Nadish de SilvaI am a Canada Research Chair in the Mathematics of Quantum Computation and an Assistant Professor in the Department of Mathematics at Simon Fraser University.Broadly, my research interests include quantum information & computation; nonlocality & contextuality; and operator algebras & noncommutative geometry. I am keenly interested in helping to elucidate the structural origins of computational and communicational advantages in both concrete quantum models and abstract postclassical models. These questions sit at the foundations of logic, computer science, and physics, and involve disparate areas of maths: e.g. algorithms & complexity theory, functional analysis, number theory, and category theory. I previously worked in the Centre for Quantum Information and Foundations in the Department of Applied Mathematics and Theoretical Physics (a part of the Centre for Mathematical Sciences) at the University of Cambridge, in the group of Richard Jozsa FRS. I was a member of King's College, Cambridge. Prior to this, I worked in the Department of Computer Science, UCL where I was the Researcher CoInvestigator of the EPSRCfunded project Contextuality as a resource in quantum computation: a collaboration between UCL and the University of Oxford headed by Simone Severini and Samson Abramsky FRS. I spent a semester as a Visiting Scientist at the Simons Institute for the Theory of Computing at the University of California, Berkeley. Previously, I completed my DPhil in Computer Science in the Quantum Group (Logic, Foundations, and Structures), supervised by Samson Abramsky FRS and Bob Coecke, as a Clarendon Scholar at Merton College, University of Oxford. I completed my MSc in Mathematics and my BSc in Mathematics and Physics at the University of Toronto where my supervisor was George Elliott FRSC. In Toronto, I was a Visiting Member of the Fields Institute for Research in Mathematical Sciences, supported by NSERC Undergraduate Student Research Awards. Publications
Characterising semiClifford gates using algebraic sets.

