free-active site 1KN9 2.40 P41212
Arylomycin complex 1T7D 2.47 P43212
Arylomycin/β-sultam complex 3IIQ 2.00 P43212
Glyco-Arylomycin complex 3S04 2.44 P43212

a Resolution.
b Unit cell dimensions are rounded to closest whole number. All unit cell angles are orthogo
c Number of protein chains in the asymmetric unit.
d pH of crystallization reservoir solution.
e Reference and reference year.
optimal activity [97]. These experiments also demonstrated that the
salt bridge formed between Asp281 and Arg283 is critical for optimal
activity. As can be seen in Fig. 6, Asp281 Oδ2 is directly hydrogen
bonded to Ser279Oγ, which in turn supports the position of the general
base Lys146 Nζ. The Cα of Gly273 is located directly behind Lys146 Nζ.
Site-directed mutagenesis studies have shown that even a mutation to
alanine at position 273 adversely affected the E. coli SPase I activity
[97]. Lys146 Nζ is completely buried in a hydrophobic environment
within the penem-complex. This is likely how the lysine is capable of
functioning as a general base. Earlier pH-rate profile experiments gave
an apparent pKa of ~8.7 [47], which is nearly two pH units lower than
the pKa of a solvent exposed lysine ε-amino group. NMR titrations will
be needed to obtain the directly measured pKa of the ε-amino group
of Lys146, with and without inhibitors or substrates.
4.3. Ser91 covalently bonded to a β-lactam type inhibitor

The penem-SPase I complex structure directly exhibits the role of
the Ser91 Oγ as the nucleophile in that the electron density within the
active site is consistentwith a covalent bond between the Ser91 Oγ and
the C7 carbonyl carbon of the inhibitor (Fig. 6). This also confirms the
si-face nucleophilic attack. The oxyanion hole was identified by the
Unit cell a,b,c (Å)b a.s.u.c pHd Ref.e

111, 113, 99 4 4.6 [32] 1998
112, 112, 199 4 5.4 [102] 2002
70, 70, 258 2 6.0 [103] 2004
70, 70, 260 2 6.5 [104] 2009
72, 72, 263 2 7.4 [84] 2011

nal.
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Fig. 4. A Cα trace of E. coli SPase I. The figure is prepared in stereo. Every tenth residue is designated with a sphere and labeled. Side chains are shown for catalytic residues (Ser89, Ser91,
Ser279, and Lys146) and the disulfide bond (Cys171/Cys177).
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O8 carbonyl oxygen of the inhibitor pointing towards the NH of
Ser91. The only other potential contributor to the oxyanion hole is
the hydroxyl group of Ser89, but the inhibitor has forced the χ1-
angle of the Ser89 side chain into a position such that it is not avail-
able to form the hydrogen bond to the would-be oxyanion. This may
be one of the means by which this inhibitor stabilizes its covalent at-
tachment to the nucleophile. Subsequent site-directed mutagenesis ex-
periments showed that mutating Ser89 to threonine results in an
enzyme with almost wild-type activity, whereas mutating Ser89 to an
alanine or cysteine results in an enzyme with drastically lower activity
[98]. The change in catalytic activity was found to bemostly due to a de-
crease in the kcat while the Km did not change significantly. The calculat-
ed differential free energy of transition stabilization provided by the
Ser89 hydroxyl groupwas found to be 5.2 kcal/mol. Another interesting
observation, within the active site of the structure, was that there were
Fig. 5. The conserved boxes of sequence seen within SPase I sequence alignments are
mapped onto a Cα trace of the structure of E. coli SPase I. Boxes B (residues: 89–97), C (res-
idues: 128–135), D (residues: 143–154) and E (residues: 273–283) are shown in red,
green, blue and yellow respectively. Domain I is rendered in white but includes the con-
served box regions shown in color. Domain II (residues: 155–263) and the β-ribbon (resi-
dues: 108–124) are shown in black.
no suitably placed waters that could potentially function in the
deacylation step. Displacement of the deacylating water again may
help explain the inhibitory properties of this compound.
Fig. 6. Structure of a β-lactam (penem) type inhibitor co-crystallizedwith E. coli SPase I. A.
The structure of the β-lactam-type inhibitor allyl (5S,6S)-6-[(R)-acetoxyethyl]- penem-3-
carboxylate. B. Structure of the residues of the E. coli SPase I active site with the 5S,6S-
penem covalently bound to the Ser91Oγ. Note that the bond between the carbonyl carbon
(C7) and nitrogen (N4) within the penem is broken upon forming the acyl–enzyme ester
bond to the Ser91Oγ. The carbon atoms of SPase I are in white. The carbon atoms of the
penem are in green. Nitrogen atoms are blue, oxygen atoms are red, and sulfur atoms
are gold. C. Structure of the penem-SPase I complex with the SPase I rendered as solvent
accessible surface. The C16 methyl group of the inhibitor is pointing into the S1 substrate
specificity pocket. D. The si-face of a scissile bond.
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4.4. Substrate binding groove and the S1 and S3 specificity pockets

The structure explained a great deal about the SPase I substrate pref-
erences. A methyl group on the penem inhibitor (C16), which was
shown to be essential for the effectiveness of the inhibitor, is pointing
into a shallow hydrophobic pocket on the E. coli SPase I surface — the
S1 substrate specificity pocket [77] (Fig. 6C). The S1 pocket is made of
atoms from the residues: Met92, Ile145, Leu96 and Ile87 (Fig. 7). The
shallow hydrophobic S1 pocket is consistent with the strong preference
for alanine at the P1 position of the SPase I preprotein substrates (Fig. 1).

Using the inhibitor as a guide, an extended poly-alanine β-strand
was modeled into the E. coli substrate-binding groove, which is con-
structed on one side by the loop region following β-strand 1 that
leads to the nucleophile Ser91, and on the other side by the residues
from β-strand 6. Most proteases bind their substrates in an extended
β-conformation [99]. This model allowed for the identification of the
S3 substrate specificity binding pocket, which is made up of atoms
from residues: Phe85, Ile87, Ile102, Val133, Ile145, and Asp143
(Fig. 7). The residues Ile87 and Ile145 form a ridge between the S1
and S3 pockets. The alternating up and down orientation of residue
side chains within the extended β-strandmodel of the signal peptide
C-region explains the Ala-X-Ala substrate preference of SPase I, in
that the P1 and P3 alanine residues are pointing into the shallow hy-
drophobic pockets and the P2 residue is pointing out into the solvent
allowing for any side chain at this position. The structural informa-
tion on the S1 and S3 binding pockets was used to design site-
directed mutants to elucidate the residues that control secretory
preprotein cleavage fidelity [100]. It was found that mutating
Ile145 to cysteine resulted in cleavage at multiple sites within the
substrate and, if Ile145 and Ile87 were both mutated to alanine,
SPase I was capable of cleaving after phenylalanine. It was also dis-
covered that the double mutant I145C/I87C or I145C/I87T, which
mimics the residues at these positions within the mitochondrial homo-
log (Imp1), was able to cleave substrates with an asparagine at the P1
position, as preferred by Imp1. Later, the mutants I145C/I87T, I145C,
and I145A were shown by combinatorial peptide library analysis to
have a relaxed substrate preference at the P3 position. The double mu-
tantwas able to process substrates with arginine, glutamine, or tyrosine
at the P3 position [101].
Fig. 7.A stereo ball & stick rendering of the empty substrate binding groove and active site of E. c
are in red. The proposed deacylating water is shown as a red sphere. The S1 and S3 substrate
bonds that involve the general base Lys146 Nζ are shown as dashed lines. Ile87 and Ile145 con
4.5. Structure of E. coli SPase I with a free substrate binding site

The crystal structure of E. coli SPase I in the absence of bound in-
hibitor allowed for a structural comparison between the bound and
unbound states of the active site [102]. This analysis revealed signif-
icant main chain and side chain differences within the substrate
binding groove and the active site that result in a smaller S1 pocket
in the inhibitor free enzyme. In addition, the position of the Ser89
side chain (OγH), in the absence of the penem inhibitor, is consistent
with its contribution to transition state oxyanion stabilization. A po-
tential deacylating water was also identified (Fig. 7).
4.6. Structures of lipohexapeptide based inhibitors (arylomycins) bound to
E. coli SPase I

The first crystal structure of arylomycin bound to E. coli SPase I re-
vealed that the peptide based inhibitor binds non-covalently and is
positioned such that one of its C-terminal carboxylate oxygens is
within hydrogen bonding distance to all of the functional groups
within the catalytic center of the enzyme (Ser91 Oγ, Lys146Nζ, and
Ser89Oγ) (Fig. 8A, C) [103]. The inhibitor is therefore positioned so
that the macrocycle is closest to the active site, with the main chain of
the peptide having parallel β-sheet type hydrogen bonding interactions
with both sides of the substrate-binding groove. All of the potential hy-
drogen bonding donor and acceptors within the three residue
macrocycle are positioned to make hydrogen bonds with atoms in the
binding groove, whereas only two of the six potential hydrogen bond-
ing donors and acceptors in the N-terminal three residues of the inhib-
itor form hydrogen bonds. The side chain methyl group of the
penultimate alanine of the inhibitor sits within the S3 pocket. Weak
electron density was observed for the N-terminal fatty acid, suggesting
it is dynamic in nature. The position of the N-terminal D-MeSer is locat-
ed near the proposed membrane association surface. Both the crystal
structure and spectroscopic data are consistent with arylomycin bind-
ing specifically to a single site. Fluorescence data are consistent with a
two-step binding mechanism — a rapid binding step followed by a
slower adjustment to a final bound state. Binding parameters for this in-
hibitor were also investigated using calorimetric methods.
oli SPase I. Carbon atoms are shown inwhite, nitrogen atoms are in blue and oxygen atoms
specificity pockets are highlighted with light green semi-transparent ovals. The hydrogen
tribute atoms to both pockets and make up the dividing point between the pockets.
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Fig. 8. Crystal structures of arylomycin variants bound to E. coli SPase I. A. The structure of arylomycin. D-MeSer represents D-methyl serine, MeHpg stands for N-methyl-4-
hydroxyphenyglycine. R1, R2, and R3 are defined below each structure. B. The morpholino-β-sultam derivative (BAL0019193). C. Arylomycin A2 (green carbon atoms) bound within
the active site of E. coli SPase I (white carbon atoms). D. The ternary complex of Arylomycin A2 (green carbon atoms) and the morpholino-β-sultam derivative (yellow carbon atoms)
bound within the active site of E. coli SPase I (white carbon atoms). E. The lipo-glycopeptide (glyco-arylomycin, green carbon atoms) bound within the active site of E. coli SPase I
(white carbon atoms). The PDB accession code is listed above each structure. All nitrogen atoms are blue and oxygen atoms are red. The residues Ser91 and Pro84 are labeled.

Fig. 9. The proposedmembrane association surface of E. coli SPase I. To provide a perspective
of the bilayer depth and the active site position relative to the proposed membrane associa-
tion surface, a pair of phosphatidylethanolamine phospholipid molecules (van der
Waals spheres — carbon, green; hydrogen, white; oxygen, red; nitrogen, blue) from
a phospholipid bilayer structure simulation was rendered within the same file as the cat-
alytic domain of E. coli SPase I. SPase I is shown as a black ribbonwith themolecular surface
shown as a semi-transparent gray outline, side chains for residues Trp301, Trp311, Ser91
and Lys146 are shown. Within the lipid bilayer, the distance from glycerol backbone to
glycerol backbone is shown. The distance from the Ser91Oγ to the Trp301Cβ (a residue
on the proposed membrane association surface) is shown.
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The second structure of arylomycin bound to SPase I was in a ter-
nary complex with another inhibitor, a morpholino-β-sultam deriv-
ative (Fig. 8A, B, D) [104]. The structure and binding and inhibition
assays reveal that the compounds inhibit E. coli SPase I by binding
to non-overlapping subsites near the catalytic center. The β-sultam
compound binds in a noncovalent manner in close proximity to
SPase I residues Ser89, Ser91, Lys146, Asn278, Ala280, and Glu308,
as well as to a C-terminal carboxylate oxygen atom in arylomycin.
There was clear electron density for the N-terminal fatty acid that
runs along the proposedmembrane association surface, near Trp301.

Themost recently reported crystal structure of an arylomycin–SPase
I complex was with a glycosylated form of arylomycin [84]. The struc-
ture reveals that the deoxy-α-mannose attached to the MeHpg residue
of the lipoglycopeptide is directed away from the active site into the sol-
vent, suggesting that themodification may function to increase the sol-
ubility of this natural product inhibitor (Fig. 8A, E).

Interestingly, it has been discovered that the presence of a SPase I
binding site proline residue (at position 84, within β-strand 1 of E. coli
SPase I) lends natural resistance to arylomycin's antibiotic activity in
many species of bacteria [89]. Binding assays revealed that the proline
mutation confers resistance by reducing the affinity of arylomycin to
the SPase I binding site. A proline at this position eliminates one poten-
tial hydrogen bond donor on β-strand 1 of SPase I (Fig. 8).

4.7. Substrate recognition and the membrane association surface

Domain I of E. coli SPase I can be thought of as a β-barrel with one
strand missing. This missing β-strand makes up the substrate-binding
groove. Based on the crystal structures of the inhibitor complexes, a
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model for signal peptide C-region recognition and binding can be
proposed. During substrate recognition and binding, the C-region
of the signal peptide likely forms parallel β-sheet type hydrogen
bonding interactions along β-strand 1 and the following loop that
leads to the nucleophile Ser91. The other side of the binding groove
is made up of residues from β-strand 6, which is also aligned in a
parallel fashion to the signal peptide C-region. This side of the
substrate-binding groove is fairly short and provides fewer potential
hydrogen-bond donors and acceptors. A structural model for this type
of interaction between the signal peptide of E. coli outermembrane pro-
tein A (OmpA) and E. coli SPase I was presented previously [102]. The
modelwas guided by the E. coli SPase–penemcomplex crystal structure,
Fig. 10. The proposed catalyticmechanismof E. coli SPase I. A. The activation of the nucleophilic S
base Lys146 (blue). The Ser279Oγ iswithin hydrogenbondingdistance (dotted line) to theNζ of
The bound substrate (P1′ to P1) is drawn in black, with the scissile bond in red. All electron pus
activated Ser91 Oγ. The protonated Lys146 Nζ donates a proton to themain chain amide nitroge
The oxyanion is stabilized via hydrogen bonds to the oxyanion hole. D. Acyl–enzyme complex an
bon of the P1 residue of the signal peptide is covalently attached via an ester bond to the Ser91
position to attack the carbonyl carbon of the ester bond. E. Tetrahedral oxyanion transition state 2
enzyme and release of product 2 (signal peptide, shown in light gray).
alongwith the crystal structure of LexA that was solved with its natural
cleavage site boundwithin its substrate-binding groove [105]. LexA, like
UmuD, is a structural homolog of SPase I domain I [96]. Based on this
model, the potential hydrogen bonding donors and acceptors from β-
stand 1 and loop 1 would be: Pro84O, Gln86NH, Gln86O, Ser89OγH,
and Ser91NH, while the potential hydrogen bonding donors and ac-
ceptors from β-stand 6 would be Ile145NH and Asp143O. This model
suggests that the side chains of substrate residues P1, P3, P6 and P7
are positioned to make contact with the SPase I surface and that
the side chains of substrate residues P2, P4 and P5 point towards
the solvent. NMR analysis was used to investigate which residues
of SPase I Δ2-76 are perturbed upon signal peptide binding and it
er91 (red) via the abstraction of the hydroxyl proton by the deprotonatedNζ of the general
Lys146. The oxyanion hole (orange) is constructed from theNHof Ser91 and the Ser89OγH.
hing arrows are shown in light green. B. Nucleophilic attack on the scissile carbonyl by the
n at the scissile bond (N-terminus of product 1). C. Tetrahedral oxyanion transition state 1.
d release of product 1 (mature protein, shown in light gray). Themain chain carbonyl car-
Oγ. A nucleophilic (deacylating or catalytic) water is activated via the Lys146 Nζ and is in
. The oxyanion is stabilized via hydrogen bonds to the oxyanionhole. F. Regeneration of the
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was discovered that most of the perturbed residues map to the S1
and S3 substrate binding pockets [106,107]. In addition, NMR has
been used to investigate the structure of the signal peptide upon
binding to SPase I Δ2-76 [108].

If the arylomycin lipopeptides are mimicking the signal peptide as-
sociation contacts, then it is clear that sites far from the active site,
such as Pro84, are important for substrate affinity. Since the full length
E. coli SPase I is more active than the SPase I soluble domain, and full
length substrates are cleaved more efficiently than synthetic peptide
substrates that only contain the C-region residues, one could ask: are
there important contacts made between the SPase I transmembrane
segment and the signal peptide H-region that dictate cleavage fidelity?
Analysis of full length and soluble domains of both E. coli and Bacillus
subtilis SPase I enzymes suggest there are not [109].

Studies have demonstrated that the accuracy of signal peptide
cleavage by E. coli SPase I does not depend on the N-region, most of
the H-region and also most of the mature region of preprotein sub-
strates [110]. As mentioned earlier, site directed mutagenesis exper-
iments show that the actual cleavage site fidelity is guided
significantly by the S1 and S3 substrate specificity pockets [100].

The relative position of the cleavage site and the SPase I substrate
binding groove within or on the membrane surface likely provides
an important contribution to the efficiency of the reaction given
that peptide substrates with a hydrophobic H-region mimic se-
quence, or a fatty acid attached to the N-terminus, are significantly
more effective substrates [67]. Therefore, it is important to know
what effect the membrane has on the secretory preprotein cleavage
reaction and where the catalytic residues of SPase I are located,
with respect to the preprotein cleavage site residues.

Purified E. coli SPase I incorporated within liposomes has been
used in a number of early investigations into SPase I activity
[111,112] but most assays are performed with SPase I solubilized
within detergent micelles. Phospholipid vesicles with purified
E. coli SPase I show that maximum catalytic activity is observed
with approximately 55% phosphotidylethanolamine, the most abun-
dant phospholipid in the E. coli inner membrane. Phospholipids with
negatively charged head groups, found in abundance within the
E. coli membrane, also enhance the catalytic activity [61]. Previous
to this study, it was shown via membrane surface tension experi-
ments and vesicle binding assays that phosphotidylethanolamine
helps facilitate insertion of the catalytic domain of E. coli SPase I
into the membrane [113].

The crystal structure of E. coli SPase I revealed that a hydrophobic
surface runs along the full length of the enzyme, including the hydro-
phobic substrate binding site [32]. This surface is likely involved in
membrane association. Located on this predicted membrane associa-
tion surface are a number of aromatic residues. Trp301 has been
shown to be essential for optimal activity in E. coli SPase I [75,114]
even though the crystal structure maps it to a position more than
20 Å from the enzyme catalytic center (Fig. 9). It appears reasonable
that Trp301 and possibly Trp311 may help facilitate the insertion of
the catalytic region of E. coli SPase I into themembrane. Sequence align-
ments indicate that several conserved aromatic or hydrophobic resi-
dues exist on the proposed membrane-association surface in both
Gram-positive and Gram-negative bacterial type I SPases [115–117].
Given the short length ofmost signal peptide H-regions, and the hydro-
phobic nature of the proposed SPase I membrane association surface, it
is very possible that the cleavage event occurs well within the lipid
bilayer.

There is precedence for the hydrolysis of a peptide bond within
the hydrophobic confines of the phospholipid bilayer. Rhomboid
proteases utilize a Ser/His catalytic dyad to perform their catalysis
in the lipid bilayer [118], and there are other intramembrane prote-
ases that utilize aspartyl- and metallo-protease mechanisms [119].
Interestingly, the remnant signal peptide left behind as a product of
SPase I catalysis is cleaved within its H-region by an enzyme called
signal peptide peptidase (SppA). SppA is likely an intramembrane
protease and also utilizes a Ser/Lys dyad mechanism [120,121].

5. Catalytic mechanism of E. coli SPase I

Based on kinetic analysis of site-directed mutants, chemical modifi-
cation assays, as well as crystal structures (with andwithout inhibitors)
a catalytic mechanism has been proposed for E. coli SPase I that is sum-
marized in Fig. 10. Although the general components of the catalytic
center (nucleophile: Ser91Oγ, general-base: Lys146Nζ, oxyanion hole:
Ser91NH/Ser89OγH, and general-base positioning residue: Ser279Oγ)
appear to be defined, manymechanistic details remain to be investigat-
ed. For example, NMR titrations will help determine directly the pKa of
the general base Lys146 ε-amino group. It will be interesting to see how
the pKa of this functional group changes in the presence and absence of
bound substrates and inhibitors, and also with the coordinating residue
Ser279 mutated to other residues, in order to see if the mechanism uti-
lized by SPase I is more accurately classified as a Ser/Lys/Ser catalytic
triad rather than a Ser/Lys dyad.
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